
applied
sciences

Article

TEDL: A Text Encryption Method Based on Deep Learning

Peng Wang 1 and Xiang Li 2,*

����������
�������

Citation: Wang, P.; Li, X. TEDL: A

Text Encryption Method Based on

Deep Learning. Appl. Sci. 2021, 11,

1781. https://dx.doi.org/10.3390/

app11041781

Received: 28 December 2020

Accepted: 9 February 2021

Published: 17 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China;
pwang@seu.edu.cn

2 Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
* Correspondence: lixiang20@mails.tsinghua.edu.cn

Abstract: Recent years have seen an increasing emphasis on information security, and various
encryption methods have been proposed. However, for symmetric encryption methods, the well-
known encryption techniques still rely on the key space to guarantee security and suffer from frequent
key updating. Aiming to solve those problems, this paper proposes a novel symmetry-key method for
text encryption based on deep learning called TEDL, where the secret key includes hyperparameters
in the deep learning model and the core step of encryption is transforming input data into weights
trained under hyperparameters. Firstly, both communication parties establish a word vector table
by training a deep learning model according to specified hyperparameters. Then, a self-update
codebook is constructed on the word vector table with the SHA-256 function and other tricks.
When communication starts, encryption and decryption are equivalent to indexing and inverted
indexing on the codebook, respectively, thus achieving the transformation between plaintext and
ciphertext. Results of experiments and relevant analyses show that TEDL performs well for security,
efficiency, generality, and has a lower demand for the frequency of key redistribution. Especially,
as a supplement to current encryption methods, the time-consuming process of constructing a
codebook increases the difficulty of brute-force attacks, meanwhile, it does not degrade the efficiency
of communications.

Keywords: text encryption; deep learning; hyperparameter

1. Introduction

Today, more and more important data are transmitted in text format, whose secu-
rity is guaranteed by various encryption methods. They include classic encryption algo-
rithms (e.g., 3DES, AES, RSA) that have been widely used, as well as some innovative
encryption algorithms (e.g., DNA algorithm [1,2], chaotic map algorithm [3]). Especially,
AES, a representative of symmetric encryption, is rather popular and accepted as data
encryption standard [4], due to its high speed and low space performance. Besides, another
symmetric-key algorithm called one-time pad (OTP) [5,6] proves to be unbreakable. How-
ever, some defects still exist. Firsly, the strength of most symmetric-key algorithms relies
on the key size [7,8]. It means that the security degrades proportionally as the key space
gets smaller. One solution is to increase the complexity of the encryption algorithm. Then
for the same size of key space, attackers need more time to crack. However, it sacrifices
efficiency, namely, both communication parties need to spend more time on encryption and
decryption. It is a challenge to achieve a balance between security and efficiency. Moreover,
for OTP, when a large amount of information needs to be transmitted, it suffers from the
difficulty in key updating. The problem of secure key distribution makes it impractical
for most applications [9]. Therefore, cryptologists are constantly designing more practical
encryption methods to get close to OTP. The stream cipher is one of the alternatives, while
it is vulnerable if used incorrectly [10].

Deep learning [11] has become a hot field in artificial intelligence. By training, the
learning model can automatically learn the mapping from massive data to the labels. This

Appl. Sci. 2021, 11, 1781. https://doi.org/10.3390/app11041781 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11041781
https://doi.org/10.3390/app11041781
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11041781
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/4/1781?type=check_update&version=1

Appl. Sci. 2021, 11, 1781 2 of 30

process is controlled by some hyperparameters and generates a large number of unex-
plained parameters. Sometimes these parameters act as abstract representations of input
data, although they do not seem to have any clear relations. When those hyperparameters
are unknown or changed, or when the labels are altered, the exact parameters cannot
be obtained. Therefore, a deep learning model embodies the nature of encryption. In
other words, replacing meaningful data with corresponding parameters can be regarded
as an encryption process [12]. A typical case is word embedding based on deep learning
model [13,14], the cornerstone of Natural Language Processing (NLP). The most classic
one is the Word2vec [15,16], which is improved by Glove [17], fastText [18], and so on.
These models map words into distributed representations, which consist of parameters.
Once we change the hyperparameters or corpus, the word representations (parameters) will
change. In addition, deep learning training usually takes a long time, and the adjustment
of each hyperparameter means a lot of time lapse. To some extent, this feature is useful to
enhance security.

In this paper, we introduce the above characteristics of deep learning into text en-
cryption and propose a novel symmetric encryption method for text encryption named
TEDL. It adopts a public corpus as the original corpus, two copies of which are owned by
both communication parties. They modify the copy at hand to obtain a synthetic corpus
under the guidance of the key, respectively. The synthetic corpus owned by both should be
confidential and consistent. After that, same word embedding models are used to train on
the synthetic corpus under the hyperparameters specified by the key and construct word
vector tables. Combined with the SHA-256 function [19], they are further processed to
obtain time-varying codebooks, which is definitely consistent as well. The sender replaces
the plaintext with a ciphertext based on the codebook and transmits it to the receiver. The
receiver decrypts the ciphertext according to the codebook in turn.

The contributions of our paper are as follows:

• To the best of our knowledge, although there exists some work with respect to the
combination of deep learning and information security [20–22], TEDL is among the
first to utilize the uninterpretability and time-consuming training features in deep
learning to realize encryption. Moreover, it is the first time that the word embedding
based on deep learning model is used for encryption.

• TEDL has time-varying and self-updating characteristics, which are greatly beneficial
for reducing the frequency of key redistribution. The time-varying refers to the
variation of codebook as information is transmitted. Consequently, for the identical
word, its representation varies every time. To some extent, it is close to the one-time
pad. Besides, the concept of self-updating means that both sender and receiver can
reconstruct codebook by revising synthetic corpus, without changing the key.

• TEDL is sensitive to the change of corpus. We prove that the process of skip-gram
hierarchical softmax (SGHS) is equal to implicit matrix decomposition, beneficial to
the better understanding of the word embedding process. Moreover, it means that
minor changes in the corpus can cause a wide range of adjustments in training results,
just as changes in a small number of elements in a matrix lead to a wide variation in
matrix decomposition results. It directly supports the feasibility of our method.

• TEDL has a two-stage structure: codebook construction stage and communication
stage. The former needs a long time, and the brute-force crack is performed at
this stage. The latter is always time-saving, for it only involves a search operation.
Furthermore, communication is mainly carried out at the second stage. In this way,
both parties are able to achieve relatively high-speed communication while attackers
still need more time to crack.

• TEDL performs well for security and high efficiency concluded by experiments and
relevant analyses, which involve the recoverability, time cost for a brute-force attack,
frequency analysis, correlation analysis, sensitivity analysis, efficiency, and generality.

The rest of the paper is organized as follows. In Section 3, and 4, we outline our
method and give some preliminaries, respectively. In Section 5, we illustrate the key design.

Appl. Sci. 2021, 11, 1781 3 of 30

Section 6 details the encryption/decryption process. Section 7 introduces the self-updating
mechanism in TEDL. We prove the feasibility of TEDL in Section 8 and the security analysis
is shown in Section 9 with experiments in Section 10. Section 11 reveals the limitations
of TEDL. Section 2 discusses the related work. Finally, Section 12 draws conclusions and
further work.

2. Related Work

With the development of deep learning and increasing attention to information se-
curity, the application of deep learning in the field of information security has developed
and extended. Perhaps the most common intersection between them has proven to be data
privacy. After a series of transformations, the deep learning model can be trained and used
for operations (e.g., prediction, classification) on encrypted data, in order to address the
issue of access to sensitive raw data [23–25].

Although it is the first time to apply deep learning model, especially word embedding
directly to encryption, prior to this, word embedding has been combined with other infor-
mation security technologies, which mainly utilize the similarity between word vectors.
For example, in [26], word vector is used on encrypted cloud data to achieve lightweight
efficient multi-keyword ranked search by finding the most similar query vector and docu-
ment vector. Besides, in [27], the original keyword is substituted by a similar keyword in
case the text retrieval fails. This replacement is achieved by finding word vectors with high
similarity. Instead, our method acts in a diametrically opposite way, where achieving low
similarity between the representations of the same word is expected.

Although neural network-based generative sequence models unconsciously memorize
secret information, as described in [28,29], that is, given models and data, there is a way
to determine whether the data is used as part of the training data set, resulting in the
disclosure of secret data. It is not the case for our method, where any word possibly used is
definitely contained in training corpus but it is hard to determine whether the word is the
corresponding plaintext. In contrast, we just take advantage of the characteristic, that is,
the subtle changes in the corpus can be “memorized”, assisting encryption.

In addition to [30–33] mentioned in Section 8, many papers also aim to issue the
interpretability of model, such as [34–36]. Accordingly, some evaluation methods for
interpretation have also been proposed [37]. However, these are not enough. Research on
interpretability is important for both improving and cracking TEDL. In turn, the exploration
of TEDL can promote the development of model interpretability.

3. TEDL Overview

It seems that security and efficiency are usually contradictory. Increased encryption
algorithm complexity probably means strengthened security and reduced efficiency, which
motivates people to search for the best trade-off. In this paper, our TEDL method provides
a novel way to deal with this problem. As Figure 1 shows, TEDL contains two stages: (1)
communication preparation and (2) communication process.

