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Abstract: Estimating the positions of human joints from monocular single RGB images has been a
challenging task in recent years. Despite great progress in human pose estimation with convolutional
neural networks (CNNs), a central problem still exists: the relationships and constraints, such as
symmetric relations of human structures, are not well exploited in previous CNN-based methods.
Considering the effectiveness of combining local and nonlocal consistencies, we propose an end-to-
end self-attention network (SAN) to alleviate this issue. In SANs, attention-driven and long-range
dependency modeling are adopted between joints to compensate for local content and mine details
from all feature locations. To enable an SAN for both 2D and 3D pose estimations, we also design a
compatible, effective and general joint learning framework to mix up the usage of different dimension
data. We evaluate the proposed network on challenging benchmark datasets. The experimental
results show that our method has significantly achieved competitive results on Human3.6M, MPII
and COCO datasets.

Keywords: human pose estimation; self-attention network; joint learning framework; local and
nonlocal consistencies; end-to-end training

1. Introduction

Human pose estimation from monocular single images to provide informative knowl-
edge for numerous applications, including action/activity recognition [1–3], action detec-
tion [4], human tracking [5], video gaming, surveillance, etc., is a fundamental problem
in computer vision. It is a challenging problem in the presence of self-occlusions and
rare poses caused by complex independent joints and high degree-of-freedom limbs,
foreground occlusions caused by complex environment, etc. [6]. However, with the de-
velopment of Convolution Neural Networks (CNNs) [7], significant progress has been
made in in recent years. The layers of Convolution neural networks generate heat maps to
represent the maximum likelihood of joints. Then, they regress these heat maps to 2D or 3D
key-point locations.

Despite its good performance, we find that the convolution method is more difficult
when considering anatomical relations and constraints. For example, when estimating
human poses, CNNs summarize human body shapes more by texture than by geometry,
and fail to capture geometrical parts of human bodies such as joint-location limits (for
example, elbows between hands and shoulders) and left–right symmetry. One possible
explanation for this is that CNN-based approaches rely heavily on convolution operators
to model joints across the whole body shape. However, convolution operators have limited
receptive fields—the long-term distance information can only be received after passing
through several convolution layers. This could prevent models from learning long-range
dependencies for a reason: it is difficult to summarize long-term information with a small
network. As a result, parameters are too sensitive to unseen features. This will drop
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high-level semantic information, which can lead to optimization not being able to achieve
a better performance. Although a larger kernel size and more convolution blocks will solve
this problem, they also increase computation and time efficiency.

To deal with this problem simply, effectively and efficiently, we introduce a self-
attention mechanism [8] into our model which we called the Self-Attention Network (SAN).
It simulates a nonlocal relationship between feature maps and combines long-term distance
information into original feature maps which can significantly increase performance and
efficiency of model. It is integral so the training procedure is end-to-end. SANs produce
attention masks to reweight original features. These masks make the model focus more on
nonlocal information. It complements convolution operators and learns contextual features
and multilevel semantic information across feature maps.

This approach is general and can be used for both 2D and 3D pose estimations
indistinguishably. We proposed a joint learning framework to enable the mixed usage of
2D and 3D data. Rich annotated 2D data could complement small scale 3D data. This
satisfies end-to-end training and improves the generalization of model.

The main contribution of this work is three-fold:

(1) We propose a simple yet surprisingly effective self-attention approach (SAN) which
exploits long-range dependency between feature maps. It can increase representation
power and performance of convolution operators.

(2) We design a joint learning framework to enable usage of mixed 2D and 3D data such
that the model can output both 2D and 3D poses and enhance generalization. As a
by-product, our approach generates high quality 3D poses for images in the wild.

(3) In experiments, SAN advances competitive results on a 3D Human3.6M dataset [9]
by a large margin and achieves 48.6 mm (Mean per joint position error (MPJPE)). On
a 2D dataset, SAN achieves competitive results—91.7% (PCKh@0.5) on MPII [10] and
71.8 (AP) on COCO [11].

2. Related Work

Human pose estimation has been a widely discussed topic in the past. It is divided
into 2D and 3D human pose estimations. In this section, we focus on recent learning-based
methods that are most relevant to our work. We will also discuss related works on visual
attention mechanisms for complementing convolution operators.

