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Abstract: In this study, rotordynamic analysis is performed using a simple structural model for the
polymer layer of gas foil-polymer bearing (GFPB) composed of an accumulated bump foil and a
polymer layer with high structural damping. The simple model that considers the elastic behavior of
a cylinder-shaped polymer layer is introduced, and the structural stiffness of the layer is estimated
based on Hooke’s law for differential elements in the layer. In addition, the simple model is coupled
with the structural stiffness of the bump foil in consideration with a series relationship, which
represents the structural model of GFPBs. A GFPB with thickness of 2 mm is fabricated, and the
structural model is validated via static-load deflection tests for the GFPB. As a result of model
validation, the proposed model is found to be effective in predicting the elastic behavior under the
lightly loaded condition of GFPB. Next, the static performances of GFPBs, namely, gas-film pressure,
thickness, and journal positions with respect to different polymer layer thickness, are analyzed to
evaluate rotordynamic stability of GFPBs. The results indicate that high thickness yields an increase
in damping and a decrease in cross-coupled effects. Specifically, in this study, 3 mm-thick polymer
gives the best stability performance given the predicted effective damping results. As a result, this
work provides a reasonable model for structural elasticity of GFPBs and lays a foundation for the
widespread use of GFPBs.

Keywords: gas foil bearing; polymer; rotordynamics; bearing force coefficient; structural stiffness

1. Introduction

Gas foil bearings (GFBs) have been considered as a core lubrication technology for
oil-free high-speed rotation machinery [1]. Bump-type GFBs have compliant sub-structures
including a bump and top foil, which improve the load-carrying capacity and rotordynamic
stability [1,2]. The use of GFBs reduces system complexity and maintenance costs for their
simple design [3,4]. Major applications of GFBs include high-speed turbomachinery and
electro-mechanical machinery such as turbo-compressors, turbo-blower, micro gas turbines,
and electric permanent magnet motors/generators.

Specifically, GFBs have the following advantages as compared to conventional rigid
hydrodynamic gas bearings [5]:

High Load Capacity: A compliant bump foil structure increases the minimum thick-
ness region in the gas film, leading to a capability to support higher loads.

Low Power Losses: The prevalence of gas-film thickness results in lower viscous
friction losses of the bearing.

High-Speed Operation: Improved damping characteristics caused by the sliding
motion between the bump foil and top foil/bearing housing makes the journal rotate stably
at high speed.

Self-Alignment: The flexibility of the bearing structure accommodates misalignment
of assembled system and vibration/shock, or any other unexpected maneuver.
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Figure 1 presents the configuration of a one-pad journal GFB and gas foil-polymer
bearing (GFPB) proposed by Sim and Park [3]. For the GFB, the top and bump foils are
located between the journal and bearing housings. The top foil provides a smooth bearing
surface and assists in generating a hydrodynamic film pressure between the journal and
top foil. The top foil is supported on a series of bump foils, which provide structural
compliance and energy dissipation, acting as springs and dampers. The GFPB consists of
laminated top, bump, and bottom foils made of Inconel X-750. An additional polymer layer
made of nitrile butadiene rubber is filled in the circumferential direction. The polymer layer
leads to radial motions of the sub-structure, providing additional structural compliance
and hysteretic damping. One end of the top, bump, and bottom foils is spot-welded to the
bearing key, whereas the other end is free.
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Figure 1. Schematic views of a one-pad journal gas foil bearing (GFB) with top and bump foil
structures and gas foil-polymer bearing (GFPB) with top and bump foil structures as well as a
polymer layer.

The static and dynamic performances of the GFBs mainly depend on the mechanical
properties of the sub-structures, i.e., the material properties and geometrical configuration
of the bump and top foils, particularly for heavily loaded GFBs at high speeds [2]. To
predict the exact rotordynamic performance of the rotor supported on GFBs, the precise
estimation of the mechanical properties of the sub-structures is important [3,6]. Thus,
studies on the mechanical properties of sub-structures have been one of the main research
topics in GFBs.

Heshmat et al. [7,8] proposed the first simple elastic foundation model of a bump
foil. The bump foils were modeled as uniform springs with structural compliance, which
was determined by the material and geometric properties of the bump foil. Iordanoff [9]
presented another simple elastic foundation model of a bump foil under either free–free
end or fixed–free end conditions for a single bump. Specifically, this model included the
dry-friction coefficients of the sub-structures.

Subsequently, San Andres et al. [1] proposed finite element (FE) models that coupled
the elastic deformations of a two-dimensional (2D) shell or one-dimensional (1D) beam-
like top foil with the bump foil deflections. The structural stiffness of the bump foil was
estimated from a simple elastic foundation model [9]. In contrast, Carpino et al. [10]
introduced a fully coupled FE model of a bump and top foil. This model included the
moment, tension, curvature, and strain expressions for the cylindrical shell deflections of
the foil structures. The bump foil was also considered as a continuous elastic foundation
with coupled radial and circumferential deflections of the foil.
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These simple elastic foundation models [7–9] of bump foils neglect the elasticity
of the top foil and consider them as an elastic foundation having a uniform stiffness
coefficient. The consideration of all the effects on the properties of bearing structures is
limited. This is because the stiffness coefficient is determined only by the geometry and
material of the bump foil and/or dry-friction coefficients and not operation conditions.
However, in practice, structural properties of the sub-structures significantly vary with the
rotor speeds, deformations of the sub-structures, operation temperatures, and static and
dynamic loads [3,11,12].

