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Abstract: This study identified the meteorological variables that significantly impact the power
generation of a solar power plant in Samcheonpo, Korea. To this end, multiple regression models
were developed to estimate the power generation of the solar power plant with changing weather
conditions. The meteorological data for the regression models were the daily data from January 2011
to December 2019. The dependent variable was the daily power generation of the solar power plant
in kWh, and the independent variables were the insolation intensity during daylight hours (MJ/m2),
daylight time (h), average relative humidity (%), minimum relative humidity (%), and quantity of
evaporation (mm). A regression model for the entire data and 12 monthly regression models for the
monthly data were constructed using R, a large data analysis software. The 12 monthly regression
models estimated the solar power generation better than the entire regression model. The variables
with the highest influence on solar power generation were the insolation intensity variables during
daylight hours and daylight time.

Keywords: solar power plant; Samcheonpo; meteorological data; big data; regression model

1. Introduction

Since 2017, the Korean government has promoted an energy policy that has a goal
of renewable energy reaching 20% in the national gross power generation by 2030 [1].
Owing to this policy, Korea’s capacity of renewable energy power facilities has increased by
approximately five times from 2010 to 2019. In 2019, the renewable energy facility capacity
share was 13% of the gross power generation facility capacity, while the solar power facility
capacity accounted for 67% of the gross renewable energy facility capacity [2].

As it converts sunlight into electricity, solar power generation heavily depends on the
weather conditions of the region where the facility is installed [3]. For example, insolation,
which significantly influences solar power generation, fluctuates each month. Figure 1
shows the monthly insolation (MJ/m2) averaged from 2011 to 2019 over the entire region
of Korea. In Korea, it reaches the maximum in May and the minimum in December, as
shown in Figure 1. Rain also affects solar power generation. There were several rainy days
in September 2020, which was approximately 1.7 times higher than those in May 2020
when the highest amount of solar power was generated in the entire year [4].

Such irregular weather conditions make it difficult to ensure stable solar power gen-
eration. Because every power plant must respond in a timely manner to the changing
electricity demands over time, solar power plants should be capable of predicting the
amount of power required in the near future and respond accordingly to changing elec-
tricity demands [5]. Accordingly, several studies have tried to predict the amount of solar
power generation as accurately as possible. Solar power generation has been predicted by
utilizing mathematical relationships with linear regression models [6,7], autoregressive
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models [8,9], and recurrent neural network models [10,11]. The prediction models might
be divided into the two categories: short- and long-term prediction models depending on
if the prediction period is longer than a day [12]. The short-term prediction model can
effectively predict near-future power generation, but the long-term prediction model is
also needed to consider unexpected and extreme weather conditions such as a long rainy
season [13].
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Recently, researchers have adopted predictive modeling techniques such as “artificial
neural networks,” “fuzzy predictions,” and “support vector regressions” [14]. However,
most of these models have been unable to make accurate predictions because they did
not have sufficient raw data, which means that the predictability of the models could be
improved if more raw data are accumulated [13].

This study aimed to develop a model in order to easily predict solar power according
to the changes in the meteorological variables, as well as identify the meteorological
variables significantly impacting the solar power generation in Korea. To achieve this
objective, a multiple regression analysis technique was applied to the big data on the solar
power generation and weather conditions around the area where the solar power plant was
installed. The multiple regression analysis has advantages of the variables being added
to and removed from the model easily in the middle of the regression process, and thus a
quick calculation was possible [15]. For the regression analysis, the packages in R, a large
data analysis software, was used [16].

In this study, two types of regression model were developed. First, irrespective of
month, a regression model for the entire dataset was developed. Second, as insolation inten-
sity in Korea considerably varied from month to month. As such, 12 regression models for
each month were developed to increase the predictability of the model. For the regression,
the dependent variable was the quantity of solar power generated by a solar power plant in
Samcheonpo, Korea, and the independent variables were the meteorological data provided
by the Korean Meteorological Administration, which were screened sequentially during
regression analysis.