2D human pose estimation: In recent years, significant progress has been made in 2D
pose estimation due to the development of deep learning and rich annotated datasets. The
authors of [12] stacked bottom-up and top-down processing with intermediate supervision
to improve the performance. These methods are used by many researches for 2D detection
in 3D pose estimation tasks. The authors of [13] incorporated a stacked hourglass model
with a multicontext attention mechanism to refine the prediction. The authors of [14]
learned to focus on specific regions of different input features by combining a novel
attention model. Different from these, our approach adopts a self-attention mechanism to
increase the receptive field in an efficient way to learn more semantic information.

3D human pose estimation: There are two main ways to recover 3D skeleton informa-
tion. The first one divides 3D pose estimation task into two su-tasks: 2D pose estimation
and inference of a 3D pose from a 2D pose [15,16]. This method combines a 2D pose
detector [12] and a depth regression step to estimate 3D poses. In this method, the 2D/3D
poses are separated so as to generalize 3D poses in the wild images. The second one
directly infers the 3D pose from RGB images [7,17,18]. In this way, the training procedure
is end-to-end. We adopted this method for our approach. The authors of [17] proposed a
volumetric representation for 3D poses and adopted a coarse-to-fine strategy to refine the
prediction. The authors of [7] combined the benefits of regression and heat maps. We also
adopted this method to make the training process differentiable and to reduce quantization
error to improve network efficiency.
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Mixed 2D/3D Data training: Although the end-to-end training process is concise, there
is a disadvantage—the small scale of 3D in the wild annotated data limits the performance
and accuracy of domain shifts. For this problem, the authors of [19] proposed a network
architecture that comprises a hidden space to encode 2D/3D features. The authors of [20]
proposed a weakly supervised approach to make use of large scale 2D data. The authors
of [7] used soft argmax to regress 2D/3D poses directly from images. The authors of [21]
proposed a method that combines 2D/3D data to compensate for the lack of 3D data. In
our approach, we propose a joint learning method that separates x, y, z heat maps to mix
2D and 3D data.

Self-Attention Mechanism: When humans look at global images, they pay more
attention to important areas and suppress other unnecessary information. Attention
mechanisms simulate human vision and have achieved great success in computer vision—
for example, scene segmentation, style transfer, image classification and action recognition.
In particular, self-attention has been proposed [8] to calculate the response at a position
in a sequence by attending to all positions within the same sequence. The authors of [22]
proposed a cross-modal self-attention module that captures the information between
linguistic and visual features. The authors of [23] assembled a self-attention mechanism
into a style-agnostic framework to catch salient characteristics within images. We propose a
network to extend self-attention mechanisms in human pose estimation task in feature maps
to learn anatomical relationships and constraints for better recognition in nonlocal regions.

3. Model Architecture

In this section, we first describe the problem formally and give an overview of our
approach. Then, we introduce the basic idea of our approach.

3.1. Overview

3D human pose estimation is a problem, where given a single RGB image or a series
of RGB images I = {I1, I2, . . . , Ii}, the human pose estimation process aims to localize 2D
(or 3D) human body joints in Euclidean space, denoted as Y = {y1, y2, . . . , yk}, yk ∈ R
(k is the number of key-points).

As mentioned before, there are some occlusions, including the occlusion of body by
objects in space and self-shielding and ambiguities including appearance diversity and
lighting environment in the input. During the pose estimation stage, these weak-points will
severely limit prediction ability. To solve this problem in an effective way, we adopt a new
architecture, as shown in Figure 1. This is an end-to-end framework including a backbone
block, self-attention network and upsampling block. Chief among them is the self-attention
network which picks up efficient features from input images and generates self-attention
masks to reweight the original feature maps to learn the long-range dependency between
global features. A self-attention layer can capture the relatedness between feature maps and
simulate long-distance multilevel associations across joints. The design of self-attention
networks will be explained in Section 3.3. Backbone blocks are mainly used to extract
features from image batches and upsampling blocks are used to regress feature maps to
higher resolutions to refine joint locations. Backbone and upsampling block designs will be
explained in Section 3.2.

Driven by the problem of lacking a 3D annotated dataset, we adopt a joint learning
framework which separates x, y, z location regression in the training process—explained in
Section 3.4. This method enables using mixed 2D and 3D data. It also increases the module
generalization to real-world scenarios and refines the performance.
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3.2. Backbone and Upsampling Block Design

In the backbone block, we adopted ResNet [24] to extract features from input images.
ResNet replaces the traditional convolution + pooling layer of the deep neural network that
sweeps both horizontal and vertical directions across the image. It adds a skip connection
to ensure that higher layers have perform well as lower layers. Our model preserves conv1,
conv2_x, conv3_x, conv4_x and conv5_x and removes the Fully Connected (FC) layer in
ResNet. Because we use Resnet-50 and ResNet-152 as our backbone, the kernel size and
strides are different based on network depth. In the upsampling block, we implemented
deconvolution layers to regress obtained feature maps to a higher resolution. This block
will refine the joint locations.