Recently, inducing a change in the mechanical properties of the sub-structures by
introducing some high damping materials in the top and bump foil structures to stabilize
the rotor-bearing system is receiving increased attention. Lee et al. [13,14] introduced
viscoelastic materials into GFBs to increase the damping characteristics of the sub-structures.
These viscoelastic GFBs comprised a series of laminated structures, i.e., viscoelastic material-
based top and bump foils. The experiments showed that the enhanced structural damping
lowered the amplitudes of the synchronous motion near the critical speed of the rotor-
bearing system.

Sim et al. [3] experimentally evaluated the effects of high-damping sub-structures
on the rotordynamic performance. The test bearings were one-pad GFBs and GFPBs
with high-damping bump foil and polymer sub-structures. By conducting the 1-DOF
dynamic loading tests of a flat specimen of the bearing sub-structure, they found out that
the GFPBs had lower structural stiffness coefficients and higher structural loss factors than
the GFBs. The rotordynamic performance measurements revealed that the GFPBs delayed
the occurrence of the sub-synchronous motions and lowered the peak amplitude of the
synchronous motions near the critical speed.

Zywica et al. [15–17] performed a protective coating of the top foil with a thin fluo-
ropolymer layer to reduce bearing friction and wear in GFBs. The rotordynamic experiment
of bearings were carried out at high speeds and elevated temperatures from 20 to 290◦,
which are in conditions that are typical for micro-turbine operation. Furthermore, authors
examined static characteristics of the bearings via static-load deflection tests. Their work
suggests that the polymer layer is sufficiently applicable to GFBs in turbomachinery run-
ning in relatively high-speed and high-temperature environments. In addition, polymers
have been applied to various components of rotating machinery such as a compressor
impeller, a nozzle body, a ball bearing cage, and a bushing [18–21].

Similar to the earlier studies [3,13,14], introducing high-damping materials in the
sub-structures of the GFBs was a useful solution for improving the rotordynamic stability.
However, the authors in the studies did not investigate the underlying reason for this effec-
tiveness in improving the rotordynamic stability. Without understanding the background
mechanism of GFPBs, it is difficult to expect their widespread usage even if they provide
outstanding rotordynamic performance. Absence of a reliable prediction model for the
structures of GFPBs also impedes the widespread usage of the bearings.

This study aims to develop a simple model for structural elasticity of GFPBs and
examine stability performance of GFPBs using the model. The following work includes
the structural model development of GFPBs based on Hooke’s law for the cylinder-shaped
polymer layer, and the model is validated via the static-load deflection tests with a fab-
ricated test GFPB with nitrile butadiene rubber. Static load versus displacement curve
is used to validate the simple structural model. Finally, the structural model of the GF-
PBs is coupled with the in-house computation tool for bearing performance analysis, and
performance of GPFBs is discussed in terms of polymer layer thickness and rotating speeds.

2. Simple Model for Structural Elasticity of Polymer Layer

A simple model of a cylinder-shaped polymer layer is described here to achieve a
reliable estimation of the mechanical properties for GFPB structures. The mathematical
approach for the cylinder-shaped polymer layer follows a thick-walled cylinder formulation
based on the theory of elasticity and considers a differential element on a polymer layer.
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The thick-walled cylinder formulation is generally used to analyze the stress and strain
relation of pressure vessels [22,23].

Figure 2 presents the coordinate system of a thick-wall cylinder model and normal
stresses on a differential element. Cylindrical coordinate system (r, θ, Z) is introduced
for the cylinder, where r, θ, and Z are the radial, circumferential, and axial coordinates,
respectively. In this study, the polymer layer of a GFPB is modeled as a thick-wall cylinder
having an inner radius (rin), outer radius (ro), and length (L). The cylinder is loaded by an
internal fluid-film pressure (pin) on the inner surface of the cylinder. The outer surface is in
contact with the bearing housing. Therefore, a uniform internal film pressure is assumed
along the θ and Z coordinates.
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A differential element is defined by an angular increment (dθ), a radial increment (dr),
and an axial increment (dZ) at the radial position (r). The original shape is element abcd and
deformed shape by the internal film pressure is element a′b′c′d′. The radial deformation of
an element (u) is given by aa′ and bb′. By circular symmetry, considering the equilibrium of
the differential element in the radial direction leads to an equilibrium equation, as follows:

(σr + dσr)(r + dr)dθ = σrrdθ + σθdθdr (1)

If the axial length of the polymer layer is considerably longer than the thickness,
the axial strain of the element becomes relatively small so that the element could be
regarded under a plane strain condition. Moreover, the axial strain of the polymer layer
is significantly constrained because of the frictional force between the polymer layer and
other sub-structure, thus leading to εZ = 0. From Hooke’s law, the stress and strain
equations for the condition of plane strain in the cylindrical coordinates are given by [22]

σr
σθ

σZ

 =
Ep(

1 + νp
)(

1− 2νp
)
 1− νp νp νp

νp 1− νp νp
νp νp 1− νp


εr
εθ

0

 (2)

where Ep is the Young’s modulus of the polymer material, νp is the Poisson’s ratio of the
polymer material, and the radial and circumferential strains are expressed as εr = du/dr
and εθ = u/r, respectively.