2. Data and Processing
2.1. Selection of a Solar Power Plant for Analysis

Insolation intensity is a key determinant in selecting the site for a solar power
plant [17], and it fluctuates with location and timing [18]. To select the solar power plant
for our analyses, first, the areas with high insolation intensity in Korea, which could be
suitable for installing solar power plants, were found. The data analyses regarding the
average insolation of the 14 sites for the past 20 years (1988–2007) showed that Mokpo and
Jinju, located on the southwest coast of the Korean Peninsula, had the highest insolation in
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Korea [4]. Second, the solar power plants were investigated, which were installed in areas
with the highest insolation. Then, the Samcheonpo solar power plants were chosen, which
are operated by the Korea Southeast Power Co. because the data on solar power generation
and the meteorological variables needed for further analyses could be secured. The white
star in the red cone in Figure 2 shows the location of the Samcheonpo solar power plants in
Goseong-gun, Gyeongsangnam-do, Korea.
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Figure 2. Location (white star in red cone) of Samcheonpo solar power plants [19–23].

As shown in Table 1, there are five units with a facility capacity of 0.1 MW in the
Samcheonpo solar plants. Among these five units, unit #1 was chosen as the plant for
our analyses and, thus, we gathered the data on solar power generation provided by the
Korea Southeast Power Co. in Sacheon, Gyeongsangnam-do, Korea through the official
government portal for public information release.

Table 1. Overview of Samcheonpo solar power plants [24,25].

Facility Capacity
(MegaWatt) Operation Date Type

Samcheonpo #1 0.1 October 2005 80Wp × 1320

Samcheonpo #2 0.99 April 2010 225Wp × 4400

Samcheonpo #3 0.35 April 2012 250Wp × 1400

Samcheonpo #4 1.85 June 2012 250Wp × 7400

Samcheonpo #5 10.587 June 2017 320Wp × 33, 000

2.2. Meteorological Data

To develop regression models between the solar power generation (Y) and meteoro-
logical variables (Xi), the meteorological data around the Samcheonpo solar power plants
were needed. As there is no official weather station at the site of the Samcheonpo plants,
the meteorological data provided by the Jinju weather station was 20 km away in a straight
line from the Samcheonpo plants [26]. The data provided by the Jinju weather station were
obtained through the Korea Meteorological Administration’s website.

The meteorological variables considered for analyses were the insolation intensity
at the peak time (MJ/m2), insolation intensity during daylight hours (MJ/m2), daylight
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time (h), average relative humidity (%), minimum relative humidity (%), and amount
of evaporation (mm). The total number of meteorological data collected from January
2011 to December 2019 was 19,623 [27]. The numbers of data for the variables “daylight
time”, “average relative humidity”, and “minimum relative humidity” were each 3285. The
numbers of data for the variables “insolation intensity at the peak time” and “insolation
intensity during daylight hours” were each 3281. The number of data for the variable
“amount of evaporation” was 3206. Figure 3 shows the degrees of correlation between solar
power generation and the several selected independent variables [28,29]. Figure 4 shows
the degrees of correlation between the power generation and meteorological variables for
the data sets collected over 9 years (2011–2019). As shown in Figure 4, three variables—i.e.,
the insolation intensity at the peak time, insolation intensity during daylight hours, and
the daylight time—were highly positively correlated with power generation.
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2.3. Analysis Method

In this paper, a multilinear regression analysis was applied to determine the causal
relationship between independent variables (Xi), meteorological data, dependent variables
(Y), and solar power generation because there were several independent variables. The
regression analysis estimated the value of a dependent variable by substituting the values
of independent variables. Accordingly, solar power generation can be estimated using a
multilinear regression equation of the multiple meteorological variables as follows [30,31]:

(Yi) = β0 + β1X1i + β2X2i + · · ·+ βpXpi (1)

Equation (1) estimates the value of the dependent variable, as well as the values of the
regression coefficients, β0, β1, β2, . . . and βp. Each regression coefficient is interpreted as
the extent to which each independent variable affects the dependent variable.

Estimating regression coefficients requires partial differentiation of the error sum of
squares (SSE) for each variable and minimizing it to estimate the regression variables. The
SSE is represented as follows:

SSE =
m

∑
i=1

e2
i = e2

1 + e2
2 + · · ·+ e2

n, (2)

where ei is the deviation of the regression estimation.
In the regression analysis, the coefficient of determination (R2) is used to evaluate

the goodness of fit or to know the explanatory power of the independent variables for
estimating the dependent variable. The coefficient of determination is given as follows:

R2 =
∑ (ŷi − y)

∑ (yi − y)2 =
Variation explained by the regression line

Total variation
(3)

where ŷi − y indicates the difference between the estimated dependent variable value and
sample mean.