At the first stage, both parties in the communication get copies of the public corpus and
modify them under the instruction of the key, completing the construction of confidential
synthetic corpora, respectively. Furthermore, the synthetic corpora mastered by both
parties are expected to be consistent. Afterward, the hyperparameters in the key instruct
the training on the synthetic corpora. Hence word vector tables are established, followed
by a further process on them with the SHA-256 function to obtain codebooks. To date, the
first stage called communication preparation ends.

At the second stage, when a word requires transmitting, the sender refers to the
codebook at hand and uses the plaintext as an index unit to obtain the corresponding
ciphertext. Furthermore, then the ciphertext is sent to the receiver. In turn, the receiver
decrypts the ciphertext based on the mapping in the codebook, which is equivalently an
inverted indexing operation. After completing the transmission of a word, both ends adjust

Appl. Sci. 2021, 11, 1781 4 of 30

the codebook in a certain way. Therefore, when the next word needs to be transmitted, it is
encrypted based on the new codebook.

Figure 1. TEDL overview: a two-stage encryption method.

4. Preliminaries

We first give the symbols and fundamental definitions used throughout the paper as
Table 1 lists. Here, we take an example illustrated in Figure 2 to explain some definitions.
Given a corpus (Public corpus and Original corpus) such as selections from Shakespeare,
we can generate word vectors with a word embedding model based on deep learning. As
we add some additional text to the corpus, word vectors will change. Provided an ISBN
number, 9780679405825 (Initial address), we can find the book JANE EYRE, from which we
can select some content, denoted as v0

1 (Initial incremental corpus unit), according to page
number or chapter number. Then we can enlarge the initially selected content by including
their adjacent pages or chapters, denoted as vi

j (Incremental corpus unit). Finally, all of
them serve as the new corpus (Incremental corpus) to be added to the original corpus.

Definition 1 (Public corpus). A corpus can be obtained by anyone and should be chosen according
to the language of the plaintext.

It could be the Bible, Wikipedia (https://corpus.byu.edu/wiki/) , iWeb (https://corpus.byu.edu/iweb/)
and so on.

Definition 2 (Original corpus). Define Cα as either a public corpus or an expired synthetic
corpus, which is a synthetic corpus generated under the guidance of the last key.

Definition 3 (Synthetic corpus). Define Cγ as a corpus obtained by revising the original corpus.
Make sure the synthetic corpus contains words in the plaintext, otherwise, their corresponding
ciphertext is not available.

Definition 4 (Initial address). It gives the location of textual information and is part of the key.

There exists various addresses, such as arXiv ID, uniform resource locator (URL),
digital object identifier (DOI), International Standard Book Number (ISBN) and so on.

Definition 5 (Initial incremental corpus unit). Define v0
j as the text obtained from the initial

address.

https://corpus.byu.edu/wiki/

Appl. Sci. 2021, 11, 1781 5 of 30

Definition 6 (Incremental corpus unit). Define vi
j as the text that has a relationship (e.g.,citation,

context) to the initial incremental corpus unit.

Definition 7 (Initial incremental corpus graph). Define Gι as an abstract structure inside the
initial incremental corpus. It is a directed graph.

0
1v1

1v
1
2v

2
1v

Initial address

Selections of
Shakespeare

Page x-1 Page x Page x+1

9780679405825x

Page x+2Page x-2
Add to

2
2v

Initial incremental corpus graph

Incremental corpus

Original corpus

Synthetic corpus

The jth unit(page) of the ith layer
in incremental corpus

i
jv

Citing

Incremental corpus graph

Figure 2. An example of using ISBN address to construct the synthetic corpus.

In the example, Vι = v0
1 and Eι = ∅.

Definition 8 (Incremental corpus graph). Define Gβ as a directed graph that represents the
structure inside the incremental corpus.

Definition 9 (Distance between node u and v). Define d(u, v) as the length of the shortest
directional path from vertex u to vertex v.

The distance between adjacent vertices (e.g., v0
1 and one of its references v1

1) is 1.
Furthermore, the distance between the two nodes without a directed path is ∞.

Definition 10 (Radius of incremental corpus graph). Define R as a measure of the size of graph.

All the nodes, whose distance from the initial incremental corpus unit is not greater
than a certain value R, are added to Vι, forming the Vβ. When R = 1, 3 vertices are included
in Vβ in that example. Obviously,

Vι ⊆ Vβ (1)

Specifically, Vι = Vβ if R = 0.

Definition 11 (Incremental corpus). Define Cβ as a set of incremental corpus units. Actually,

Cβ = Vβ (2)

Following definitions are relevant to cookbook update.

Definition 12 (Interval time). tδ defines the update cycle agreed upon by both parties at the
algorithm level.

Definition 13 (Initial time). tι defines the moment when communication preparation starts for
the first time.

Definition 14 (Update start time). ti
β defines the time when the i-th version of Cβ starts to build.

Appl. Sci. 2021, 11, 1781 6 of 30

Definition 15 (Update finish time for sender). ti
s defines the moment when the sender completes

the codebook update.

Definition 16 (Update finish time for receiver). ti
r defines the moment when the receiver finishes

the codebook update.

Definition 17 (Current original corpus). Ci
α defines the original corpus used between ti

β and

ti+1
β .

Definition 18 (Current incremental corpus). Ci
β defines the valid incremental corpus between

ti
β and ti+1

β .

Definition 19 (Current synthetic corpus). Ci
γ defines the valid synthetic corpus between ti

β and

ti+1
β .

Table 1. Symbols and Definitions.

Symbol Definition

Cα original corpus
Cγ synthetic corpus
v0

j initial incremental corpus unit
vi

j incremental corpus unit
Gι(Vι, Eι) initial incremental corpus graph

Gβ

(
Vβ, Eβ

)
incremental corpus graph

Eι set of initial edges
Vι =

{
v0

j

∣∣∣j ∈ N+

}
: set of initial vertices

Eβ set of edges
Vβ =

{
vi

j

∣∣∣j ∈ N+, i ∈ N
}

: set of vertices
d(u, v) distance between node u and v

R R = max
v0

j ∈Vι ,vi
j∈Vβ

d
(

v0
j , vi

j

)
: radius of incremental corpus graph

Cβ incremental corpus
D word vector dimension
D′ hash vector dimension
X total number of bits of key
Ni part of key
tδ interval time
tι initial time
ti
β update start time

ti
s update finish time for sender

ti
r update finish time for receiver

Ci
α current original corpus

Ci
β current incremental corpus

Ci
γ current synthetic corpus

5. Key

The key used in TEDL includes the following components:

X = X1 + X2 + X3 + X4 (3)

The meanings of symbols are as follows:

• X1: The X1-bit binary number N1 indicates the initial address. It may be specific to
the chapter number or even page number.

Appl. Sci. 2021, 11, 1781 7 of 30

• X2: The X2-bit binary number N2 is equal to R.

R = N2,0 ≤ N2 < 2X2 − 1, N2 ∈ N (4)

• X3: The X3-bit binary number N3 is used to calculate the dimension D of a word
vector. Considering that D is required to be a multiple of 5 in the subsequent process
of dealing with them, which will be detailed later, the value range of D is

D = 10 + 5N3,0 ≤ N3 < 2X3 − 1, N3 ∈ N (5)

• X4: The X4-bit binary number N4 is equal to the seed used for initialization of word
vectors. For example, the initial vectors for each word w are set with a hash of the
concatenation of w and str(seed), where seed = N4.

6. Encryption and Decryption
6.1. Synthetic Corpus

Both parties build Cγ based on the contents of the key (N1 and N2). For different kinds
of addresses, the process is similar but slightly different. In the previous example, we have
illustrated how ISBN serves as the initial address, which is relatively easy to comprehend.
For a better understanding of Cγ construction, we take a more complicated example, where
arXiv ID is adopted as the address.

Assuming N1 = 0001111100000100111001111001012 and N2 = 102, we can find a
paper according to arXiv ID arXiv:1301.03781, whose content is denoted as v0

1. Besides, it
has 32 references denoted as v1

1, · · · , v1
32. To date, R = 1, which does not satisfy N2 = R.

Given that each reference cites other. Therefore, we can enlarge the content due to further
citations. Each of them is an incremental corpus unit vi

j and all compose an incremental
corpus Cβ. Finally, we add it to the Cα to construct Cγ, shown in Figure 3.

0
1v

...

1
1v

1
2v

1
3v

1
32v

Initial incremental corpus graph

Incremental corpus

Original corpus

Synthetic corpus

The jth unit(paper) of the ith layer
in incremental corpus

i
jv

0
1v

...

1
1v

1
2v

1
3v1

32v

...

...

2
1v

2
35v

2
78v

Citing

Incremental corpus graph

(a) R=1 (b) R=2

Figure 3. A more complex example of Cγ construction using arXiv ID address.

It is worth mentioning that the language of Cβ does not require the same as Cα, which
may work sufficiently well for encryption since we do not need word vectors to have a
good performance on the semantic representation.

Appl. Sci. 2021, 11, 1781 8 of 30

6.2. Training

After obtaining Cγ, both sides perform the training with deep learning model accord-
ing to the hyperparameters determined by the N3 and N4.