Boundary conditions for the element are applied by considering the actual operating
conditions of the polymer layer in the GFPB with the radial stress σr and radial deformation
u; they are

σr(rin) = −pin, u(ro) = 0 (3)
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which indicates that the inner surface of the cylinder is loaded by the internal film pressure,
and the radial deformation at the outer surface of the cylinder is constrained by the
bearing housing.

Substituting Equation (2) into Equation (1) and applying the boundary conditions, the
general solutions can be obtained, as follows:

σr = −pin

 1 +
( ro

r
)2(1− 2νp

)
1 +

(
ro
rin

)2(
1− 2νp

)
 (4)

σθ = −pin

 1−
( ro

r
)2(1− 2νp

)
1 +

(
ro
rin

)2(
1− 2νp

)
 (5)

σZ = νp(σr + σθ) (6)

and the radial deformation is

u = pin

(
1 + νp

Ep

)(
ro

r
− r

ro

) ro
(
1− 2νp

)
1 +

(
ro
rin

)2(
1− 2νp

)
 (7)

which shows that the axial stress is not a function of the radial position and is determined
by the geometry of the polymer layer and internal film pressure.

The equivalence between the strain energy (Wstrain) of the polymer layer and potential
energy of an equivalent virtual spring (Wpotential) determines the equivalent stiffness per
unit area of the polymer layer (kp). The strain energy of differential elements in the radial
direction and the potential energy of the equivalent virtual spring are expressed as

Wstrain =
1

ro − ri

∫ ro

ri

∫ u(r)

0
σr(r)du dr, Wpotential = 1/2kpx2

a (8)

where xa is the arbitrary deflection of the spring. Note that it is assumed that the reaction
force of the equivalent spring is linearly proportional to the deflection.

3. Structural Deflection Model of GFPBs

A structural deflection model for GFPBs is established by coupling bump-foil elasticity
with the structural elasticity model of polymer layers.

Figure 3 presents the coordinate systems for the deflection model with equivalent
springs of GFPBs. The origin of rectangular coordinate system X, Y is located at the center
of the bearing, and the circumferential coordinate system θ is defined as counterclockwise
from the negative X-axis. Each single bump foil and polymer layer is modeled as circum-
ferentially distributed equivalent springs. The springs correspond to the number of single
bump foils (Nb), which are circumferentially located at the peak of the bump arc; thus, they
are located at θi, where i = 1 − Nb.
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Considering the force equilibrium of the applied static loads (FX, FY) on the journal and
sum of the reaction forces of the equivalent springs (FX,R, FY,R) in the X- and Y-directions
leads to

FX − FX,R = 0, FY − FY,R = 0 (9)

where the sum of the linear reaction force is calculated from the summation of the reaction
forces of each spring (FX,i, FY,i) in each direction, i.e., FX,R = ∑Nb

i=1 FX,i and FY,R = ∑Nb
i=1 FY,i.

The reaction force of each spring is determined using its stiffness coefficient and deformation.
The spring deformation is determined from the gap between the journal and bearing

surface (τ) at the spring location θi, as follows:

τ(θi) = Cr + eXcosθi + eYsinθi (10)

where Cr is the bearing radial clearance, and eX and eY are the journal center positions
in the X- and Y-directions, respectively. Note that when the gap becomes negative at a
certain angle of the spring location, the springs at the location are engaged to generate
reaction forces, whereas the springs located at the gap with positive values do not induce
the reaction forces.

If the gap is negative, i.e., the shaft and bearing surface come into contact, the defor-
mation of the spring at θi(δi) is expressed as

δi = −τ(θi) i f τ(θi) < 0. (11)

Thus, the reaction force of each spring is

Fi = KGFPBδi i f τ(θi) < 0. (12)

where the reaction force becomes zero at θi if τ(θi) > 0, and KGFPB is the equivalent structural
stiffness coefficient of the GFPB, i.e., KGFPB = kGFPB × unit area (=bump pitch × bearing
length). The reaction force components in the X- and Y-directions are FX,i = −Ficosθi and
FY,i = −Fisinθi, respectively.

The kGFPB is estimated from a series combination of the bump and polymer springs; it is
expressed as 1/kGFPB = 1/kb + 1/kp. The stiffness coefficient per unit area of the equivalent
bump foil springs (kb) is determined from Iordanoff’s formula [9] under free–free end
condition, whereas the coefficient of the equivalent polymer springs (kp) is calculated
from the structural elasticity model of the polymer layer, Equation (6). Note that this
simple concept that bump foil and polymer layer springs are connected serially allows
us to understand complex structural mechanism of GFPBs easily. On the other hand,
Schilling et al. [24] modeled the polymer layer in the gas bearing as complex rheological
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elements with the discrete springs and dampers to consider viscoelastic behavior of the
polymer layer.