The range of R2 is 0 < R2 < 1. The closer it is to 1, the closer the regression model is
to the overall variation. However, because multiple regression analysis has two or more
independent variables, it is necessary to consider the adjusted coefficient of determina-
tion (Adjusted R2), which compensates for the characteristic of R2 that increases as the
number of independent variables increases. The formula for the adjusted coefficient of
determination is as follows:

Adjusted R2 = 1 − n − 1
(n − p − 1)(1 − R2)

(4)

where (n − p − 1) is the degree of freedom, n is the number of samples, and p is the number
of independent variables.

In addition, the p-value and multicollinearity were diagnosed to confirm statistical
significance. Finally, to evaluate the accuracy of the derived regression model, we used the
R2, adjusted R2, and root mean square error (RMSE) values.

The p-value and probability of significance can determine if the null hypothesis or
alternative hypothesis is adopted. To reject the null hypothesis that “the independent
variables do not affect the dependent variable,” the p-value must be less than 0.05, and the
alternative hypothesis can be adopted by rejecting the null hypothesis.

A multicollinearity between variables exists, which overlaps with the variability
between independent variables and does not bring about overlapping variability. This
leads to poor interpretation of the regression analysis results and decreases its accuracy,
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which requires diagnosis. Methods for diagnosing multicollinearity should utilize variance
inflation factors (VIFs). VIFs can be determined using Equation (5) [32].

VIFi =
1

1 − R2 (5)

If the VIF is greater than 10, then the variable possesses multicollinearity and should
be excluded from the regression analysis.

The RMSE is commonly used when considering the difference between the estimated
and measured values, and it is suitable for expressing precision. The smaller the error, the
better the performance of the regression model.

3. Results and Discussion

The coefficients of the entire regression model between the solar power generations
over a year for the past 9 years and the meteorological variables are listed in Table 2.
As observed in Table 2, the VIF values for the two independent variables—namely the
insolation intensities at the peak time and during daylight hours—exceed 10. This indicates
that these two variables possessed multicollinearity. Thus, the insolation intensity at the
peak time was excluded from the regression model.

Table 2. Multiple linear regression model for the yearly data collected over the past 9 years (2011–
2019).

Coefficient
(βi)

Std. Error p-Value VIF

Constant 174.97 8.48 2.2 × 10−16 -

Insolation intensity at peak time
(MJ/m2) 49.73 4.99 2.2 × 10−16 13.14

Insolation intensity during
daylight hours (MJ/m2) 4.42 0.75 4.5 × 10−9 18.61

Daylight time (h) 13.64 0.67 2.2 × 10−16 4.87

Average relative humidity (%) −1.30 0.16 2.9 × 10−16 4.21

Minimum relative humidity (%) −0.74 0.15 6.7 × 10−16 6.06

Quantity of evaporation (kg/h) −9.00 0.87 2.2 × 10−16 2.24

The revised regression models and their statistics were obtained after removing the
insolation intensity at peak times, as summarized in Tables 3 and 4, respectively. For the
regression models given in Table 3, R2 and adjusted R2 were 0.7738 and 0.7735, respectively.
The p-value is generally interpreted as statistically significant when it is less than 0.05.
As the p-value is less than 0.05, the null hypothesis can be rejected, and the alternative
hypothesis can be adopted [33]. In other words, the equation using coefficients in Table 3
can be used as a multiple linear regression model.

To consider the difference in monthly insolation, we derived 12 monthly regression
models. Table 5 lists the regression models for the monthly solar power generation, which
was averaged from 2011 to 2019. The R2s for the monthly regression models in Table 5
are larger than in Table 4. This means that the goodness of fit of the regression models
in Table 5 was better than that of the regression model in Table 4. Therefore, the monthly
regression models estimated solar power generation was better than the entire regression
model. The regression model with the highest accuracy was for January and that with the
lowest accuracy was for December. Figure 5 compares the actual daily power generation of
the Samcheonpo power plant in 2019, as well as the predicted monthly regression models
in Table 5.
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Table 3. Revised multiple linear regression model for the yearly data collected over the past 9 years.