Firstly, we select a proper model to facilitate the discussion below. It should be
qualified for the following Model Requirements:

1. Own at least a public training set.
2. The incremental training set (e.g., Cβ) can be addressed with a key and should not be

deliberately manufactured but ubiquitous or at least accessible to both parties.
3. The trained parameters should be sufficient and develop some relationship with the

data objects.
4. It is more suitable for an unsupervised model or a semi-supervised model. The

supervisory part of the latter should be reflected in the public training set. As for a
supervised learning model, it is acceptable if it meets Model Requirement 2 after both
parties to communications negotiate additional conditions. For example, they agree
on a uniform label for the incremental training set.

Obviously, the word embedding model meets those requirements.
Training is the core step in TEDL. In the following, we will discuss what kind of word

embedding model is suitable and put forward some precautions in the training process.

6.2.1. Sparse Word Vectors and Dense Word Vectors

Models for word embedding are divided into two categories, namely the sparse
word embedding model (e.g.,VSMs [38]) and the dense word embedding model (e.g.,
Word2vec [15,16]). In the sparse word embedding model, the word-context matrix is
constructed, and its initial form is a matrix of frequencies. Each element in a frequency
matrix is determined by cooccurrence times of a certain word in a certain context. In
practice, the process of matrix construction can be time-consuming when the corpus is
large. The entire corpus needs to be scanned, in which each word and its corresponding
frequency are recorded, and the results are finally placed in a matrix [39], denoted by F.
The row vector of the i-th row of the word-context frequency matrix corresponds to the
word wi, denoted as f(i:), and the column vector of the j-th column corresponds to the
context cj, denoted as f(:j). The value of fij is expressed as the frequency at which the i-th
word co-occurs with the j-th context. This matrix has nr rows and nc columns.

Based on the initial matrix of frequencies, some adjustments are made to weight the
elements in the matrix. Ref. [40] has proposed the Pointwise Mutual Information (PMI),
which works well for word-context matrics. Furthermore, the variation of PMI, Positive
PMI (PPMI) [41], is also a powerful form for distributional representation of words.

When PPMI is applied to F, the new matrix, denoted by X, has the same size as F. The
value of an element, denoted by xij, is defined as follows [38]:

pij =
fij

∑nr
i=1 ∑nc

j=1 fij
(6)

pmiij = log

 pij(
∑nr

i=1 pij

)
·
(

∑nc
i=j pij

)
 (7)

xij =

{
pmiij, if pmiij > 0

0, otherwise
(8)

In this definition, pij is the probability of co-occurrence of the word wi and the context
ci. Apparently, the matrix X is very sparse. Furthermore, when Cβ is added to Cα, the size of
both matrix F and matrix X may change. However, most zeroes remain unchanged, causing
the risk of crack increasing, especially when selecting a partial component of the word

Appl. Sci. 2021, 11, 1781 9 of 30

vector for encryption. For example, if the original vector of word is v = (0 0 0 0.5 0.5) and
the new one is v′ = (0 0 0 0.25 0.75), it is extremely dangerous when the first 3 dimensions
of the vector are used to replace the word for encryption.

Such a sparse matrix is hence not available for our encryption method, due to the
invariance of some elements. So we need to adopt dense word vectors.

6.2.2. De-Randomization

For encryption methods, there are many requirements to be met, one of which is that
the encryption results should be sufficiently random and unique, that is, the output should
be consistent for the same input. Because of the random factors in some models (e.g., the
negative sampling strategy [16]), it is possible to generate totally different word vectors
under the same hyperparameters. For example, in the negative sampling strategy, only a
sample of output vectors, selected by random methods (e.g., the roulette-wheel selection
via stochastic acceptance), are updated instead of the whole output vectors, accelerating
the training. Therefore, it is suitable for other applications but not for encryption.

Besides, note that for a fully deterministically-reproducible result of running, the
model must be limited to a single worker thread, to eliminate ordering jitter from OS
thread scheduling. There is no case where the word vectors derived by multi-process
accelerated are consistent with ones derived by single-process training.

To sum up, it should be prevented that any random behavior results in different
outcomes for the same input. Both sides of the communication cannot encrypt or decrypt
when randomness exists. Similarly, when both sides carry out information transmission,
the attacker cannot use tricks such as negative sampling and multi-process to speed up
a brute-force crack. The reason is that, even if the attacker is currently trying the exact
key, the derived codebook mastered by the attacker is inconsistent with the one used for
communication. We hence choose the skip-gram hierarchical softmax (SGHS) model as an
instance.

6.3. Word Vector Table

After training, the word vector table is generated, where the word serves as an index
unit whose corresponding value is a D-dimensional real vector. The word vector table
based on Cα is represented as Tα, and one based on Cγ is denoted as Tγ. For a certain word
w, the corresponding vectors in Tα and Tγ are vα|w and vγ|w, respectively.

Let vα|w and vγ|w be row vectors. If Tγ is not subsequently processed but directly used
for encryption, the similarity between vα|w and vγ|w should be low enough, otherwise, it
is dangerous. The similarity can be measured by the cosine similarity, which is defined as

simxx(w) = cos
(

vα|w · vT
γ

∣∣∣
w

)
(9)

The first condition to ensure security is:

simxx(w) < limitxx, 0 < limitxx < 1 (10)

where limitxx is a parameter, determined by the security requirements related to the specific
application scenario.

In addition, in Tα, there exist words with high similarity to w. They are usually
synonyms of w or words closely related to it. Rank them as w1, w2, w3, · · · according to
the similarity with w. The similarity between wi and w is defined as

simxy(w, wi) = cos
(

vα|w · vT
α

∣∣∣
wi

)
(11)

Obviously, the following relationship is true.

simxy(w, wi−1) > simxy(w, wi), i = 2, 3, · · · (12)

Appl. Sci. 2021, 11, 1781 10 of 30

Then we give the second condition for ensuring security.

simxx(w) < simxy(w, wn), n = limitxy ∈ N (13)

where limitxy is a parameter. If the simxx(w) is too large, or even greater than simxy(w, w1),
the attacker can easily conclude that the plaintext corresponding to the ciphertext vγ|w
is exactly w. Therefore, limitxy should also be set properly according to the security
requirements.

In the case where hyperparameters are identical, simxx(w) is actually determined by
the ratio of Cβ to Cα. To meet both requirements for simxx(w), make sure a proper size
of Cβ.

6.4. Time-Varying Codebook

Obviously, if the word vector table (Tγ) is directly used for encryption, the above
conditions are not enough for security, calling for more careful and sophisticated design.
Nevertheless, it remains difficult to determine whether the design is safe or not. Here
we adopt a relatively more trustworthy way: process Tγ with SHA-256 function, for its
avalanche effect and irreversibility. Although there are some algorithms which are safer
and faster than SHA-256, the ciphertext will occupy more space. For example, SHA-512
will occupy space as two times as SHA-256. Therefore, we select SHA-256 on the basis of
balancing the security and space performance.

Since Sigmoid function σ(x) = 1
1+e−x is used in the SGHS model, the derived real

vectors are irrational vectors, precisely. In theory, irrational numbers are infinitely long
but limited by the computational accuracy of a computer, the results are finite and should
be kept as a few effective numbers. To simplify the discussion, double-precision floating-
point numbers are specified in the program, which means that the real numbers in Tγ are
truncated to 16-digit precision or 53-bit precision.

To send the word vector to SHA-256 function, a simple method is to convert the first
16 significant digits of each dimension into a 16-digit integer. For example,

0.000642163111111111110 ⇒ 642163111111111110

642163111111111111234110 ⇒ 642163111111111110

If the dimension D = 200, all 16-digit integers are spliced to obtain a 3200-digit integer,
feeding SHA-256. However, it is extremely time-consuming, degrading the encryption
efficiency.

Conversely, feeding a short integer string causes a significant waste of space. For
a 32-digit integer, at most 1032 different results can be generated, far less than 2256, the
space of the message digest generated by SHA-256. Therefore, we consider connecting
five 16-digit integers together, the space of which is 1080 ≈ 864× 2256. Therefore, the
transformation for a vector of word wi is illustrated as Figure 4.

16-digit...16-digit16-digit -dimensional

real...realreal

80-digit...80-digit80-digit

-dimensional

-dimensional

256-bit aaaa...256-bit aaa256-bit aaa -dimensionalD¢

D

D

D¢

0

,0i
h

0

,1i
h

0

, ' 1i D
h

-

/ 5D D¢ =

Figure 4. Basic transformation.

Appl. Sci. 2021, 11, 1781 11 of 30

As information is transmitted, the primary process of communication is shown in
Figure 5, where D = 200, h0

i,j denotes the j-dimensional in the vector shown as the fourth
line in Figure 4. Its corresponding word is wi.

i
h

i
h

i
h

i
h

Figure 5. Primary processing for word vector table.

In essence, it is similar to the polyalphabetic cipher [42] for resistance to frequency
analysis. In other words, in the case where the same word is used multiple times, the
corresponding hash, always the first component in a hash vector, is indexed from a different
vector table each time.