The computational procedure is as follows. First, the gap is calculated at each angular
position of the spring location using the current journal center position, and then the
reaction forces of each spring are determined. Second, the force equilibrium in Equation (7)
provides the updated shaft center position by using the Newton–Raphson method. The
procedure is iteratively performed until the shaft center position converges within a certain
level of error with 1× 10−5.

In the prediction, a Young’s modulus of 2.5 MPa [25] and Poisson’s ratio of 0.33 [22]
for the polymer layer are used. From Equation (6), we can estimate that the structural
stiffness per unit area is 8.7 × 109 N/m3 for the free–free bump and 2.9 × 109 N/m3 for
the polymer layer with 2 mm thickness. Consequently, the equivalent structural stiffness of
the GFPB corresponds to kGFPB = 2.18 × 109 N/m3 and KGFPB = 2.99 × 105 N/m with the
unit area of 0.137 × 10−3 m2.

Note that the mechanical properties of the general polymer material vary considerably
with the temperature. There are five regions of viscoelastic behavior of a polymer: glassy,
glass-transition, rubbery, rubbery flow, and liquid flow regions [22]. Because the properties
change rapidly at the boundary of each region, the operating temperature of the polymer
when in use should be considered when selecting the mechanical properties. In this
study, it is assumed that the polymer layer in the GFPB is subjected to low temperatures,
resulting from a well-cooled and low-load operation. Therefore, the temperature range of
the polymer is regarded as the glassy region (25–120 ◦C).

4. Model Validation via Static-Load Deflection Test

The static-load deflection test in the gas bearing field generally represents a test that
identifies a relationship between applied static loads and deflection of the bearing sub-
structures [26]. Ref. [3] also carried out the static-load deflection tests with a test journal
GFPB and GFB to identify assembled radial clearance of the bearings; however, the tests is
performed for validating the simple structural model.

Figure 4 shows the configuration of the static-load deflection test rig setup and a
test GFPB. A test GFPB has a bearing length of 30 mm and a designed radial clearance of
200 µm for a journal that has 40 mm diameter. The polymer layer, nitrile butadiene rubber
(NBR), a kind of natural rubber, is used. NBR has excellent oil and abrasion resistance and
is widely used for O-rings and seals. The operating temperature is −55–125 ◦C, and it
has stable heat resistance. NBR has excellent damping characteristics compared to general
engineering rubbers such as natural rubber (NR), stylene butadiene rubber (SBR), and
ethylene propylene diene monomer (EPDM). Therefore, in this study, NBR polymer with
a thickness of 2.0 mm (tp = 2.0 mm), rin = 20.92 mm, and ro = 22.92 mm is applied to the
bearing; a plate made of NBR was cut to fit the size of the bearing, then rolled up and
inserted into the bearing. The design parameters for the foil structures and polymer layer
are listed in Table 1. On the other hand, the bump foil is fabricated by the press process with
a flat-shaped tooling (die) with a forming load of 30 MPa. DellaCorte et al. [27] reported
that at least a load of 28 MPa is required to achieve the designed bump shapes.



Appl. Sci. 2021, 11, 1789 8 of 19Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 19 
 

 
Figure 4. Fabricated test GFPB and measurement setup of the static-load deflection test with a 
stationary shaft and a moving bearing housing. 

Table 1. Specifications of the test and analysis GFPB. 

Parts Parameters Values 
Journal Diameter 40.00 mm 

Bearing 
Length 30.00 mm 

Nominal radial clearance (designed) 0.20 mm 

Bump foil 

Thickness 0.127 mm 
Height  0.508 mm 
Pitch 4.572 mm 

Half length 1.810 mm 
Young’s modulus 214 GPa 

Poisson’s ratio  0.29 
Friction coefficient 0.1 

Stiffness per unit area (free-free) 8.7 × 109 N/m3 
Top/bottom foil Thickness 0.127 mm 

Polymer layer 

Thickness 2.0 mm 
Young’s modulus 1.2 MPa 

Poisson’s ratio 0.33 
Polymer loss factor 0.49 

Inner radius 20.92 mm 
Outer radius 23.42 mm 

Material Nitrile butadiene rubber 
Stiffness per unit area 2.9 × 109 N/m3 

The top, bump, and bottom foils are made of Inconel X-750. 

Figure 5a shows the predicted displacement versus applied static load when the bear-
ing radial clearance is 230, 250, and 270 μm and the measured data from the static-load 

(a) 

(b) 

Figure 4. (a) Fabricated test GFPB and (b) measurement setup of the static-load deflection test with a
stationary shaft and a moving bearing housing.

Table 1. Specifications of the test and analysis GFPB.

Parts Parameters Values

Journal Diameter 40.00 mm

Bearing Length 30.00 mm
Nominal radial clearance (designed) 0.20 mm

Bump foil

Thickness 0.127 mm
Height 0.508 mm
Pitch 4.572 mm

Half length 1.810 mm
Young’s modulus 214 GPa

Poisson’s ratio 0.29
Friction coefficient 0.1

Stiffness per unit area (free-free) 8.7 × 109 N/m3

Top/bottom foil Thickness 0.127 mm

Polymer layer

Thickness 2.0 mm
Young’s modulus 1.2 MPa

Poisson’s ratio 0.33
Polymer loss factor 0.49

Inner radius 20.92 mm

Outer radius 23.42 mm
Material Nitrile butadiene rubber

Stiffness per unit area 2.9 × 109 N/m3

The top, bump, and bottom foils are made of Inconel X-750.

