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Abstract: In human’s cooperative behavior, there are two strategies: a passive behavioral strategy
based on others’ behaviors and an active behavioral strategy based on the objective-first. However, it
is not clear how to acquire a meta-strategy to switch those strategies. The purpose of the proposed
study is to create agents with the meta-strategy and to enable complex behavioral choices with a high
degree of coordination. In this study, we have experimented by using multi-agent collision avoidance
simulations as an example of cooperative tasks. In the experiments, we have used reinforcement
learning to obtain an active strategy and a passive strategy by rewarding the interaction with agents
facing each other. Furthermore, we have examined and verified the meta-strategy in situations with
opponent’s strategy switched.

Keywords: meta-strategy; cooperative action; collision avoidance; reinforcement learning; agent
simulation

1. Introduction

For widespread robots at homes and other areas of our daily lives, it will be necessary
to develop general-purpose artificial intelligence that can handle a variety of situations.
We can switch between passive and active strategies, and sometimes we force others to
behave following our goals.

In this study, we consider such selection of multiple strategies in accordance with
others as coordination.

Considering robots that live with people, it is thought that such robots would be better
suited to have behavioral strategies that switch between multiple strategies, like humans.
However, it is not clear how to acquire the meta-strategies to switch those strategies. To
realize a robot that communicates with people, we implemented agents that can switch
between multiple strategies, and investigated whether they can handle the case where the
opponent also uses multiple strategies.

A meta-strategy is the strategy behind the superficial behavioral decision-making
process. People decide their strategies and actions based on this meta-strategy. The meta-
strategy model [1] defines a passive strategy and an active strategy. Passive strategies infer
the intentions of others based on observations, determine their own intentions in light of
them, and take action to achieve them. In active strategies, on the other hand, one first
determines the goals one wants to achieve as intentions. We take the action that we judge
to be shown to others from the point of how we should behave in order for others to infer
our intentions, compared with our behavioral estimation model. The intentions of others
impacted by one’s actions also influence the actions of others. It is possible to induce others
to behave in a certain way. Furthermore, acting on one’s own determined goals without
recognizing others’ intentions is also defined as a kind of strategy.
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In a collision avoidance, a passive strategy would be to decide the direction of avoid-
ance according to the opponent’s movement. An active strategy might move slightly to the
left or right side in order to lead the opponent in the opposite side, or it might go straight
ahead in the expectation that the opponent will avoid it with passive strategy. Even with the
same active strategy, the behavior may not be constant. In the case of a strategy that does
not take the opponent into mind, it is also considered to go straight ahead regardless of the
opponent’s movement. In this way, it is also possible that different strategies will result in
the same behavior. If such several possible behaviors do not fit together, disadvantages like
conflict will occur. Depending on the opponent’s strategy and own beliefs, choosing the
appropriate strategy for the situation can be considered as cooperation.

The meta-strategy model assumes that people switch between these strategies them-
selves, and aims to build a more abstract model of behavioral decision-making, which is
a higher-level criteria for switching between two strategies. However, the mechanism of
altering multiple strategies are unknown.

In [2], to investigate the behavior of a person in response to an agent taking active
and passive strategies, we conducted a study in which two agents pass each other in turn
in a virtual space and analyzed the trajectory of the person’s movement in the virtual
space. From the results of the analysis, we were able to read the switching of strategies
from the behavior of the robots in situations where human strategies switched significantly
due to the differences in strategies of the two robots facing each other. We were also able
to recognize that the agents had multiple behavioral strategies and that they switched
between them on their part.

The purpose of this study is to get agents to have such a meta-strategy to enable
complex behavioral choices and a high degree of coordination. To investigate the effec-
tiveness of a learning agent that switches between the two strategies, we first compered
with rewards through go around corridor task with collision avoidance. The agents to be
compared are learning agents that regard others as moving obstacles and learning agents
that gets similar rewards to meta-strategy agents, but only use one strategy. Next, we
tested whether agents with meta-strategies can respond to changes in the strategies of
others when the strategies of other agents with whom they collaborate change and the
environment changes from one in which active strategies are effective to one in which
passive strategies are effective and vice versa.

2. Background

In a study that aims to make humans infer robot intentions, the robot does not engage
in vigorous movement, it elicits interactions from humans and also examines which actions
are perceived as non-vigorous [3,4]. Similarly, a robot is being developed that aims to
elicit spontaneous communication from children [5]. These studies attempt to elicit active
intention inference and action by allowing a limited actions. A study has also analyzed
whether gestural communication can emerge as agents learn to pass each other [6]. In these
studies, there are two roles: the side that imposes own intentions and the side that reads
those intentions. However, they do not switch the roles.