3.3. Self-Attention Network Design

When observing batches of input images including humans, we find that the relation-
ships and constraints between joints will produce more useful information. Many human
pose estimation methods use convolution neural networks (CNNs), the performance of
which is limited by valid receptive field such that they are only capable of adjacent content
in feature maps and cannot process long-range relations and grasp high-level semantic
information. To compensate for this drawback, we propose a nonlocal approach called a
Self-Attention Network (SAN). SANs not only receive efficient features in a local region,
but also perceive contextual information over a wide range. The details are shown in
Figure 2.

Feature maps from the previous hidden layer X ∈ RC×B×H×W (C is channel number, B
is batch size, H×W is the pixel number) are first transformed to three feature spaces, where:

Wt
q = βq � xt, Wt

k = βk � xt, Wt
v = βv � xt (1)

t indicates the target feature maps index. All three space vectors come from the
same input. Wt

q is a query space vector. Wt
k is a key space vector. Wt

q and Wt
k are used

to calculate weights which represent the similarity features between feature maps. Wt
v

is a value space vector and is an output from original feature maps. Reweighting the
long-term information on Wt

v enables the network to capture joint relationships easily. βq is
a weight matrix of the query space vector, which maps the input matrix of B× C×W × H
dimensions to B× C

8 ×W × H dimensions. βq needs to be transposed for the following
operations. βk is a weight matrix of the key space vector, which maps the input matrix
of B× C ×W × H dimensions to B× C

8 ×W × H dimensions. βv is a weight matrix of
the value space vector, which maps the input matrix of B × C ×W × H dimensions to
B× C×W × H dimensions. βq, βk and βv are all trainable weight matrixes that transform
feature maps to corresponding vector spaces and were implemented as 1× 1 convolutions
in our experiment.
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which will reweight the original feature maps.

Wt
q as a search vector of feature maps for one image x ∈ RC×B×H×W matches to the

key vector Wt
k of all feature maps in this batch to calculate the positional encoding result,

which is used to represent the similarity and relevance of features in the image.

At =

[
t

∑
m=1

Wm
q � Pm

]T

Wt
k (2)

At is the self-attention distribution and is one element of self-attention matrix A ∈ RC.
m and k indicate the feature map index. At represents the degrees of influence of the m
feature map to k feature map, whereby the model obtains any two elements dependencies
of the global context. Pm is an element of a corresponding feature map, and the dimension
of Pm is the same as Wm

q . In the early stage of training, the feature extraction module was
not fully trained due to weight matrix and bias, and it picks up limited helpful features
which will lead to a small number of At. So, we dropped the 1/

√
dk element mentioned

in [8] to reverse more adjacent information.
Then, we utilzed the softmax function on the attention mask matrix A ∈ RC to acquire

cross feature probability, which is the normalization of rows and the sum of each row after
normalization is 1. The cross feature probability on the Wt

v space vector was reweighted to
obtain Wt. Wt is a self-attention mask that captures the long-distance multilevel relationship,
and considers the constraints and symmetry relationship between joints effectively.

Wt = {W1, W2, . . . , Wt|Wm =
eAi

∑t
j=1 eAj

} ⊗Wt
v (3)

We added these self-attention masks to original feature maps with a trainable variable
δ where

o = δ
t

∑
m=1

Wt + X (4)

o = {o1, o2, . . . , oN}, o ∈ RC×B×H×W is the final output after the SAN block.
Furthermore, δ controls the ratio of the local and nonlocal features. For example, at the

start of training, the network relies more on local information since it is easier. However,
when time goes by, the network will assign more weight to long-term distance features to
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refine the prediction. Inspired by [24], this skip connection also receives more information
and mitigates the problem of a vanishing gradient.

We almost added batch normalization and ReLU at every convolution layer to speed
up the training process. We used mean average loss (L1 loss) as the criterion.