As for the test rig, a stationary shaft with a diameter of 40 mm is fixed on a lathe with
a three-jaw chuck and tail chuck. A test bearing is installed on the shaft, and it can be
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moved to one axis by a latch tool. The lathe tool achieves forward and backward motions
for the test bearing, which are measured by an eddy-current displacement sensor (BENTLY
NEVADA 3300 XL NSV). When the test bearing moves over its nominal radial clearance,
the bearing sub-structures come into contact with the test shaft, generating a reaction force.
The force is measured by a load cell (CURIOTECH CSBA-50L) located between the test
bearing and latch tool. The uncertainty of the measured displacement and force is estimated
to be 2 and 3%, respectively, at room temperature 21 ◦C. For a detailed description of the
test procedure, refer to Ref. [26].

Figure 5a shows the predicted displacement versus applied static load when the
bearing radial clearance is 230, 250, and 270 µm and the measured data from the static-load
deflection test. The prediction results tend to agree with the test results overall, and show
high correlation especially in the range ±100 N–±200 N, although the actually designed
nominal radial clearance is 200 µm. This means that actual assembled radial clearance is
slightly larger than the designed value, which might be caused by a manufacturing error
in height of the bump foils. It is interesting that the curve measured from the test exhibits
a nonlinear behavior, particularly in the low-load regions (<~±70 N). This phenomenon
is believed to be mainly attributed to the manufacturing and assembling uncertainties
of the bearing and shaft. Note that the test result indicates that there are four loading
processes: pull-loading and -unloading as well as push-loading and -unloading. During
these processes, the measured displacements and static loads form a hysteresis loop, whose
area is related to the energy dissipation and slope correlates with the structural stiffness [28].
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and 270 µm.
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Figure 5b illustrates the estimated structural stiffness as a function of the displacements
from the prediction and test. All the stiffness curves are estimated by differentiating the
static load versus displacement fitting functions with respect to the displacement, and the
functions are listed in Table 2. The results indicate that stiffness curves of the analysis tend
to agree with the curve of the test especially in the low-displacement regions, whereas the
major discrepancy occurs in the high-displacement regions.

Table 2. Curve fitting functions of the static load versus the displacement from the prediction and
test results.

Cr C1 C2 C3 R2

Prediction
230 µm 1.25 × 10−6 9.42 × 10−8 6.53 × 10−2 0.99
250 µm 1.16 × 10−6 4.02 × 10−7 4.38 × 10−2 0.99
270 µm 1.08 × 10−6 6.31 × 10−7 2.47 × 10−2 0.99

Test 200 µm
(designed) 1.25 × 10−6 3.48 × 10−5 3.03 × 10−2 0.98

Curve Fitting Function: f(y) = C1y3 + C2y2 + C3y
f(y): Static Load in [N], y: Displacement in [µm], R2: Correlation Coefficient

As a result, the presented structural model of GFPBs is effective enough to predict
structural behavior of GFPBs in the lightly loaded condition. In general, dynamics of
rotor-bearing systems with lightly loaded condition are dominated by bearing stiffness
than bearing damping effects since the stiffness determines system critical speeds and whirl
frequency of instabilities. However, in some cases of high-load conditions, the model may
not guarantee the accuracy of the prediction result due to the fact that the model cannot
capture viscoelastic behavior of polymer layers.

5. Rotordynamic Performance Analysis of GFPBs

The rotordynamic performance analysis with respect to static and dynamic perfor-
mances of the GFPBs are conducted. The structural model of the GFPBs is coupled with
the in-house computation tool anchored in solving the transient Reynolds equation for
an isothermal iso-viscous ideal gas and the perturbation method of GFBs, which was
established from Park’s work [29].

An unsteady compressible Reynolds equation for an isothermal and isoviscous ideal
gas is expressed as

∂

∂X

(
ph3 ∂p

∂X

)
+

∂

∂X

(
ph3 ∂p

∂X

)
= 6µRΩ

∂(ph)
∂X

+ 12µ
∂(ph)

∂t
(13)

where µ is the air viscosity, Ω is the rotor speed, and t is the time; p and h are gas-film
pressure and thickness, respectively. The fluid-film thickness for the GFPB is expressed
in terms of the journal center positions and bearing radial clearance and deflection of the
bump foil plus polymer layer (ζ0) as

h = Cr + eXcosθ + eYsinθ + ζ0 (14)

where the deflection occurs because of the compliance of the bump foil plus polymer
layer, i.e., ζ0 =

(
pavg − pa

)
/k∗GFPB, pavg is the average fluid-film pressure over the bearing

length, pa is the ambient pressure, and k∗GFPB is the complex structural stiffness of the
GFPB expressed as k∗GFPB = kGFPB(1 + jγGFPB), where γGFPB is the structural loss factor,
and j is the imaginary unit. A common approach to consider dynamic effects using static
stiffness and loss factors of bearing structures is to use complex stiffness. Note that ζ0
is mechanical deflection of an equivalent spring of the bump foil plus the polymer layer
caused by gas-film pressure distribution.
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The structural loss factor of the GFPB can be easily estimated from a series combination
relation of the bump foil and polymer layer. Thus, the structural loss factor of the GFPB is
defined as