However, it is not safe enough due to the relatively limited vector tables. Therefore,
we divide the D′-dimensional vector into two parts, a (N3 + 1)-dimensional vector and
a 1-dimensional vector, which are named loop vector and reserved vector, respectively.
The more complex and safer processing is shown in Figure 6. hk

i,j denotes a value in loop
vectors while rhi denotes a value in reserved vectors.

rhi = h0
i,D′−1 (14)

hk
i,j = hash

(
hk−1

i,j ||rhi

)
, k = 1, 2, · · · (15)

where || stands for concatenating. The concatenation of two 256-bit values results in a
512-bit number. hash denotes the SHA-256 function.

Appl. Sci. 2021, 11, 1781 12 of 30

i
h

i
h

i
h

i
h

Figure 6. Advanced processing for word vector table: codebook.

Each time only the first dimension hash acts as ciphertext. The difference lies in that
as the information interacts, the hash vector table keeps changing. Therefore, it is namely a
time-varying codebook. Such a design can greatly extend the replacement table. Ideally,
since the space of the hash is 2256, there are 2256 alternatives to the same word.

In summary, as the two parties communicates, the sender will find the encrypted
form of messages in codebook word by word, and replace the encrypted word with the
original word to send to the receiver. Furthermore, the receiver will find the decrypted
form of messages word by word, decrypting the ciphertext to plaintext. During the
communication, the codebook varies in a certain manner, to avoid same plaintexts mapping
to same ciphertexts.

7. Self-Updating Codebook

The self-updating codebook updates itself periodically without changing the key. To
some extent, the time-varying characteristic is a self-renewing mechanism, which is one of
the self-update mechanisms of TEDL.

This section explores another self-updating mechanism in TEDL. Considering that the
codebook is obtained through a series of steps from Cγ, the update of the codebook can be
achieved by updating Cγ, or by regulating the hyperparameters (e.g., the seed).

7.1. Synthetic Corpus Update

From Definition 12 to 19, i = 0, 1, · · · , and it denotes the i-th validity period of the
codebook. We make the following reasonable assumptions:

• The time when one gets the key is known to the other.

Appl. Sci. 2021, 11, 1781 13 of 30

• From the beginning of constructing Cβ to the completion of building Cγ, the content
of Cβ being acquired is static and unchanged.

• Both sender and receiver will not exchange information during the period from the
start of the construction of Cβ to the completion of the codebook update, that is, the
communication needs to be aborted from ti

β to max
(
ti
s, ti

r
)
.

The variables defined above have the following relationship:

t0
β = tι (16)

ti
β = ti−1

β + tδ, i = 1, 2, · · · (17)

Ci
α = Ci−1

γ , i = 1, 2, · · · (18)

Ci
γ = Ci

α + Ci
β, i = 0, 1, · · · (19)

Note that, except for C0
α, Ci

α cannot be made public because it is the synthetic corpus
Ci−1

γ in the previous period.
The update process is illustrated as Figure 7. At t0

β, both parties begin to construct C0
β,

adding it to C0
α to form C0

γ. At t1
β, C0

γ is renamed to C1
α, which can be further updated to

C1
γ. Two ways to update are provided here, the choice on which can be negotiated at the

algorithm level:

1. Increase R of Gβ, enlarging Cβ.
2. Since there is information transfer between both ends, if the amount of data delivered

is sufficiently large, it can act as Cβ.

i
C

i
t

i i
C C i i

Figure 7. Update process.

In theory, infinite rounds of corpus update can be implemented without changing the
key. Nevertheless, if the partial deletion is not adopted, the corpus will become larger and
larger. Especially, in case of the first way, Cβ will grow exponentially. If the initial radius R
of Gβ is set to 0, it changes as Figure 8.

Appl. Sci. 2021, 11, 1781 14 of 30

v

v v

vv

v v

v

v

v v

vv

v

R R R

Figure 8. The update of Cβ as R increases.

To meet the conditions suggested in Section 6.3, Cβ is required correspondingly more.
Therefore, it is recommended to agree at the algorithm level that restoration is performed
every x times. It means the next version of Cx−1

α should be C0
α instead of Cx

α , so Equation (18)
is corrected to be

Ci
α =

{
C0

α, i = nx
Ci−1

γ , i 6= nx
n, i ∈ N (20)

In addition to restoration, the split operation is also optional. Assuming that two
articles are enough to satisfy the conditions in Section 6.3, we may divide 32 articles into 16
incremental corpora, which are used at t1

β, t2
β, · · · ,t16

β in turn. In this way, Cγ is controlled
to a certain scale by the restore operation and the split operation.

7.2. Seed Update

It is also possible to update the codebook by periodically changing the value of the
training parameter seed and assign it a value from reserved hashes. Two reasons support
for choosing a reserved vector:

1. The value of the reserved vector is constant throughout the encryption and decryption
process.

2. The reserved vector merely serves as partial input of SHA-256 and never exposed.
Due to the irreversibility of SHA-256, the attacker cannot derive the value of the
reserved vector from the ciphertext.

8. Interpretable Word Embedding by Matrix Decomposition

Given that the feasibility of TEDL is based on the fact that the distributed represen-
tations of all the words change after adding a small amount of incremental corpus to the
original corpus, it is necessary to understand why the training process can achieve the
desired effect.

As discribed in Section 6.2, the distributed representations refer to dense word vectors.
Two Densification Methods are offered here to generate them instead of sparse vectors.

Appl. Sci. 2021, 11, 1781 15 of 30

1. Apply truncated SVD to the sparse matrix derived from a sparse word embedding
model.

2. Use a dense word embedding model.

As for Densification Method 1, since the matrix X′ calculated after adding a small
amount of corpus can be regarded as the original matrix X is locally perturbed. If the
location of the disturbance is appropriate, the effect is global and each component of word
vectors change under finite precision conditions.

As for Densification Method 2, actually, training can be interpreted as matrix de-
composition. It has been proved that the embedding process of skip-gram negative
sampling (SGNS) and noise-contrastive estimation (NCE) is an implicit matrix decom-
position [31], while GloVe [17] is an explicit matrix decomposition [32]. Furthermore, Rong
derived and explained the parameter update equations of the Word2vec models [30]. Now,
we give a theorem about the essence of the process of skip-gram hierarchical softmax.

Theorem 1. The process of skip-gram hierarchical softmax (SGHS) is an implicit matrix decompo-
sition.

Proof. In a corpus, words w ∈ Vw and their contexts c ∈ Vc, where Vw and Vc are the
word and context vocabularies. The vector representation for word wi is vwi , while for
ci is vci . For word wi, the contexts are the words surrounding it in an L-sized window
wi−L, · · · , wi−1, wi+1, · · · , wi+L, one of which is ci. We denote the collection of observed
word-context pairs as S. We use #(wi, ci) to denote the number of times the pair (wi, ci)
appears in S. Similarly, #(wi) is the number of times wi in S and #(ci) shows the number of
times ci occurred in S. They are defined as:

#(wi) = ∑
c′i∈Vc

#
(
wi, c′i

)
(21)

#(ci) = ∑
w′i∈Vw

#
(
w′i , ci

)
(22)

Consider a word-context pair (wi, ci). In the hierarchical softmax model, no output
vector representation exists for context words. In other words, the vector vci is untrained.
Instead, there is an an output vector v′n(ci ,j)

, which is trained during the training process,
for each of the |Vc| − 1 inner units. Furthermore, the probability of a word being context ci,
the output word, is defined as

P(wout = ci | wi)=
L(ci)−1

∏
j=1

σ
(
[[ci, j]] · v′n(ci ,j)

Tvwi

)
(23)

σ(x) =
1

1 + e−x (24)

[[ci, j]] = [[n(ci, j + 1) = ch(n(ci, j))]] (25)

where L(ci) denotes the length of path, n(ci, j) means the j-th unit on the path from root wi
to the word ci,ch(n) is the left child of unit n, v′n(ci ,j)

is the output vector of n(ci, j), vwi is
the distribution representation of wi, as well as the output value of the hidden layer, [[x]] is
a specially defined function expressed as

[[x]] =

{
1, if x is true
−1, otherwise

(26)

Appl. Sci. 2021, 11, 1781 16 of 30

Obviously, the following equation is true.

|Vc |

∑
i=1

P(wout = ci | wi) = 1 (27)

The probability of going left at an inner unit (including the root unit) n is defined as

P(n, le f t) = σ
(

v′n
T · vwi

)
(28)

which is determined by both the output vector of the inner unit and the hidden layer.
Similarly, the probability of going from unit n to right is

P(n, right) = 1− σ
(

v′n
T · vwi

)
= σ

(
−v′n

T · vwi

)
(29)

The parameter update process is derived in the following part. For simplicity, we
consider the situation of one-word context models, which are easily extended to skip-gram
models. We simplify some notations without introducing ambiguity first:

[[·]] = [[n(ci, j + 1) = ch(n(ci, j))]] (30)

v′j = v′n(ci ,j)
(31)

The global objective is trained using stochastic gradient updates over the observed
pairs in S, defined as

E = ∑
w∈Vw

∑
n∈Vc

#(w, c) log P(wout = c | w) (32)

For a training instance, the local objective is defined as

E(wi, ci) = log P(wout = c | w) (33)