3.4. Joint Learning for 2D and 3D Data

Because Equations (1)–(3) (Section 3.3) are applicable for all x, y, z coordinates in the
same way, the output dimension is either 2D or 3D. So, joint learning with mixed 2D and
3D data is straightforward: separating space part x, y from depth part z. 2D data are mainly
used to supervise the space part and 3D data for the depth part.

For the acquired 3D heat maps, Hk ∈ RW×H×D of k joints (x represents for width (W),
y represents for height (H) and z represents for depth (D)). The space part H, W is always
required for both 2D and 3D samples. The depth part D is only computed for 3D samples
and set to 0 for 2D samples; no gradient is back-propagated from depth (D).

Taking width space x coordinate as an example, we first regressed the 3D heat map to
a 1D vector:

Ix
k =

D

∑
Hk(z)=1

H

∑
Hk(y)=1

Hk(x) (5)

and then regressed this 1D vector into x joint location:

Jx
k =

W

∑
Hk(x)=1

Ix
k (6)

following this step, Jy
k and Jz

k can be inferred. In this way, the locations of x, y, z are
separated so we can output 2D and 3D pose estimation results systematically.

3.5. Training and Data Processing

We used ResNet-50 and ResNet-50 as the backbone network in our experiments. The
model was pretrained on an ImageNet classification dataset. δ was initialized as 0. The
upsampling block for the heat map is fully convolutional. It first used deconvolution layers
(4× 4 kernel, stride 2) to upsample the feature map to the required resolution (72× 72
for ResNet-152 and 64× 64 for ResNet-50). Then, a 1× 1 convolution layer was used to
produce kth heat maps. Two Tesla M40 GPUs and batch size of 32 were used. The whole
training contained 200 epochs. The learning rate is 0.0001 and dropped twice at the 170th
epoch and 190th epoch with a decay of 0.1. An Adam optimizer was used.

In data processing, the input image was normalized to 288× 384. Data augmentation
included random flip, rotation (±30◦), scale (±30%) and translation (±2% of the image
size) of the original image. The samples were randomly sampled and shuffled.

4. Experiment

In this section, we show our experimental results. We evaluated our model on Hu-
man3.6M 3D [9], MPII [10] and COCO [11] 2D datasets.

4.1. Dataset and Evaluation Metrics

MPII: The MPII dataset [10] is the standard benchmark for 2D human pose estima-
tions. The images are collected from online videos covering a wide range of activities and
annotated by humans for J = 16 2D joints. It contains 25,000 training images. The evaluation
metric is Percentage of Correct Keypoints (PCK).

Human3.6M: The Human3.6M dataset [9] is a widely used dataset for 3D human
pose estimations. This dataset contains 3.6 million RGB images captured by the MoCap
System featuring 11 actors performing 15 daily activities, such as eating, sitting, walking
and taking a photo, from 4 camera views. The evaluation metric is the mean per joint
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position error (MPJPE), in millimeters, between the ground truth and the prediction across
all cameras and joints after aligning the depth of the root joints.

COCO: The COCO dataset [11] presents imagery data with various human poses,
different body scales and occlusion patterns. The training, valid and test sets contain
more than 200,000 images and 250,000 in the wild person instances labels. In total, 150,000
instances are publicly available for training and valid.

4.2. Experiments on 3D Pose of Human3.6M

Following the standard protocol in [25], there are two widely used evaluation protocols
with different training and testing data:

Protocol#1: Five subjects (S1, S5, S6, S7, S8) for training and two subjects (S9, S11) for
testing. Mean per joint position error (MPJPE) is used for evaluation.

Protocol#2: Six subjects (S1, S5, S6, S7, S8, S9) for training and subject S11 for testing.
PA mean per joint position error (PA-MPJPE) is used for evaluation.

4.2.1. Ablation Study

An ablation study was conducted using the Human3.6M test set and Protocol#1 was
adopted. The self-attention network, extra 2D data, network depth and computation
complexity were considered as shown in Tables 1 and 2.

Table 1. Ablative study on Human3.6M. Mean per joint position error (MPJPE) numbers are in mm.

Method Network Input Size 2D Data SAN MPJPE

a ResNet-50 256× 256 - × 67.5
b ResNet-50 256× 256 MPII × 62.2
c ResNet-50 256× 256 MPII

√
57.9

d ResNet-50 256× 256 MPII COCO
√

53.1
e ResNet-50 * 288× 384 MPII COCO

√
51.9

f ResNet-152 * 288× 384 MPII COCO × 49.6
g ResNet-152 * 288× 384 MPII COCO

√
48.6

* indicates that flip test is used.