1
γGFPB

=
kGFPB
kpγp

+
kGFPB
kbγb

(15)

where γp and γb denote the loss factor of the polymer layer and bump foil, respectively.
Generally, the structural loss factor of the bump foil is estimated as a constant value from
0.05 to 0.2 [29]. In this study, a value of 0.1 is used for the foil structures. Meanwhile, the
polymer layer is assumed to have a loss factor of 0.49 [22], which is much higher than the
bump foil has.

Figure 6 displays how the structural stiffness and loss factor of the GFPB, which
constitute the complex structural stiffness k∗GFPB, vary depending on thickness of the
polymer layer. It is assumed that the polymer layer has rin = 20.92 mm, and the outer
radius is varied to a value corresponding to analysis thickness. The result shows that
kGFPB becomes identical to kp, whereas γGFPB approaches γb at a thick thickness. Notably,
inserting a polymer layer into the GFB significantly reduces the structural stiffness of the
bearing, which is accompanied by increased structural loss factor. This result implies that
the engineer can properly tune bearing stiffness and damping with polymer thickness; this
is a flexible and easy way for engineers. Similar consequence also can be observed in the
dynamic test for structural parameter identification of GFBs and GFPBs in the early study
conducted by Sim et al. [3].
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As a next step, the following performance analysis is conducted with the assumption
that analysis bearings having a designed radial clearance of 200 µm are adjusted to have the
clearance of 50 µm by inserting metal shims beneath the bottom foil, while not changing
the inner radius of the polymer layer. That is because the bearing radial clearance is usually
less than 50 µm in most practices [30]. Note that the bearing clearance was intentionally
designed as large to adjust the value as we want. The journal is subjected to a static load of
49.1 N in X-direction, which corresponds to a journal mass of 5 kg. The important design
parameter for GFPBs, that is, polymer layer thickness tp, changes from 1 to 10 mm during
the analysis.

Figure 7 shows a change in journal equilibrium positions determined by the eccen-
tricity and attitude angle depending on the polymer layer thickness as the rotor speed
changes. The nondimensional form of the eccentricity is calculated from e/Cr where
e =
(
eX

2 + eY
2)1/2. As the polymer thickness increases, the eccentricity becomes increased

significantly, i.e., the equilibrium position shifts away from the bearing center. On the other
hand, the attitude angle shows a decrease trend with an increasing the thickness. These
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changes are mainly attributed to the small structural stiffness of GFPBs with the thick
polymer layer. Another thing to discover is that as tp increases, the slope of eccentricity and
attitude angle with rotating speed decreases slightly. That is, as tp increases, the change in
the journal position to the speed becomes less sensitive, which is important information in
the layout design of the rotating machinery.
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The journal position information including the journal eccentricity and the attitude
angle enables us to speculate the stability of GFPBs in terms of subsynchronous motions,
i.e., self-excited whirls in gas bearings. It is popularly assumed that the high eccentricity
and the low attitude angle indicate a potentially stable bearing [31–33], because these
conditions contribute to reduce the cross-coupled effect of the fluid film of bearings, which
is one of main causes for instability in gas bearings. These desired conditions can be
achieved by utilizing a thick polymer layer in GFPBs according to the results in Figure 7.
However, note that too-thick polymer layers might cause other practical problems because
they produce journal’s high eccentricity of several hundred micrometers; for example,
excessive radial shift of a rotor core on the rotor shaft in induction motors can bring about
an electromagnetic excitation on the rotor shaft [34]. Therefore, the selection of the polymer
layer thickness in bearing design requires a comprehensive judgment including the layout
of the other components and the interference with other parts.

Fluid-film pressure and thickness distributions for polymer layer thickness of 1, 5, and
10 mm at a rotor speed of 50 krpm are shown in the Figure 8. It can be seen that the thick
polymer layer reduces the peak value in the pressure and widens the pressure distribution.
In addition to the pressure, the minimum film thickness region becomes widened at the
thick polymer layer, which indicates that a wide wedge shape is needed to support the
same static load owing to the low structural stiffness of the thick polymer layer. This can be
advantageous in terms of load performance of the bearings, since wider fluid-film pressure
generally can support the higher static load under a same minimum fluid-film thickness,
which is also a main advantage of GFBs in comparison to rigid gas bearings [35].
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Synchronous force coefficients of the fluid film of the GFPBs are estimated via the
perturbation analysis of journal harmonic motions, and direct stiffness (kXX, kYY) and
damping (cXX, cYY) results are shown in Figure 9. As the polymer layer thickness increases,
direct stiffness and damping coefficients in both directions become reduced. The reductions
in direct stiffness are predictable results because higher polymer thickness means lower
structural stiffness. However, it is interesting that higher thickness does not generate higher
direct damping coefficients of the fluid film; rather, it decreases the damping.
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In GFB, the direct stiffness and direct damping coefficients are generally inversely
proportional to the bearing clearance [29]. In other words, a smaller bearing clearance
reduces the average gas-film thickness and the journal forms its equilibrium position near
the bearing center, so that the gas film provides high direct stiffness and direct damping to
the journal motion. However, the increase in the polymer thickness of GFPB causes the
journal to move away from the bearing center, as shown in Figure 7. Therefore, the average
gas-film thickness increases as shown in Figure 8, resulting in a lower direct stiffness and
direct damping coefficients of the gas film.