Considering the collision avoidance that is essential for safe robot operations, we can
refer to research on path finding. Several algorithms have been reported to determine the
direction of travel by representing the influence from the surroundings as a vector [7–9].
In these studies, the intentions of others who are autonomous in the environment are not
considered important.

Then, there is a study that pass each other the traveling direction of the pedestrian
without assuming a straight line. In this study, pre-measuring and accumulating a gait
data, such as a human movement path, it is possible to predict a traveling direction of a
pedestrian [10,11]. However, this study considers the known environments, it cannot deal
with unknown environment.

The work in [12] considers others to be part of the obstacles in the environment and
uses reinforcement learning to have agents perform competing coordination tasks. By
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varying the discount rate depending on the degree of renewal of the value function, it is
believed that agents can adapt to an unstable environment, namely, the behavior of others
that changes as learning progresses. The work in [12] has provided additional rewards in
agents’ behavioral choices to differentiate behaviors that resolve conflicts, but has not kept
each acquired behavior as a separated strategy, so the agents have to relearn their strategies
when other agents’ strategies change.

3. Active and Passive Strategy Acquisition Experiments
3.1. Methods

As a first experiment, we conducted a cooperative behavior simulation experiment in
which multiple agents share a path and avoid each other’s path at a narrow place along
the way, in order to test the effectiveness of the agent model that uses multiple strategies.

In a real-time simulation, the behavior changes as time passes before the agent con-
firms and judges the behavior of the opponent who want to go in the opposite direction.
Therefore, in this study, we simulated in a grid environment. The corridor is a square space
consisting of 17 corridors with a width of 2 and a side length of 17, with two narrow points
on all side (Figure 1). Agents rotate clockwise and counterclockwise. There are three agents
in each direction. Black and white circles in the figure represent the initial placement of
agents in two types of directions. Black agents go clockwise.

Figure 1. Field and initial position of agents.

The agent can observe 2 squares in front, left, right, and one square behind an agent
(Figure 2). There are four types of states for each square that an agent can distinguish:
empty, wall, clockwise agent, and counterclockwise agent. In each state, the agent chooses
to move forward or backward, turn left or right, or stop. The decisions of agents at each
step are made before all agents act, and the order of action is determined at random.

Figure 2. Sight of agent when facing right.
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In a human–agent collision avoidance experiment [2] in a continuous space, it was
suggested that humans were reading the strategy that an agent was following from the
difference in an agent action. However, as the interaction was only done once per trial per
agent, it was not clear if the same opponent could respond to different strategies. Therefore,
in this experiment, we prepared an environment in which agents can pass each other many
times by going around the corridor in one trial and take cooperative action again with
others whose strategy has changed. The field of an agent view is set to a range of 2 squares
in front, which can distinguish between the state where an agent in opposite direction is
near and the state where there is no other person in the way.

In this experiment, we used Q-learning, a method of reinforcement learning, to learn
the agent’s behavior. In Q-learning, the state in which an agent is placed and the action
value that the agent can act in that state are given as Q value. By updating the Q value
each time an action is taken, an agent that learns an effective action according to the state
that is realized. The value of an action is obtained from a reward r obtained by taking that
action and the value of a transition destination state multiplied by a discount rate γ. The
learning rate α is used to adjust how much the newly obtained value is reflected in Q value
Equation (1).

δ = rt+1 + γ max
Q

(st+1, a)−Q(st, at) (1)

Table 1 shows the hyperparameters of this experiment. The number of steps per
trial was 500 for 3000 episodes. The discount rate was set at 0.9 and the learning rate
was set at 0.05. Five trials were conducted for each learning method. A temperature-
parameterized softmax is used to determine the action from the value function Equation (2).
The temperature parameter T decreases linearly from 5 to 0.1 during the first 500 episodes
and is fixed at 0.1 Equation (3).

π(st, at) =
exp (Q(st, at)/T)

Σa∈A exp (Q(st, a)/T)
(2)

T = max(0.1 + 4.9 ∗ 500− episode
500

, 0.1) (3)

Table 1. Hyperparameters of experimental 1.