=
L(ci)−1

∑
j=1

log σ
(
[[·]]v′j

Tvwi

)
(34)

In SGHS, it is the vectors of the inner units and a hidden layer that are trained. On the
path from wi to ci, for each inner unit, [[·]] is either 1 or −1. Furthermore, for each wi, there
exist #(wi) paths (including cases where the same path is repeatedly counted). Assume
that a total of k paths pass through n, there must be kl paths through the left child nodes of
n, while kr paths walk via its right child, obtaining:

k = kl + kr ≤ #(wi) (35)

The global objective hence is rewritten as

E = ∑
wi∈Vw

∑
ci∈Vc

#(wi, ci)
L(ci)−1

∑
j=1

log σ
(
[[·]]v′j

Tvwi

)
(36)

= ∑
wi∈Vw

∑
n∈Vn

[
kr + (kl − kr) log σ

(
v′n

Tvwi

)]
(37)

where Vn denotes the collection of inner units n. We take the derivative of E with regard to
v′n

Tvwi , obtaining

Appl. Sci. 2021, 11, 1781 17 of 30

∂E
∂v′n

Tvwi

= ∑
wi∈Vw

∑
n∈Vn

[
kl−(kl+kr)σ

(
v′n

Tvwi

)]
(38)

We compare the derivative to zero, arriving at

σ
(

v′n
Tvwi

)
=

kl
kl + kr

(39)

Hence,

v′n
Tvwi = ln kl − ln kr (40)

Finally, we can describe the matrix M of |Vw| rows and |Vn| columns that SGHS is
factorizing:

MSGHS
in = v′n

Tvwi = ln kl − ln kr (41)

Therefore, the embedding process of SGHS also performs an implicit matrix decompo-
sition.

Subtle modification to the original corpus is equivalent to perturbation on the implicit
matrix, which can eventually lead to radical change in the training results.

However, just matrix decomposition, whether explicit or implicit, cannot ensure that
every dimension of each word vector changes. Very few individual components of the
word vector may remain unchanged, which is a fatal weakness for encryption. From this
perspective, Densification Method 1 is not secure enough. Instead, Densification Method 2
can solve this problem by increasing the number of iteration epoch. In particular, as long as
it is greater than one round, the effect of local disturbances will be comprehensive, resulting
in changes in all word vectors, which is confirmed by related experiments.

9. Security Analysis

According to the Kerckhoff guidelines, a good encryption method should have a large
enough key space. The key space of TEDL is 2X. Considering the example with arXiv
address, set X1 = 30, X2 = 2, X3 = 8, X4 = 256. In theory, X4 can be infinite, but given
that the space of hash is 2256, we assign that X4 = 256. Otherwise, referring to the drawer
principle, there must be two different hashes colliding. See Table 2 for a comparison of the
key space.

For the same key space, the time required to complete encryption for each key differs.
There may be doubts here: for the attacker, the longer time for trying each key, the more
time will be spent on the crack, but in turn, does the time required for the communication
parties to normally transmit information increase dramatically? It is not the case for TEDL,
owing to the two-stage structure. The brute-force crack is mainly performed at the first
stage while the communication between the two parties is mainly carried out at the second
stage. Therefore, it improves safety while ensuring efficiency.

In addition, TEDL does not directly use the key in the encryption. Instead, the key is
the instructor during the encryption and decryption process. Therefore, techniques that
involve ciphertexts analysis, such as Differential Cryptanalysis [43], Linear Cryptanaly-
sis [44], Truncated Differentials [45], Boomerang Attacks [46], Impossible Differentials [47]
and others [48,49], are not effective since these ciphertexts involve limited knowledge about
keys, making it infeasible for attackers to predict keys.

Besides, TEDL bases the security on the difficulty in parameter interpretation in
deep learning, which is another hard problem. Not only the parameters themselves are
uninterpretable, but the trend of their variation is also unexplained, which is core challenge,
as described in [50].

Appl. Sci. 2021, 11, 1781 18 of 30

Table 2. Key space.

Method Key Bits Key Space

TEDL 296 2296

AES 256 2256

Salsa20 256 2256

3DES 168 2168

DES 56 256

Furthermore, the application of SHA-256 makes TEDL more secure. In cryptography,
the avalanche effect refers to an ideal property: when the input makes the slightest change
(for example, inverting a binary bit), an indistinguishable change in the output occurs (there
is a 50% probability that each binary bit in the output is inverted). The ideal state of
nonlinear diffusivity is the avalanche effect. Ref. [51] shows that SHA-256 has excellent
nonlinear diffusivity. Therefore, even if word vectors are similar, the outputs are quite
different. Moreover, because of the irreversibility of the secure hash function, the relation
between ciphertext and plaintext is extremely weak and intractable. It is impossible for
an attacker to decrypt. Finally, other related security analyses will be illustrated with
experimental results.

10. Experiments and Performance Analysis

This section presents the experiments and corresponding analysis of TEDL, show-
ing that it achieves a balance between security and efficiency, which make it suitable for
transmission of a large amount of data. All the experiments are performed on an identi-
cal platform with system configuration of i7 processor @ 2.50 GHz and 8 GB Ram, and
evaluated on two datasets in different languages, one is Chinese Wikipedia corpus (about
1.3 GB) (https://dumps.wikimedia.org/zhwiki/) and the other is a subset of the English
Wikipedia corpus (about 600 MB) (https://dumps.wikimedia.org/enwiki/). Relative codes
are available on GitHub (https://github.com/AmbitionXiang/TEDL).

Our experiments focus on following issues:

• Recovery. It verifies that the ciphertext is decrypted successfully, even if the ciphertext
is tampered with in an insecure channel.

• Consumed time for brute force. It measures the ability of encryption methods to resist
brute force attacks.

• Frequency analysis. It is about the frequency distribution of cipher symbols, character-
izes the confusion.

• Correlation. It refers to the correlation analysis between encrypted data and original
data.

• Sensitivity analysis. It also measures the strength of encryption methods against
cracking and hacking threats. For plaintext sensitivity or key sensitivity, it is high
when changing a small number of bits in plaintext or key results in a large variance
in ciphertext. As for ciphertext sensitivity, it is embodied when a natural error or
intentional tampering in the ciphertext is remarkable [52].

• Efficiency analysis. It measures encryption speed.
• Generality analysis. It studies whether a method is suitable for multiple models.

10.1. Recovery

As described in Section 6.4, both parties only send and receive the first-dimension
hash in the time-varying codebook. The hash that can be restored to a word is called a valid
hash. Obviously, the number of valid hashes is equal to the total number of word keys in
the codebook, far less than 2256. When the ciphertext is partially tampered with, the valid
hash that has the most overlap with it is selected from all the hashes of the first dimension,

https://dumps.wikimedia.org/zhwiki/

Appl. Sci. 2021, 11, 1781 19 of 30

the plaintext hence can be restored with a high probability. We define the recovery accuracy
rate (RACR) to measure the anti-interference and recoverability of TEDL.

RACR =
nc

nt
(42)

where nt denotes the total number of tampered hashes, nc stands for the count of tampered
hashes which are successfully restored to correct words.

We randomly select 1000 words as samples, whose corresponding hashes are tampered
with. To test the recovery rate under different conditions, we set the total number of
tampered bits from 0 to 256 bits, and randomly choose the tampering location. Experiments
repeat to calculate RACR and we plot it versus the number of tampered bits as Figure 9.

0 50 100 150 200 250
Count of tempered bits

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

(85, 0.98)

(93, 0.02)

RACR

Figure 9. Recoverability of tampered ciphertexts.

It shows that an invalid hash is recoverable if the count of tampered bits is less than
85, otherwise, the original word is not able to be restored.

10.2. Consumed Time for Brute Force

Now we explore the relationship between the time spent in stage one and some of the
training parameters (the number of iterations, the dimension D) for an identical synthetic
corpus (about 1 GB). The time of stage one consists of two parts, time on model training
and processing the original word vector table. The experimental results are drawn as
Figure 10. Obviously, time cost of brute force is increasing linearly with the number of
dimensions and iterations.

Appl. Sci. 2021, 11, 1781 20 of 30

100 150 200 250 300 350 400
D

2000

3000

4000

5000

6000

7000

8000

Ti
m
e/
s

epoch=1
epoch=2
epoch=3
epoch=4

Figure 10. Time cost on stage one.

10.3. Frequency Analysis

For English text, we explore texts of 2, 20, and 200 MB respectively, which are extracted
from corpus (https://dumps.wikimedia.org/enwiki/), and plot frequency distribution
histograms with respect to both plaintext and ciphertext, which are shown in Figure 11a.