In addition to the reduction, asymmetry of kXX and kYY decreases with increasing
polymer layer thickness, yielding circular journal orbits. From the point of vibration
amplitude, circular orbits are preferable, since their vibration amplitude is smaller when
going through a critical speed compared to the major axis of an elliptical orbit [36].

Predicted cross-coupled stiffness (kXY, kYX) is shown in Figure 10. They also get
reduced significantly with increasing polymer layer thickness, and kXY is more sensitive to
the thickness than kYX, which indicates that the differences in magnitude of |kYX − kYX |
become small at high thickness. This implies a better rotordynamic stability because it
means small destabilizing energy added to the rotor-bearing system [37,38]. Cross-coupled
damping coefficients are omitted in the paper for brevity.
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6. Stability Analysis of GFPBs

As shown in Figure 11, the gas film can be represented by linearized springs and
dampers. Where journal radial motion is quite small and about a centered position, the
motion is said to be in the linear range and the gas-film forces are directly proportional to
the journal displacements (∆eX, ∆eY) and velocities (∆

.
eX , ∆

.
eY) [39].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 19 
 

 
Figure 11. Dynamic direct and cross-coupled properties of the GFPB acting on the journal. 

The dynamic bearing reaction forces acting on the journal are as follows: 𝑓𝑓 = − 𝑘 𝑘𝑘 𝑘 ∆𝑒∆𝑒 − 𝑐 𝑐𝑐 𝑐 ∆𝑒∆𝑒  (16)

where 𝐹 _  and 𝐹 _  are dynamic gas-film forces. 
Effective stiffness and damping are the important indicator of the stability of rotor-

bearing systems. Assuming a small circular journal motion, it assumes that the direct 
terms become symmetric (𝑘 = 𝑘 , 𝑐 = 𝑐 ), and the cross-coupled terms are skew-
symmetric (𝑘 = −𝑘 , 𝑐 = −𝑐 ). Thus, effective stiffness and damping are derived 
from: 𝑘 = 𝑘 + Ω ∙ 𝑐  (17a)𝑐 = 𝑐 1 − 𝑘Ω ∙ 𝑐  (18b)

Where ? ? is the rotating speed of the journal. Note that in the GFPB analysis, the journal 
does not move around its centered position, and the direct and cross-coupled terms are 
not symmetric as seen in Figures 9 and 10. Therefore, a limited analysis of results is re-
quired about the effective stiffness and damping predictions. 

Figure 12 indicates the impact of the polymer layer thickness and rotating speed on 
the effective stiffness and damping. Increasing the polymer layer thickness gives the de-
crease in the effective stiffness and the damping trend to decrease after an increase. For 
the tp = 3 mm case, the effective stiffness is reduced by 46–50%, and the effective damping 
increases by 47–280% compared to the tp = 1 mm case; which shows a remarkable improve-
ment in the effective damping. The improvement of the damping is more pronounced in 
low-speed areas than in high-speed ones. 

 
Figure 12. Predicted effective stiffness and damping versus the rotor speed depending on the polymer layer thickness. 

Effective stiffness Effective damping 

Figure 11. Dynamic direct and cross-coupled properties of the GFPB acting on the journal.



Appl. Sci. 2021, 11, 1789 15 of 19

The dynamic bearing reaction forces acting on the journal are as follows:{
fX
fY

}
= −

[
kXX kXY
kYX kYY

]{
∆eX
∆eY

}
−
[

cXX cXY
cYX cYY

]{
∆

.
eX

∆
.
eY

}
(16)

where FX_dynamic and FY_dynamic are dynamic gas-film forces.
Effective stiffness and damping are the important indicator of the stability of rotor-

bearing systems. Assuming a small circular journal motion, it assumes that the direct
terms become symmetric (kXX = kYY, cXX = cYY), and the cross-coupled terms are
skew-symmetric (kXY = −kYX, cXY = −cYX). Thus, effective stiffness and damping are
derived from:

ke f f = kXX + Ω·cXY (17)

ce f f = cXX

(
1− kXY

Ω·cXX

)
(18)

where Ω is the rotating speed of the journal. Note that in the GFPB analysis, the journal
does not move around its centered position, and the direct and cross-coupled terms are not
symmetric as seen in Figures 9 and 10. Therefore, a limited analysis of results is required
about the effective stiffness and damping predictions.