Trials Episodes Steps Policy Function Temperature Drops Sub-Strategy Alpha

5 3000 500 softmax 500 episodes same with meta-strategy

Agents gain +1 if they can move forward in the direction they should move clockwise
or counterclockwise in the corridor, −2 if they cannot move forward because of a wall
or other agent in front of them, and −1 if they choose to go backward regardless of the
direction(Figure 3). The correct direction in which an agent should go is updated when
it reaches the square in the corner (gray cells in Figure 4), according to the clock and
counterclockwise direction in which an agent targets.

The agent was designed based on three types of learning strategies. The first agent
considers others as obstacles. Agents only get rewarded when they move in the direction
they should go in the corridor. The second agents get an additional reward if it passively
gives way to the actions of others, or if it is given by taking an active action. The third
agent considers what kind of action strategy to take in each state as one action, and learns
the meta-strategy, which is the upper strategy that switches between those lower strategies.
In this experiment, there are two types of subordinate strategies: a strategy to give way
and a strategy to make opponent give way. Using the meta strategy, an agent will select the
sub-strategy according to the situation Equation (4). Actions such as forward movement
and change of direction are selected according to the probability of Equation (2) using the



Appl. Sci. 2021, 11, 1786 5 of 14

Q value corresponding to the lower strategy selected by the meta strategy. The reward
acquisition conditions for agents who learn meta-strategies are the same as for agents who
obtain cooperative rewards.

Qt =
exp (metaQ(st, strategyt)/T)

Σstrategy∈S exp (metaQ(st, strategy)/T)
(4)

In addition, to facilitate the acquisition of active and passive behaviors, agents also
learn an additional reward of +2 for giving way to self and +1 for giving way to others,
as a cooperative reward. We set more rewards for behaviors that could be returned to
the laps more quickly, referring to a previous study [12] that showed that they promoted
behavioral differentiation.

Figure 3. Agents’ rewarded situation.

Figure 4. Correct direction for clockwise agents.

To get cooperative rewards, agents check whether themselves and opposite agents are
on inner or outer side of field at start of the step. If both agents are on the same side, they
are considered to be in conflict with each other in terms of path. After agents’ actions, we
check the inner and outer side again, and when the conflicts are resolved, we treat the outer
agents as it was given the right of way and the inner agents as it provided the right of way.

These rewards are given to agents who reflect cooperation with others and use meta-
strategies. In order to acquire the two sub-strategies used by the meta-strategy—giving
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and not giving way to others, we also trained clockwise and counterclockwise groups to be
rewarded when agents gave way or were given way, respectively.

3.2. Results

Figure 5 shows the number of times the three types of learning agents chose to move
forward in each episode. These graphs show the average number of forward moves
of six agents per trial. In all learning methods, they began to actively take action to
circumnavigate from around 500 episodes, when temperature parameter start to drop.
Agents, who did not provide cooperative rewards, took more than 1000 episodes before
their learning converged.

Figure 5. Number of agents choosing forward with meta-strategy, with cooperative rewards and
without cooperative reward.

There are episodes where agents with cooperative rewards chose to make less forward
action than other agent models. The reason is that the rewards for cooperation were set
too high, and this may have led to a value function that does not fit the original purpose
of orbiting the corridor, preferring behavior that is judged to be cooperative (Figure 6).
In one example of the total and cooperative rewards earned by an agent with cooperative
rewards, the cooperative rewards accounted for most of the rewards earned as learning
progressed (Figure 7). We checked the number of times such undesirable behavioral choices
were made. The number of episodes in which any one agent earned more than 100 active
rewards in one episode (500 steps) was 32.6% with cooperative rewards agents in the
last 1000 episodes of each trial. Comparing the average number of forward in the last
1000 episodes where the agents’ behavior appeared to be stable, agents with cooperative
rewards chose fewer forward than the other two learning methods (Table 2). Agents using
the meta-strategy also had the smallest standard deviation and consistently had the highest
number of forward. However, as with all learning methods, there are episodes of low
numbers of forward in places. The reason is that up to six agents are facing each other in a
small space that only one agent can pass through, and the agents have to change directions
before they can move to give way to others; therefore, it takes longer to get out.
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Figure 6. Average number of times collaborative rewards are earned for each method (no cooperative
rewards, with cooperative rewards, and meta-strategy).

Figure 7. Total and cooperative rewards earned by agent with cooperative rewards (1 trial).

Table 2. Number of forward in the last 1000 episodes.