Table 2. Ablative study on computation complexity of models with and without SAN.

Model Params Flops MPJPE

ResNet-50 34M 14.10G 62.2
ResNet-50+SAN 39M 14.43G 57.9

Self-Attention Network: Long-range dependency is important for articulated relations
in human poses. Comparing to methods {b,c} and {f,g} in Table 1, performances increased
by 4.3 mm MPJPE using ResNet-50 and 1 mm using ResNet-152 when considering SAN.
SANs offer more long-term distance information. δ = 0.0 at the beginning and increases
in training. This means that long-term distance information is more important in higher
level decision making processes. Considering method {d,e} in Table 1, the larger image
resolution in our approach caused MPJPE to decrease by 1.2 mm. Figure 3 shows the results
of the joint relationship over human joints with the change of δ. δ = 0.0 means that the
network has not introduced SAN, because the proximity information is easier to obtain at
the beginning. Therefore, the number representing the feature gain between the joints is
small. In comparison, the diagonal number is the largest, which means the current network
is more dependent on neighboring features. With the increase in δ, the network introduced
a more anatomical relationships and reweighted original feature maps. When δ = 0.8, the
larger number of means joints has strong correlation with other closed and symmetrical
joints. The closed joints also have larger similarities than remote joints, such as joint 0,
which has larger constraints with joint 7 than joint 15. Information transmits joints by joints
such that the model will perceive more useful features. By adding this module, long-term
distance information will be transformed between joints and compensate local content.
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manual connections with joints based on confusion maps.

Joint learning framework: MPII and COCO datasets provide large-scale 2D key-point
in the wild data. Comparing to methods {a,b} and {c,d} in Table 1, training with both 2D
and 3D data provides significant performance gain—MPJPE dropped 5.3 mm when adding
MPII dataset and 4.8 mm when adopting COCO dataset. This verifies the effectiveness of
joint learning framework in our training process.

Network depth: From method {e,f} in Table 1, the performance is enhanced by a deeper
ResNet network. Changing network depth, MPJPE can drop by 3.3 mm from ResNet-50
to ResNet-152.

Computation complexity: Table 2 compares the model with and without SAN in terms
of parameter numbers and flops(Floating-point operations per second). The parameter of
the original method is 34 M and our method is 39 M. The flops of the original method are
14.10 G and our method is 14.43 G. The parameter increases 5 M and flops increases 0.33 G
when adding SAN, which leads to MPJPE dropping by 4.3 mm. This verifies that the SAN
model with low computation complexity will achieve a better performance.

4.2.2. Quantitative Results

The evaluation results in Table 3 show that SAN achieved good results under all pro-
tocols. Note that many leading methods have complex frameworks or learning strategies.
Some of methods aim at using the wild images [19,20,32] or exploiting temporal informa-
tion [28,30,33]. These methods have different research targets. Therefore, we included some
of them during evaluation for completeness. There are three main findings: (1) Introducing
a self-attention mechanism is effective and the proposed SAN outperforms many different
type of methods in terms of results, including the end-to-end method [7,17] and two-stage
method [16,19]. (2) Joint learning frameworks of 2D and 3D data are helpful [16,20]. They
increase the robustness of our model in in-the-wild images. (3) Our approach showed a
competitive performance on average: 48.6 mm (MPJPE) and 40.6 mm (PA-MPJPE). We
improved previous methods by a large margin for the action of phones, poses, etc. The
results prove the effectiveness of our approach.
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Table 3. Comparison of mean per joint position error (mm) in Human3.6M between the estimated pose and the ground truth. Lower values are better, with the best in bold, and the second
best underlined.

(a) Protocol#1: reconstruction error (MPJPE).

Protocol#1 Direct. Discuss Eating Greet Phone Pose Purch. Sitting SittingD. Smoke Photo Wait. Walk WalkD. WalkT. Avg.