Coefficient
(βi)

Std. Error p-Value VIF

Constant 201.91 8.16 2.2 × 10−16 -

Insolation intensity during daylight
hours (MJ/m2) (X1) 10.92 0.37 2.2 × 10−16 4.48

Daylight time (h) (X2) 12.28 0.67 2.2 × 10−16 4.67

Average relative humidity (%) (X3) −1.08 0.16 1.1 × 10−11 4.13

Minimum relative humidity (%) (X4) −1.09 0.15 7.5 × 10−14 5.70

Quantity of evaporation (mm) (X5) −9.83 0.88 2.2 × 10−16 2.22

Table 4. Statistical test results of the revised regression model for the yearly data (2011–2019).

R2 Adjusted R2 RMSE Std. Error

0.7738 0.7735 69.06 69.13

Table 5. Multiple linear regression models for each month.

Regression Model
R2 Adjusted

R2 RMSE Std.
ErrorConst β1 β2 β3 β4 β5

January 55.16 28.08 12.19 −1.99 1.24 −17.70 0.8985 0.8966 40.66 41.11

February 94.33 14.92 21.20 −1.83 0.93 −4.07 0.8697 0.8671 53.97 54.63

March 104.80 9.59 21.92 −0.65 −0.32 0.54 0.8916 0.8896 51.59 52.15

April 138.86 9.63 15.91 −0.54 −0.87 −3.39 0.8767 0.8744 59.90 60.58

May 104.78 9.52 12.57 0.03 −0.97 −1.95 0.8142 0.8108 63.66 64.35

June 128.07 9.91 5.65 0.86 −2.28 1.33 0.8300 0.8268 54.93 55.55

July −102.3 14.76 2.32 2.76 −1.61 −4.70 0.7767 0.7726 60.55 61.21

August −75.50 16.51 −3.60 1.96 −1.23 1.98 0.7769 0.7728 55.06 55.66

September −101.8 13.42 9.88 1.61 −0.25 −0.32 0.7842 0.7801 62.42 63.12

October 92.74 11.01 15.23 −0.40 −0.70 −2.49 0.7952 0.7914 61.57 62.43

November 18.84 28.62 3.35 −0.12 −0.35 −21.75 0.74565 0.74084 64.94 65.67

December −103.5 33.67 6.04 0.32 0.38 −1.28 0.7228 0.7178 68.39 69.14

Table 5 also shows that the two variables (insolation intensity during daylight hours
(X1), and daylight time (X2)) were the dominant variables impacting the solar power gener-
ation. For January, June to September, and November to December, the insolation intensity
during daylight hours (X1) was the most dominant meteorological variable. For February to
May and October, the daylight times (X2) were the most dominant meteorological variable.
Interestingly, the evaporation quantity fairly impacted solar power generation in January
and November.
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4. Conclusions

This study investigated the correlation between solar power generation and the
meteorological variables by deriving multiple linear regression models. For this, a large
data analysis software, R, was applied to the solar power generation and meteorological
variable datasets. In the regression models, solar power generation was set as the dependent
variable and the meteorological variables as the independent variables. The independent
variables first considered were the insolation intensity at the peak time (MJ/h), insolation
intensity during daylight hours (MJ/m2), daylight time (h), average relative humidity
(%), minimum relative humidity (%), and evaporation amount (mm). Through statistical
analysis, the insolation intensity at the peak time was excluded from the further regression
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model as it possessed multicollinearity. For the resulting regression model, R2 was 0.7738,
adjusted R2 was 0.7735, and RMSE was 69.06.

In addition, 12 monthly regression models were derived to improve the predictabil-
ity because the difference in monthly insolation had to be considered. The regression
model with the highest accuracy was for January, with R2 being 0.8985, adjusted R2 being
0.8966, and RMSE being 40.66. The regression model with the lowest accuracy was for
December, with R2 being 0.7228, adjusted R2 being 0.7178, and RMSE being 68.39. To check
the predictability of the regression models, comparison between the actual daily power
generation and the predicted power generation by the monthly regression models was
shown in Figure 5.

Regression analyses showed the degree of correlation between solar power generation
and each meteorological variable. The effect of each meteorological variable on solar
power generation varied month-to-month. Among the two meteorological variables, the
insolation intensity during daylight hours and daylight time had the highest correlation
with solar power generation throughout the year. Interestingly, the quantity of evaporation
impacted the solar power generation in January and November in a fairly big way.

This paper presented improved predictability for regression models by deriving the
12 monthly models used to consider the difference in monthly conditions of meteorological
variables. Accordingly, we assumed that the predictability of the regression analysis for the
data, including the variables, significantly varied month-to-month and could be improved
by deriving monthly regression models rather than deriving an entire regression model.
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