Figure 12 indicates the impact of the polymer layer thickness and rotating speed on the
effective stiffness and damping. Increasing the polymer layer thickness gives the decrease in
the effective stiffness and the damping trend to decrease after an increase. For the tp = 3 mm
case, the effective stiffness is reduced by 46–50%, and the effective damping increases by
47–280% compared to the tp = 1 mm case; which shows a remarkable improvement in the
effective damping. The improvement of the damping is more pronounced in low-speed
areas than in high-speed ones.
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As a result, the stability analysis results reveal that inserting a polymer layer with
appropriate thickness (3 mm, in this study) can improve bearing damping characteristics
while minimizing the decrease in stiffness characteristics. This will further reliably suppress
the rigid body motions of the journal caused by critical speeds located in low-speed areas.

7. Conclusions

The scope of this paper includes development of the simple structural model for
journal GFPBs and performance analysis with respect to the polymer layer thickness.

The polymer layer in a GFPB is modeled as a thick elastic cylinder having an elastic
modulus and a Poisson’s ratio. Assuming a plane strain condition for the differential
element of the polymer layer enables us to calculate the stress and strain relation as well as
the equivalent structural stiffness; the model is called to the structural elasticity model of
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polymer layers. The model is combined with a structural deflection model for GFPBs with
equivalent springs of bump foils and the polymer layer.

The presented models for the GFPB are validated by comparing prediction results
with those estimated from the static-load deflection tests. The comparison yields reason-
able displacement and stiffness relations compared to the tests, validating the proposed
structural model for GFPBs in the limited condition where lightly loaded and low-speed
regions that the viscoelastic effect is not dominate. The simple model allows us to easily
understand the structural mechanism of GFPB. For example, it is possible to intuitively
analyze how the structural characteristics of bump foil and polymer are each and what
characteristics they have when they are connected in series.

Next, performance analysis is performed for the GFPB depending on the polymer
layer thickness ranging from 1 to 10 mm with a journal mass of 5 kg and nominal clearance
of 50 µm. The thick polymer layer significantly changes equilibrium positions of GFPBs, in
particular, increasing the polymer layer thickness makes journal positions more eccentric
with low attitude angle; this finding gives us the understanding that using a thick polymer
layer is beneficial for weakening cross-coupled effects of the gas film. Note that it makes
sure that utilizing a high thickness also accompanies large eccentricity of the journal, which
may cause practical problems in applications.

Finally, stability performance of GFPBs is examined with assumption that the journal
is supported by linearized springs and dampers and moves around its centered position.
Analysis results reveal that there is optimized thickness of the polymer layer in terms of
damping characteristics of GFPBs; in this study, the tp = 3 mm case has the highest effective
damping over all rotating speeds.

Consequently, the presented structural model for GFPBs provides a reasonable per-
formance prediction in the limited condition. The selection of the appropriate thickness
considering effective stiffness and damping characteristics will determine the performance
of GFPBs. We plan to design and manufacture test GFPBs with various polymer thicknesses
through the simple structural model presented in this study and verify static and dynamic
performance through a rotor dynamics test. Through this, we aim to provide guidelines for
integrated bearing analysis, design, and application of GFPB.
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Abbreviations

r, θ, Z cylindrical coordinate system of the polymer layer
X, Y, Z cartesian coordinate system of the bearing
C1, C2, C3 coefficients of the curve fitting function
Cr bearing radial clearance [m]
cXX, cYY direct damping coefficients of the bearing [Ns/m]
cXY, cYX cross-coupled damping coefficients of the bearing [Ns/m]
ceff effective damping of the bearing [Ns/m]
dr, dθ, dZ radial, angular, and axial increments [m]
Ep Young’s modulus of the polymer layer [N/m2]
eX, eY journal position components [m]
FX, FY sum of reaction forces of equivalent springs [N]
FX,R, FY,R sum of the reaction forces of the equivalent springs [N]
FX,i, FY,i reaction force of the equivalent spring i [N]
fX, fY dynamic bearing reaction forces [N]
h gas-film thickness [m]
i equivalent spring number
j imaginary unit,

√
−1

KGFPB equivalent structural stiffness of the GFPB [N/m]
kXX, kYY direct stiffness coefficients of the bearing [N/m]
kXY, kYX cross-coupled stiffness coefficients of the bearing [N/m]
keff effective stiffness of the bearing [N/m]
kb equivalent stiffness per unit area of the bump foil [N/m3]
kp equivalent stiffness per unit area of the polymer layer [N/m3]
kGFPB equivalent structural stiffness per unit area of the GFPB [N/m3]
L length of the polymer layer [m]
Nb number of single bump foils
p gas-film pressure field [N/m2]
pa ambient pressure [N/m2]
pin internal fluid-film pressure acting on the polymer layer [N/m2]
pavg average gas-film pressure over the bearing length [N/m2]
rin, rout inner and outer radius of the polymer layer
r radial position of an FE [m]
t time [sec]
tp polymer layer thickness [m]
u radial deformation of an FE [m]
Wstrain strain energy of the polymer layer [Nm]
Wpotential potential energy of an equivalent spring [Nm]
γ structural loss factor
δi deformation of the ith equivalent spring [m]
ε strain of an FE
ζ0 structural deflection of bearing [m]
θi angular location of ith equivalent springs [rad]
µ air viscosity [pa s]
νp Poisson’s ratio of the polymer layer
σ stress of a FE [N/m2]
τ the gap between journal and bearing surface [m]
Ω rotational speed [rad/s]
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