Avg Std

without cooperative rewards 342.9 36.3
with cooperative rewards 280.7 89.1

meta-strategy 384.6 24.5

In the case of multiple agents circling the corridor, the agents who introduced the meta-
strategy, which is the idea of gaining rewards when cooperating with others and switching
multiple strategies, were able to achieve better learning results than those who simply chose
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their actions according to the surrounding conditions. On the other hand, meta-strategy
agents and agents that earn rewards when cooperating under similar conditions have
specialized in the acquisition of cooperative rewards. This suggests that the agent model is
useful to switch sub-strategies depending on meta-strategy.

4. Experiment of Cooperative Behavior Acquisition Using Meta-Strategy
4.1. Methods

We tested whether agents with meta-strategies could respond to situations in which
others’ strategies changed. We also changed some parameters, such as increasing the
number of episodes, in response to the results of experiment Section 3.1.

In the second experiment, among six agents, only the first agent in the clockwise
group’s initial placement learns meta-strategy. The other five agents perform a minimal
update of the value function. This is a situation in which five agents are used as teachers
and one learning agent is being trained. A structure of the corridor and the initial place-
ment of the agents in the experimental environment are the same as in experiment with
Section 3.1. Agents learn two sub-strategies beforehand: the strategy to be taken when
the clockwise/counterclockwise group to which they belong gives way passively, and the
strategy to be taken when they go forward and ask for the path to be given actively. In
Section 3.1, we found that even in the later episodes where learning was considered to
have progressed, there were cases where the number of forward moves in the episode
was low because of an inability to get out of a situation that did not occur often, such as
when multiple agents were gathered in one place. Therefore, we increased the overall
number of episodes in this experiment and had the agents learn 100,000 episodes when
learning the lower strategies. In the first 25,000 episodes, as in experiment Section 3.1, we
induced learning by giving additional rewards during cooperation that were consistent
with the strategy we wanted them to learn. Then, furthermore, we continued to study
75,000 episodes without any reward at the time of coordination and we reduced the impact
on the value function of rewards given to induce learning.

After 25,000 episodes in each set, the agents, who are the teachers, switch between
active and passive strategies that allow the clockwise group to get their way, and vice
versa. The learning agent has two strategies at the same time—an active strategy and a
passive strategy—and learns a meta-strategy to choose one of the strategies depending on
a state. As the number of episodes increased, the number of episodes until the temperature
parameter was lowered increased to 10,000. We also reduced the learning rate of sub-
strategies to 0.01.

Because there were continued cases of passive giving strategies even when the learning
agents changed to an environment where they could give way to others, when we checked
the value function, we found that the value of active strategies did not change nearly as
much before and after learning. This was because even though the learning agent was able
to give way to an oncoming agent and the learning agent was able to circle the corridor
and earn rewards more easily. It continued to choose passive strategy as a value function
of the superiority of passive strategy before the change in environment, and continued to
choose the passive strategy without having the opportunity to confirm that the value of
active strategy had increased.

Tentatively, this study incorporated the idea of ε-greedy method, which allows for
random strategy selection and search to take place at a constant probability, regardless of
temperature parameters Equation (5).

π =

{
if 1− ε Equation (2)
otherwise choose strategy at random

(5)

The value of ε was set to 0.1. In order to encourage the differentiation of learning
agents’ strategies, we gave them cooperative rewards under the same conditions as in
experiment Section 3.1. The rewards were studied in three patterns: the same value as in
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experiment Section 3.1 (2 for active and 1 for passive), none (0, 0), and tenfold (20, 10). For
each reward, we conducted three trials, one starting in an environment suitable for active
strategies and one starting in an environment suitable for passive strategies for the learning
agent. The number of sets was done until the learning agent had implemented one more set
of environments for which active strategies were suitable after 100,000 episodes of learning.
Thus, the number of sets is five if the active strategy starts in a suitable environment and
six if passive strategy starts in a suitable environment.

Table 3 shows the hyperparameters of the second experiment.

Table 3. Hyperparameters of experimental 2.

Trials Episodes Steps Policy Function Temperature Drops Sub-Strategy Alpha

3 25,000 × (5 or 6) 500 softmax + ε 10,000 episodes less than meta-strategy

4.2. Results

Table 4 shows the average forward number and standard deviation of the learning
agents for the latter 10,000 episodes of the 25,000 episodes per set, and Table 5 shows the
data for each of 10 episodes immediately after the set, i.e., the teacher agent’s strategy
was switched.