CoarseToFine [17] 67.4 71.9 66.7 69.1 72.0 65.0 68.3 83.7 96.5 71.7 77.0 65.8 59.1 74.9 63.2 71.9
Zhou et al. [20] 54.8 60.7 58.2 71.4 62.0 53.8 55.6 75.2 111.6 64.2 65.5 66.1 63.2 51.4 55.3 64.9
Fang et al. [26] 50.1 54.3 57.0 57.1 66.6 53.4 55.7 72.8 88.6 60.3 73.3 57.7 47.5 62.7 50.6 60.4

CompositionalHP [15] 52.8 54.8 54.2 54.3 61.8 53.6 71.7 86.7 61.5 67.2 53.1 53.4 61.6 47.1 53.4 59.1
SemanticGCN [16] 47.3 60.7 51.4 60.5 61.1 47.3 68.1 86.2 55.0 67.8 49.9 61.0 60.6 42.1 45.3 57.6
RepNet+T+M [27] 49.1 63.3 48.6 56.0 57.4 50.4 62.0 75.4 77.4 57.2 69.9 53.5 57.7 37.6 38.1 56.9

Propagating-LSTM [28] 43.8 51.7 48.8 53.1 52.2 52.7 44.6 56.9 74.3 56.7 74.9 66.4 47.5 68.4 45.5 55.8
Habibie et al. [19] 46.1 51.3 46.8 51.0 55.9 43.9 48.8 65.8 81.6 52.2 59.7 51.1 40.8 54.8 45.2 53.4

Ci et al. [18] 46.8 38.8 44.7 50.4 52.9 49.6 46.4 60.2 78.9 51.2 68.9 50.0 40.4 54.8 43.3 52.7
Li et al. [29] 43.8 48.6 49.1 49.8 57.6 45.9 48.3 62.0 73.4 54.8 61.5 50.6 43.4 56.0 45.5 52.7

Pavllo et al. [30] 47.1 50.6 49.0 51.8 53.6 49.4 47.4 59.3 67.4 52.4 61.4 49.5 39.5 55.3 42.7 51.8
Guo et al. [31] 43.4 50.2 48.5 43.0 50.6 52.4 63.8 81.1 43.5 61.4 45.2 43.7 55.1 36.9 43.5 51.8
IntegralHP [7] 47.5 47.7 49.5 50.2 51.4 43.8 46.4 58.9 65.7 49.4 55.8 47.8 38.9 49.0 43.8 49.6

Ours 43.7 44.0 47.8 48.4 50.2 43.4 46.0 55.0 70.9 47.2 52.9 44.9 39.4 50.6 44.1 48.6

(b) Protocol#2: reconstruction error after rigid alignment with the ground truth (PA-MPJPE), where available.

Protocol#2 Direct. Discuss Eating Greet Phone Pose Purch. Sitting SittingD. Smoke Photo Wait. Walk WalkD. WalkT. Avg.

Wandt et al. [32] 53.0 58.3 59.6 66.5 72.8 56.7 69.6 78.3 95.2 66.6 71.0 58.5 63.2 57.5 49.9 65.1
Guo et al. [31] 37.8 38.9 49.7 44.7 47.3 38.9 58.5 83.6 52.1 62.6 40.0 43.2 54.2 34.5 39.6 48.8

CompositionalHP [15] 42.1 44.3 45.0 45.4 51.5 43.2 41.3 59.3 73.3 51.0 53.0 44.0 38.3 48.0 44.8 48.3
Fang et al. [26] 38.2 41.7 43.7 44.9 48.5 40.2 38.2 56.5 64.4 47.2 55.3 44.3 36.7 49.5 41.7 45.7

Propagating-LSTM [28] 37.4 38.9 45.6 42.6 48.5 39.9 39.2 53.0 68.5 51,5 54.6 38.4 33.2 55.8 37.8 45.7
Hossian et al. [33] 35.7 39.3 44.6 43.0 47.2 38.3 37.5 51.6 61.3 46.5 54.0 41.4 34.2 47.3 39.4 44.1

Li et al. [29] 35.5 39.8 41.3 42.3 46.0 36.9 37.3 51.0 60.6 44.9 48.9 40.2 33.1 44.1 36.9 42.6
Pavlakos [34] 34.7 39.8 41.8 38.6 42.5 38.0 36.6 50.7 56.8 42.6 47.5 39.6 32.1 43.9 39.5 41.8

Ours 39.7 38.7 43.8 42.2 43.3 38.5 42.1 50.6 65.9 42.2 46.1 39.8 33.3 44.1 38.8 40.6
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4.2.3. Qualitative Results

Figure 4 shows the qualitative results of 3D human poses. Input images are from
Human3.6M and MPII datasets. The evaluated results are accurate in both constraints
and the in-the-wild environment, which shows the robustness and generalization of our
model. Figure 5 shows the visualization results of failure cases. In Table 3, we can
find that sitting down activity always has the worst results over other activities in many
studies. The possible reason for this is that when images have serious self-occlusions, it
will cause overlap between joints. The prediction accuracies of these types of activities can
be improved by adding a mining difficult cases block.
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4.3. Experiment on 2D Pose of MPII and COCO