100 101 102 103 104 105 106 107
Count of different symbols

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Fr
e
ue
nc
y

(2.7e+04, 7.5e−02)

(3.8e+05, 2.7e−06)

(8.0e+04, 7.3e−02)

(3.3e+06, 3.0e−07)

(1.4e+05, 7.4e−02)

(3.3e+07, 3.0e−08)

Fre uency of plaintext:2M
Fre uency of ciphertext:2M
Fre uency of plaintext:20M
Fre uency of ciphertext:20M
Fre uency of plaintext:200M
Fre uency of ciphertext:200M

(a) For English corpus

100 101 102 103 104 105 106 107
Count of different symbols

10−7

10−6

10−5

10−4

10−3

10−2

Fr
e
ue
nc
y

(4.6e+04, 4.3e−02)

(2.8e+05, 3.5e−06)

(2.0e+05, 4.4e−02)

(3.6e+06, 2.8e−07)

(5.8e+05, 4.1e−02)

(3.8e+07, 2.7e−08)

Fre uency of plaintext:2M
Fre uency of ciphertext:2M
Fre uency of plaintext:20M
Fre uency of ciphertext:20M
Fre uency of plaintext:200M
Fre uency of ciphertext:200M

(b) For Chinese corpus

Figure 11. Frequency distribution of plaintext and ciphertext.

For text in Chinese, 2, 20 and 200MB texts are encrypted accordingly, and the frequency
histogram is shown in Figure 11b. Obviously, TEDL completely dissipated the original
distribution instead by a fairly uniform distribution. The distribution more uniform, the
more security it guarantees. As it is uniform, one cannot infer the plaintext from the
frequency distribution. It has a remarkable ability to resist against the statistical attack,
especially frequency analysis, and works in any language.

10.4. Correlation

The original data is instinctively considered words, while the encrypted data is either
word vectors or 256-bit hashes. It is hard to calculate the correlation. Therefore, we need to
redefine original data and encrypted data.

1. In the case of directly using the original word vector table, original data is denoted by
vα|w, which is generated after embedding training on the public corpus under certain
parameters, while encrypted data is vγ|w.

https://dumps.wikimedia.org/enwiki/

Appl. Sci. 2021, 11, 1781 21 of 30

2. In the case of using a time-varying codebook, hα represents original data and hγ de-
notes encrypted data. Both is obtained by further processing described as Section 6.4,
and they are corresponding to vα|w and vγ|w, respectively.

We carry out experiments in both cases mentioned above.

10.4.1. Directly Using Word Vector Table

In case 1, the correlation between the encrypted data and the original data is measured
by the cosine similarity defined by Equation (9), rewritten as follows:

simxx(w) = cos
(

vα|w · vT
γ

∣∣∣
w

)
(43)

We explore the effects of different training conditions, including the number of it-
erations (epoch), the vector dimension (D), the ratio of Cβ to Cα (C ratio) and the size
of window (window), which indicates the maximum distance between the current and
predicted word within a sentence in the word embedding model.

Changing epoch and D

For other parameters, we set C ratio = 1:10,000, seed = 1, window = 5. We sort the sim
of each word from small to large and draw as Figure 12. Obviously, as D and epoch increase,
the correlation between the original data and the encrypted data decreases. Note that in
the case where epoch = 1, regardless of the word vector dimension, there is a phenomenon
that the correlation is 100%. On the other hand, as long as epoch is greater than 1, this
phenomenon no longer exists. In addition, considering that as epoch increases, the training
process converges, which means word vectors update slightly. Therefore, the setting of
epoch is not included in the key but should be agreed at the algorithm level.

0 1 2 3 4 5 6 7 8
Word number 1e5

−20

0

20

40

60

80

100

Si
m

epoch=1
epoch=2
epoch=3
epoch=4

(a) D = 100

0 1 2 3 4 5 6 7 8
Word number 1e5

−20

0

20

40

60

80

100

Si
m

epoch=1
epoch=2
epoch=3
epoch=4

(b) D = 200

0 1 2 3 4 5 6 7 8
Word number 1e5

0

20

40

60

80

100

Si
m

epoch=1
epoch=2
epoch=3
epoch=4

(c) D = 300

0 1 2 3 4 5 6 7 8
Word number 1e5

−20

0

20

40

60

80

100

Si
m

epoch=1
epoch=2
epoch=3
epoch=4

(d) D = 400

Figure 12. Correlation (measured by sim) as D and epoch change.

Changing C ratio

For other parameters, epoch = 2, D = 200, seed = 1, window = 5 and we test the
correlation at a ratio of 1:10,000, 1:1000, 1:100. The results are shown in Figure 13a. As

Appl. Sci. 2021, 11, 1781 22 of 30

C ratio increases, the sim decreases, which is in line with expectations. However, the result
relies on language consistency in Cβ and Cα. If not, will the encryption effect drop? We
answer this question in the next experiment. If not specified, subsequent experiments also
proceed under the conditions mentioned above.

0 20000 40000 60000 80000 100000 120000 140000
Word number

−20

0

20

40

60

80
Si
m

C ratio=1 : 10000
C ratio=1 : 1000
C ratio=1 : 100

(a) Consistent language

0 20000 40000 60000 80000 100000 120000 140000
Word number

−20

0

20

40

60

80

Si
m

C ratio=1 : 10000
C ratio=1 : 1000
C ratio=1 : 100

(b) Inconsistent language

Figure 13. Correlation (measured by sim) as C ratio changes.

Language inconsistency exists

Unlike previous experiments, pure Chinese corpus serves as Cβ. Furthermore, we
change the C ratio to observe trends in correlation, pictured as Figure 13b. Obviously, the
encryption effect is not much different from the last result, which indicates the impact of
language inconsistency is negligible.

Changing window

Apart from the default conditions, we set C ratio = 1:10,000 and depict the result as
Figure 14a.

0 20000 40000 60000 80000 100000 120000 140000
Word number

−20

0

20

40

60

80

Si
m

window=3
window=5
window=7
window=9

(a) Correlation sim

0 20000 40000 60000 80000 100000 120000 140000
Word number

−20

0

20

40

60

80

Si
m

′

window 3vs5
window 3vs7
window 3vs9
window 5vs7
window 5vs9
window 7vs9

(b) Correlation sim′

Figure 14. Correlation trend as window changes.

We can conclude that window is also related to correlation. However, it does not
mean that the variation of window directly changes the representation of the same word
significantly, while it is evident when changing D. Therefore, it is necessary to verify
this, under the condition that no Cβ is added to Cα, as well as the default conditions. The
Equation (43) is revised as

sim′xx(w) = cos
(

vα|w · v′α
T
∣∣∣
w

)
(44)

where vα and v′α is trained on the same Cα but with a different parameter window. Figure 14b
shows the result. We can see the size of window directly influences the representations of
words. It is feasible to add it to the key content.

Appl. Sci. 2021, 11, 1781 23 of 30

10.4.2. Using Time-Varying Codebook

In this case, each word is encrypted to a 256-bit hash hγ. We conduct experiments on
both English and Chinese corpus. As described in [53], the correlation is measured by

rxy =
count(hα ⊕ hγ)

length(hα)
(45)

where⊕ denotes XORing, hα ⊕ hγ generates a binary string, count(string) is the count of ‘0’
in the string, length(hα) represents the length of string hα, which is considered the original
data.

As can be seen from the experimental results in Section 10.4.1, as long as epoch > 1,
each word vector definitely changes. Without losing the generality of test, we confine
epoch = 2 and test rxy by changing D, depicting the frequency distribution histogram (hist)
and frequency distribution function (pdf) of rxy as Figure 15.

0.35 0.40 0.45 0.50 0.55 0.60 0.65
rxy

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

pdf
hist

(a) D = 100

0.35 0.40 0.45 0.50 0.55 0.60 0.65
rxy

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

pdf
hist

(b) D = 200

0.35 0.40 0.45 0.50 0.55 0.60 0.65
rxy

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

pdf
hist

(c) D = 300

0.35 0.40 0.45 0.50 0.55 0.60 0.65
rxy

0

10

20

30

40

50

60

Fr
eq

ue
nc

y

pdf
hist

(d) D = 400

Figure 15. Correlation (measured by rxy) as D changes.

The horizontal coordinate represents rxy, and the vertical coordinate denotes the
corresponding frequency. Obviously, rxy is concentrated around 0.5, which means that half
of the bits of the encrypted data are changed compared with the original data. It is a good
encryption property. Since it is safer to use time-varying codebook, we only consider this
case in all subsequent experiments.

10.5. Sensitivity Analysis

To measure the sensitivity of plaintext and key, the operation is to make a slight
change to either and calculate the change rate of ciphertext (CRC), defined as

CRC =
Di f

(
hγ, h′γ

)
length(hγ)

(46)

Appl. Sci. 2021, 11, 1781 24 of 30

where hγ is the original ciphertext, h′γ is the ciphertext as minor modifications occur to

plaintext or key, Di f
(

hγ, h′γ
)

is the count of distinct symbols in hγ and h′γ.
For ciphertext sensitivity, we disturb several bits of ciphertext to observe whether it is

still in the valid hash collection Hv, which contains all valid hashes at the moment. The
ciphertext change sensitivity (CCS) is defined as

CCS = 1− nco

nt
(47)

where nt denotes the total number of invalid hashes, nco stands for the number of tampered
hashes still in valid hash collection.

10.5.1. Key Sensitivity

For a given key, we choose a key that differs by only one bit, which can be located
at any component of the key, and juxtapose ciphertexts for the same word. Given that
components N2 and N3 are related to the C ratio and D, respectively, which have already
been considered, only N1 and N4 remain to be altered for further experiments.