Table 4. Number of forward selection in the last 10,000 episodes of set (pairs are the cooperative
rewards given).

Rewards Set 4 (Passive Suitable) Set 5 (Active Suitable)
Avg Std Avg Std

(0, 0) 389.1 20.9 389.4 15.5
(2, 1) 390.3 22.5 389.3 15.1

(20, 10) 387.2 19.2 372.7 31.0

Rewards set 5 (Passive Suitable) Set 6 (Active Suitable)

r (0, 0) 391.2 18.7 387.5 14.6
r (2, 1) 392.3 21.2 381.0 15.0

r (20, 10) 391.1 20.6 358.7 35.8

Table 5. Number of forward selection in the first 10 episodes after changing set (pairs are the
cooperative rewards given).

Rewards Set 4 (Passive Suitable) Set 5 (Active Suitable)
Avg Std Avg Std

(0, 0) 128.8 98.5 372.6 39.9
(2, 1) 92.8 111.9 362.7 41.1

(20, 10) 237.1 91.4 352.8 53.1

Rewards Set 5 (Passive Suitable) Set 6 (Active Suitable)

r (0, 0) 249.2 103.5 344.6 62.1
r (2, 1) 295.6 94.8 353.9 54.2

r (20, 10) 355.0 63.9 354.2 47.6

In particular, we tabulated the last set in which the learning agent’s choice of an active
strategy was effective, and one previous set in which a passive strategy was effective. The
pairs of numbers on vertical axis are cooperative rewards given. Reward r is the result of
trials that began in an environment where passive strategies suited to learning agents. All
sets of patterns achieved about 350 to 400 forwards out of 500 steps in any set of patterns.

Table 4 shows that in the second half of the set, where learning is considered to have
progressed sufficiently, the deviation is about 10% of the mean, and learning outcomes
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are almost the same for all reward patterns. Table 5 shows that learning agents cannot
respond immediately when the other agents’ behavioral strategies suddenly switch and
they need to give way to others, and they do not move forward in the corridor compared to
a well-trained situation. However, the pattern of high cooperative rewards (20, 10) allowed
them to move forward from the beginning by about 60%, compared to the end of set. On
the other hand, when the environment changed to one in which the other agents passively
gave way, they were able to proceed in all patterns more than 90% of the time when they
had learned enough.

Figures 8–10 show a histogram of number of states for each percentage that chose
an active strategy in the fourth set for each cooperative reward. Figures 11–13 show a
similar histogram for the fifth set. For example, in Figure 8, we computed the proportion
of learning agents that chose an active strategy for each of the states encountered during
the fourth set, i.e., between 7501 episodes and 10,000 episodes, for each proportion, and
made a histogram of number of states included. However, it does not include situations
where less than 10,000 times occur in any one of the three trials. It also does not include the
absence of oncoming agents of the counterclockwise group in agent’s sight.

From Figures 8–10, the number of states in which the learning agent chose a passive
strategy was higher than number of states in which it chose more active strategies in an
environment where it was effective to take a passive strategy. Conversely, in environments
where active strategies are more appropriate, the number of states where active strategies
are more likely to be chosen in learning from Figures 12 and 13 for learning agents with
cooperative rewards. For agents who were not cooperatively rewarded, the number of
conditions in which they were more likely to choose an active strategy was roughly equal
to number of conditions in which they were more likely to choose a passive strategy
(Figure 11).

In the fifth set where the learning agent was suitable to be active, the number of
conditions in which an active strategy was actually selected in all three trials was one
pattern in which no cooperative reward was given (0, 0), six patterns in which the coopera-
tive reward was equal to that in experiment Section 3.1 (2, 1), and nine patterns in which
more cooperative reward was given (20, 10). Of these conditions, there were four when
the reward was (2, 1) and seven when the reward was (20, 10), when there was only one
counterclockwise agent in the agent’s sight.

Figure 8. Percentage of active strategies chosen by state (cooperative rewards (0, 0), after passive
strategy is effective).
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Figure 9. Percentage of active strategies chosen by state (cooperative rewards (2, 1), after passive
strategy is effective).

Figure 10. Percentage of active strategies chosen by state (cooperative rewards (20, 10), after passive
strategy is effective).

Figure 11. Percentage of active strategies chosen by state (cooperative rewards (0, 0), after active
strategy is effective).