A joint learning framework enabled our model to produce high quality 2D key-point
results. We carried out experiments on MPII and COCO datasets to evaluate these results.
Our results were first evaluated on MPII for a validation set of about 3000 which was
separate from the training, and the evaluation metric was PCK at a normalized distance
of 0.5 (PCKh@0.5). Then, our results were evaluated using COCO on test-dev, and the
evaluation metrics were AP, AP50, AP75, APM and APL.

4.3.1. Quantitative Results

Tables 4 and 5 report the comparison results of MPII and COCO, respectively. Our
model achieves 91.7% (PCKh@0.5) on the MPII dataset and 71.8 (AP) on the COCO dataset,
and produces competitive results and significant improvement over others. Combining the
results on 3D and 2D data, we can conclude that: (1) Joint learning framework is effective.
It manages 2D and 3D data in a simple way for training. (2) 2D data also increase 3D
performance for rich annotation and prompt networks to produce high-quality 3D data in
the wild poses.

Table 4. Comparison of PCKh@0.5 (%) on MPII. It reports the percentage of detections that fall within a normalized distance
of ground truth. Higher values are better, with the best being indicated by bold font, and the second best being underlined.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Average

SimpleBaseline-152 [35] 97.0 95.9 90.3 85.0 89.2 85.3 81.3 89.6
DLCM [36] 95.6 95.9 90.7 86.5 89.9 86.6 82.5 89.8

StackedHourglass [12] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.0
PoseNFS [37] 97.9 95.6 90.7 86.5 89.8 86.0 81.5 90.2

HRNet-W32 [38] 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3
CA+SA [39] 97.1 96.0 90.7 86.4 89.4 86.8 83.3 90.4
PRAB [39] 97.1 96.2 90.7 86.4 89.8 86.9 83.3 90.5

SkeletalHeatmap [40] - - - - - - - 90.6
CU-Net [41] 97.4 96.2 91.8 87.3 90.0 87.0 83.3 90.8
DU-Net [42] 97.6 96.4 91.1 87.3 90.4 87.3 83.8 91.0

KnowledgeGuided [43] 98.1 96.3 92.2 87.8 90.6 87.6 82.7 91.2
MultiContext [13] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5

Ours 98.7 96.6 92.4 88.2 91.1 88.9 84.8 91.7

Table 5. Comparison results on COCO test-dev. Higher values are better, with the best being
indicated by bold font, and the second best being underlined.

Method AP AP50 AP75 APM APL

Integral-H1 [7] 66.3 88.4 74.6 62.9 72.1
Integral-I1 [7] 67.8 88.2 74.8 63.9 74.0

EfficientPose-B [44] 70.5 91.1 79.0 67.3 76.2
EfficientPose-C [44] 70.9 91.3 79.4 67.7 76.5

PoseNFS-MobileNet [37] 67.4 89.0 73.7 63.3 74.3
PoseNFS-ResNet [37] 70.9 90.4 77.7 66.7 78.2

Ours 71.8 91.5 79.8 66.9 78.0

4.3.2. Qualitative Results

With the help of joint learning framework, our approach outputs both 2D and 3D pose
from images in the wild at the same time. We visualized example 2D prediction results in
Figure 6. We can see that our method is robust in extremely difficult cases. The proposed
SAN presents a better performance and can be generalized to unlimited images. This also
shows that the impact of rich 2D annotated data will increase 3D performance dramatically.
Our approach is helpful.
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5. Conclusions

In this paper, we propose a simple yet surprisingly effective self-attention network
(SAN) for human pose estimation. SANs can not only solve the drawbacks of convolu-
tion operators, which only perceive local information and enlarge receptive fields in a
computationally inefficient way, but also combine long-range dependency and multilevel
information into convolution operators to enhance representation power and performance.
We also introduce a joint learning framework for 2D and 3D data in the training proce-
dure. So, our network can output both 2D and 3D poses. Experimental results show that
after bringing in the SAN, the performance will be significantly improved. Our complete
pipeline achieves the competitive results on both Human3.6M 3D, MPII and COCO 2D
benchmarks. As a by-product, our approach generates high quality 3D poses for images in
the wild.
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