Modifying N1

We transform N1 = 00 0111 1100 0001 0011 1001 1110 01012 to N′1 = 00 0111 1100 0001
0011 1001 1110 01112 in the example using arXiv ID, which means the address is converted
to arXiv:1301.03783. Therefore, another paper serves as the whole Cβ if N2 = 0. Obviously,
as N2 grows, disturbing N1 causes a greater impact. For all the words in Cα, the changes in
their representations are presented in Figure 16a.

0.35 0.40 0.45 0.50 0.55 0.60 0.65
CRC

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

pdf
hist

(a) Modifying N1

0.35 0.40 0.45 0.50 0.55 0.60 0.65
CRC

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

pdf
hist

(b) Modifying N4

Figure 16. Key sensitivity distribution.

Modifying N4

Once N4, related to the seed, is altered, the whole initial word vectors will experience
the earthquake, resulting in entirely distinct representations. When the seed is changed
from 1 to 2, the result is shown in Figure 16b.

From the above two subsections, we know a bit of interference in the key can cause
a huge difference in representations. Almost 50% bits in ciphertext reverse, close to the
avalanche effect.

10.5.2. Plaintext sensitivity

For the word embedding model, words here are atomic. A slight change in plaintext
can be interpreted as replacing a primitive word with a synonym or a morphologically sim-
ilar word. Collins dictionary (https://www.collinsdictionary.com/) is used for searching
synonyms.

We select six groups of more common words to experiment, namely “people”, “male”,
“female”, “beautiful”, “good”, “look” and their synonyms, partially shown in Table 3.

https://www.collinsdictionary.com/

Appl. Sci. 2021, 11, 1781 25 of 30

Table 3. Words and their synonyms.

Words Corresponding Synonyms

people persons/humans/individuals/folk/human beings/
humanity/mankind/mortals/the human race

female woman/girl/lady/lass/shelia/charlie/chook/wahine
male masculine/manly/macho/virile/manlike/manful
· · · · · ·

For each word in the first column, we compare the representations of themselves and
ones of their synonyms and calculate the CRC. The frequency distribution of which is
shown in Figure 17.

0.40 0.45 0.50 0.55 0.60
CRC

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

pdf
hist

Figure 17. Plaintext sensitivity distribution.

Obviously, the distribution of CRC is still concentrated around 50%, that is, it charac-
terizes good sensitivity.

10.5.3. Ciphertext Sensitivity

The experimental setup is similar to Section 10.1. We randomly select 1000 words as
samples for the experiment, whose corresponding hashes are tampered with. To test CCS
under different conditions, we set the total number of tampered bits from 0 to 256 bits,
randomly choose the tampering location, and check whether it is still in the valid hash
collection. Our experimental result is CCS ≈ 1 no matter how many bits are tampered with.

As described in Section 6.4, although each word may have 2256 representations, at a
certain moment during the communication, the size of the valid hash collection is equal to
the number of different words in Cγ. The probability is expressed by

P(tamper(hγ) ∈ Hv) =
|Vw|
2256 (48)

Assuming |Vw| = 108, P(tamper(hγ) ∈ Hv) is approximately equal to 1, which is in
accordance with the experimental result.

Appl. Sci. 2021, 11, 1781 26 of 30

10.6. Efficiency Analysis

The comparison of efficiency among TEDL and some popular cryptosystems is de-
picted as Figure 18.

0 50 100 150 200 250 300 350 400
Size of plaintext/MB

0

50

100

150

200

250

300

350

400
Ti
m
e/
s

TEDL
AES-256
AES-128
DES
3DES
ChaCha20

Figure 18. Efficiency comparison among encryption methods.

It can be seen that for the same amount of plaintext, TEDL needs least time, which
means that TEDL is fast, in other words, it shows that our method is efficient.

10.7. Generality Analysis

Multiple word embedding models can be applied in TEDL. In addition to the Word2vec
used in previous sections, NNLM [54], fastText [18], and GloVe [17] are applied in this section.

Different models have different parameter settings. For example, as for fastText, most
parameters function the same with those in Word2vec. These parameters are set as the
default conditions mentioned above, that is epoch = 2, D = 200, seed = 1, window = 5
and C ratio = 1:10,000. Besides, there exist some unique parameters in fastText due to
using enriches word vectors with subword(n-grams) information (e.g., the max length of
char ngrams as well as the minimum. Here we set them to 5 and 3, respectively). The
parameters in other models are set according to the characteristics of the model. However,
make sure to de-randomize the training process.

The correlation defined as Equation (45) serves as a representative indicator to measure
the effect of encryption, which is shown in Figure 19. It shows that multiple models can be
used to encryption, and they behave similarly.

Appl. Sci. 2021, 11, 1781 27 of 30

0.35 0.40 0.45 0.50 0.55 0.60 0.65
rxy

0

2

4

6

8

10

12

14

Fr
eq

ue
nc
y

pdf of NNLM
pdf of Word2vec
pdf of fastText
pdf of GloVe

Figure 19. Generality about models to be applied.

11. Limitations

Though novel it is, TEDL suffers from some drawbacks. Firstly, security has not
been theoretically proved, since it is hard to interpret the variation of parameters in deep
learning model. Secondly, the choices on the kind of initial address are limited, for the
sake of key sensitivity. Thirdly, the efficiency of encryption and decryption is negatively
correlated to the number of entries in the codebook, for the process mainly involves lookup
operations. In addition, in spite of almost impossible, two different words may map to the
same hash, which means the results of inverted indexing may be more than one. Under this
case, the decryption should depend on the context to select the correct plaintext. Besides,
the first stage takes too long, during which the communication must suspend, bringing
inconvenience. Moreover, some requirements to models should be met, which is detailed
in Section 6.2. Especially, models must completely eliminate randomization. Finally, the
self-updating mechanism in this paper remains to be improved.

12. Conclusions and Future Work

In this paper, we propose a new text encryption method based on deep learning
named TEDL. It is the first time to directly apply deep learning model to encryption, mainly
utilizing the uninterpretability and time-consuming training features. The time-varying
and self-updating characteristics of TEDL deal with the problem of key redistribution
and the two-stage structure makes it hard to carry out brute-force attack and makes it
efficient for communication. Moreover, TEDL bears other superior properties such as
anti-interference, diffusion and confusion, high sensitivity, generality and so on, all of
which have been confirmed through experiments.

It is worth mentioning that both encrypted objects and models are expandable. Objects
in various forms, such as binary numbers, texts, images, videos, or even multimodal
information, can be encrypted with TEDL. For example, assuming TEDL adopts word
embedding model and aims to encrypt binary numbers, a binary library can be constructed
serving as public corpus while additional text in either original or binary form acts as an
incremental corpus, then training performs on the synthetic corpus. Inspired by the fact
that more and more objects can be embedded (e.g., the network [55]), it is natural that those

Appl. Sci. 2021, 11, 1781 28 of 30

objects can be encrypted by TEDL with embedding model, for which we might as well
name as embedding encryption.

As for the extensibility of models, all the models that satisfy the Model Requirements
in Section 6.2 can be employed by TEDL, and it is easy to meet those requirements. For
example, nearly all deep learning models own public training set and it is easy to get
whether texts, images or videos on the Internet as long as their corresponding addresses
exist, meeting Model Requirements 1 and 2. Besides, considerable models, such as CNN
and LSTM, own a large number of parameters, satisfying Model Requirement 3. Moreover,
as for supervisory models, they are still available, as long as labels are preconcerted without
the necessity of secret, thus satisfying Model Requirement 4. Finally but not least, TEDL
cannot only use for encryption. From the perspective of generating a key stream, such
a large number of parameters in the deep learning model may be utilized, which is also
worth exploring.

Author Contributions: Conceptualization, P.W. and X.L.; methodology, P.W. and X.L.; validation,
X.L.; writing–original draft preparation, X.L.; writing–review and editing, P.W. All authors have read
and agreed to the published version of the manuscript.

Funding: The work is supported by National Key R&D Program of China (2018YFD1100302), Na-
tional Natural Science Foundation of China (No.61972082, No.72001213), and All-Army Common In-
formation System Equipment Pre-Research Project (No.31511110310, No.31514020501, No.31514020503).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Adleman, L.M. Molecular computation of solutions to combinatorial problems. Science 1994, 266, 1021–1024.

doi:10.1126/science.7973651.
2. Clelland, C.; Risca, V.; Bancroft, C. Hiding messages in DNA microdots. Nature 1999, 399, 533–534.
3. Fu, C.; Zhao, G.Y.; Gao, M.; Ma, H.F. A chaotic symmetric image cipher using a pixel-swapping based permutation. In

Proceedings of the 2013 IEEE International Conference of IEEE Region 10 (TENCON), Xi’an, China, 22–25 October 2013; pp. 1–6.
4. Nechvatal, J.; Barker, E.; Bassham, L.; Burr, W.; Dworkin, M.; Foti, J.; Roback, E. Report on the development of the Advanced

Encryption Standard (AES). J. Res. Natl. Inst. Stand. Technol. 2001, 106, 511–576. doi:{10.6028/jres.106.023}.
5. Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715.
6. Rubin, F. One-time pad cryptography. Cryptologia 1996, 20, 359–364.
7. Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C; John Wiley & Sons: Hoboken, NJ, USA, 2007.
8. Stallings, W. Cryptography and Network Security: Principles and Practice; Pearson: Upper Saddle River, NJ, USA, 2017.
9. Foster, C.C. Drawbacks of the one-time pad. Cryptologia 1997, 21, 350–352.
10. Rueppel, R.A. Analysis and Design of Stream Ciphers; Springer Science & Business Media: Berlin, Germany, 2012.
11. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436.
12. Zhang, Y.; Jatowt, A.; Tanaka, K. Towards understanding word embeddings: Automatically explaining similarity of terms.

In Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016;
pp. 823–832.

13. Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent trends in deep learning based natural language processing. IEEE Comput.
Intell. Mag. 2018, 13, 55–75.

14. Camacho-Collados, J.; Pilehvar, M.T. From Word to Sense Embeddings: A Survey on Vector Representations of Meaning. J. Artif.
Intell. Res. 2018, 63, 743–788.

15. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,
arXiv:1301.3781.

16. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their
compositionality. In Advances in Neural Information Processing Systems; 2013; pp. 3111–3119.

17. Pennington, J.; Socher, R.; Manning, C. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.

18. Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of tricks for efficient text classification. arXiv 2016, arXiv:1607.01759.
19. FIPS PUB. Secure Hash Standard (SHS); FIPS PUB: 2012; Volume 180.

https://doi.org/{10.6028/jres.106.023}

Appl. Sci. 2021, 11, 1781 29 of 30

20. Li, P.; Li, J.; Huang, Z.; Li, T.; Gao, C.Z.; Yiu, S.M.; Chen, K. Multi-key privacy-preserving deep learning in cloud computing.
Future Gener. Comput. Syst. 2017, 74, 76–85.

21. Shokri, R.; Shmatikov, V. Privacy-preserving deep learning. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 1310–1321.

22. Zhang, Q.; Yang, L.T.; Chen, Z. Privacy preserving deep computation model on cloud for big data feature learning. IEEE Trans.
Comput. 2016, 65, 1351–1362.

23. Gilad-Bachrach, R.; Dowlin, N.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing, J. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy. In Proceedings of the International Conference on Machine Learning,
New York, NY, USA, 19–24 June 2016; pp. 201–210.

24. Chabanne, H.; de Wargny, A.; Milgram, J.; Morel, C.; Prouff, E. Privacy-preserving classification on deep neural network. IACR
Cryptol. ePrint Arch. 2017, 2017, 35.

25. Hesamifard, E.; Takabi, H.; Ghasemi, M. Cryptodl: Deep neural networks over encrypted data. arXiv 2017, arXiv:1711.05189.
26. Zhao, R.; Iwaihara, M. Lightweight Efficient Multi-keyword Ranked Search over Encrypted Cloud Data using Dual Word

Embeddings. arXiv 2017, arXiv:1708.09719.
27. Long, Y.; Liu, Y. Text coverless information hiding based on word2vec. In Proceedings of the International Conference on Cloud

Computing and Security, Haikou, China, 8–10 June 2018; pp. 463–472.
28. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning models. In Proceedings

of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 3–18.
29. Carlini, N.; Liu, C.; Kos, J.; Erlingsson, Ú.; Song, D. The secret sharer: Measuring unintended neural network memorization &

extracting secrets. arXiv 2018, arXiv:1802.08232.
30. Rong, X. word2vec parameter learning explained. arXiv 2014, arXiv:1411.2738.
31. Levy, O.; Goldberg, Y. Neural word embedding as implicit matrix factorization. In Advances in Neural Information Processing

Systems; 2014; pp. 2177–2185.
32. Levy, O.; Goldberg, Y.; Dagan, I. Improving distributional similarity with lessons learned from word embeddings. Trans. Assoc.

Comput. Linguist. 2015, 3, 211–225.
33. Seo, S.; Huang, J.; Yang, H.; Liu, Y. Interpretable convolutional neural networks with dual local and global attention for review

rating prediction. In Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, 27–31 August 2017;
pp. 297–305.

34. Vellido, A.; Martín-Guerrero, J.D.; Lisboa, P.J. Making Machine Learning Models Interpretable; ESANN: 2012; Volume 12, pp. 163–172.
35. Bengio, Y.; Lee, D.H.; Bornschein, J.; Mesnard, T.; Lin, Z. Towards biologically plausible deep learning. arXiv 2015,

arXiv:1502.04156.
36. Fong, R.C.; Vedaldi, A. Interpretable explanations of black boxes by meaningful perturbation. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3429–3437.
37. Samek, W.; Wiegand, T.; Müller, K.R. Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep

Learning Models. arXiv 2017, arXiv:1708.08296.
38. Turney, P.D.; Pantel, P. From frequency to meaning: Vector space models of semantics. J. Artif. Intell. Res. 2010, 37, 141–188.
39. Gilbert, J.R.; Moler, C.; Schreiber, R. Sparse matrices in MATLAB: Design and implementation. SIAM J. Matrix Anal. Appl. 1992,

13, 333–356.
40. Church, K.W.; Hanks, P. Word association norms, mutual information, and lexicography. Comput. Linguist. 1990, 16, 22–29.
41. Niwa, Y.; Nitta, Y. Co-occurrence vectors from corpora vs. distance vectors from dictionaries. In Proceedings of the 15th

Conference on Computational Linguistics, 1994; Volume 1, pp. 304–309.
42. Alberti, L.B.; Buonafalce, A.; Mendelsohn, C.J.; Kahn, D. A Treatise on Ciphers; Galimberti: 1997.
43. Biham, E.; Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 1991, 4, 3–72.
44. Matsui, M. Linear cryptanalysis method for DES cipher. In Proceedings of the Workshop on the Theory and Application of

Cryptographic Techniques, Lofthus, Norway, 23–27 May 1993; pp. 386–397.
45. Knudsen, L.R. Truncated and higher order differentials. In Proceedings of the International Workshop on Fast Software

Encryption, Leuven, Belgium, 14–16 December 1994; pp. 196–211.
46. Wagner, D. The boomerang attack. In Proceedings of the International Workshop on Fast Software Encryption, Rome, Italy,

24–26 March 1999; pp. 156–170.
47. Kim, J.; Hong, S.; Sung, J.; Lee, S.; Lim, J.; Sung, S. Impossible differential cryptanalysis for block cipher structures. In Proceedings

of the International Conference on Cryptology in India, New Delhi, India, 8–10 December 2003; pp. 82–96.
48. Courtois, N.T.; Pieprzyk, J. Cryptanalysis of block ciphers with overdefined systems of equations. In Proceedings of the

International Conference on the Theory and Application of Cryptology and Information Security, Queenstown, New Zealand,
1–5 December 2002; pp. 267–287.

49. Dunkelman, O.; Biham, E. Techniques for Cryptanalysis of Block Ciphers. Ph.D. Thesis, Computer Science Department, Technion,
Haifa, Israel, 2006.

50. Adebayo, J.; Gilmer, J.; Goodfellow, I.; Kim, B. Local explanation methods for deep neural networks lack sensitivity to parameter
values. arXiv 2018, arXiv:1810.03307.

Appl. Sci. 2021, 11, 1781 30 of 30

51. Mendel, F.; Pramstaller, N.; Rechberger, C.; Rijmen, V. Analysis of step-reduced SHA-256. In Proceedings of the International
Workshop on Fast Software Encryption, Graz, Austria, 15–17 March 2006; pp. 126–143.

52. Mastan, J.M.K.; Sathishkumar, G.; Bagan, K.B. A color image encryption technique based on a substitution-permutation network.
In Proceedings of the International conference on Advances in Computing and Communications, Kochi, India, 22–24 July 2011;
pp. 524–533.

53. Al-Muhammed, M.J.; Zitar, R.A. κ-Lookback random-based text encryption technique. J. King Saud Univ.-Comput. Inf. Sci. 2019,
31, 92–104. doi:{10.1016/j.jksuci.2017.10.002}.

54. Bengio, Y.; Ducharme, R.; Vincent, P.; Jauvin, C. A neural probabilistic language model. J. Mach. Learn. Res. 2003, 3, 1137–1155.
doi:10.1162/153244303322533223.

55. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.

https://doi.org/{10.1016/j.jksuci.2017.10.002}
https://doi.org/10.1162/153244303322533223

	Introduction
	Related Work
	TEDL Overview
	Preliminaries
	Key
	Encryption and Decryption
	Synthetic Corpus
	Training
	Sparse Word Vectors and Dense Word Vectors
	De-Randomization

	Word Vector Table
	Time-Varying Codebook

	Self-Updating Codebook
	Synthetic Corpus Update
	Seed Update

	Interpretable Word Embedding by Matrix Decomposition
	Security Analysis
	Experiments and Performance Analysis
	Recovery
	Consumed Time for Brute Force
	Frequency Analysis
	Correlation
	Directly Using Word Vector Table
	Using Time-Varying Codebook

	Sensitivity Analysis
	Key Sensitivity
	Plaintext sensitivity
	Ciphertext Sensitivity

	Efficiency Analysis
	Generality Analysis

	Limitations
	Conclusions and Future Work
	References