Appl. Sci. 2021, 11, 1786 12 of 14

Figure 12. Percentage of active strategies chosen by state (cooperative rewards (2, 1), after active
strategy is effective).

Figure 13. Percentage of active strategies chosen by state (cooperative rewards (20, 10), after active
strategy is effective).

Table 4 shows that, regardless of the way in which cooperative rewards were given,
at the advanced stage of learning, agents with meta-strategies were able to adapt to the
environment, including the strategies of others, and circumnavigate the corridor. Table 5
shows that at the time when active strategies were needed, only a small decrease in the
number of forward selection was required, and the participants were able to adapt quickly
to the environment that would give way to self. On the other hand, all agents reduced
number of forward selection to environmental changes that required passive strategies,
but agents with much more cooperative rewards were able to respond faster than the other
two-reward patterns. Together with an analysis of the histogram described below, the
patterns that were not given the cooperative rewards were not switched strategies in the
first place, and the patterns that were given the same values as in experiment Section 3.1
did not respond immediately, which is considered to be a similar situation to retraining.

The histogram for the fourth (Figures 9 and 10) and fifth sets (Figures 12 and 13)
of agents who were given cooperative rewards shows that the learning agents’ strategy
choices also changed in response to the strategy changes of the other agents who served as
teachers. In particular, highly rewarded patterns enabled many states to choose a strategy
that matched their opponent’s strategy at that moment across trials.For agents that were
not cooperatively rewarded, results showed that in environments where passive strategies
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were effective, they were able to choose passive strategies (Figure 8), but in environ-
ments where active strategies were effective, they were not biased towards either strategy
(Figure 13).

Figure 14 shows an example of a situation in which the active strategy was selected
on the fifth set in all three trials in two different patterns of cooperative rewards. We
checked which strategy was selected more often in this situation going back through the
sets, and found that the active strategy was appropriately selected in all three sets, even in
the odd-numbered sets where it was appropriate for the learning agent to be active, as in
the fifth set. In the even set where the other agents’ strategies were reversed, there was a
mix of passive strategy choices and half and half choices of both strategies. In the case of
no cooperative reward, there was a mix of trials in all sets that chose more active strategies
and trials that chose more passive strategies or were not biased toward either, with no
consistent strategy choice in all three trials.

Based on the example of the situation in Figure 14, an evaluation of whether the strat-
egy worked or not is itself useful in the learning of agents who take cooperative behavior,
as the meta-strategy changed in response to environmental changes when cooperative
rewards were given. However, the value of the reward need more consideration.

Figure 14. Example of a classified state.

5. Discussion

We focused on the fact that cooperative behavior involves both active and passive
strategies, and this was confirmed by cooperative behavior experiments between humans
and agents [2]. By applying this model to an agent model and using meta-strategies that
switch between multiple strategies, we were able to select a strategy according to changes
in the environment, namely, the behavioral strategies of the surrounding agents. However,
as Figures 8–13 show, a large number of conditions remain in which the selection rates of
active and passive strategies are competitive. Although the value of the transition state
in reinforcement learning is partly reflected by the discount rate, the state that the agent
observes can be taken as either active or passive, and the agent’s own strategy cannot be
considered as correct one, because there are no obstacles around it.

A possible solution to this problem is to make one’s strategy one of the continual
internal states. In this case, it is expected that we need to make a distinction between
uncoordinated states, where there are no others around, and coordinated states, where the
internal state should be applied.

In this study, we used ε to make exploration correspond to environments with more
or less rewards. In order to cope with complex state changes, it is necessary to construct
a learning model in which agents can differentiate themselves. Additionally, a meta-
strategy itself is not limited to the use of two strategies, so it is necessary to deal with
multiple strategies.
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6. Conclusions

To clarify the effectiveness of learning agents that acquire meta-strategies that switch
between two strategies, we first verified the effectiveness of learning agents that simply
responded to the surrounding state, as well as learning agents that earned similar rewards
but did not switch strategies. From the first experiment, we found that agents that acquired
a meta-strategy were the most adaptable to their environment. Second, we conducted
an experiment to see whether agents with a meta-strategy can respond to changes in the
strategies of others when the strategies of the other agents with whom they collaborate
change and the environment changes from one in which an active strategy is effective to
one in which a passive strategy is effective and vice versa. For agents to switch strategies
to match strategies of other agents, a cooperative reward was needed to evaluate whether
they could choose a strategy that matched the situation.
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