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Abstract: The deployment of near future 5G networks will introduce modifications in the population’s
exposure levels to radio-frequency electromagnetic fields (RF-EMFs). The present work aimed to
face the challenge of studying the exposure variability in the presence of an access point (AP) at
3.7 GHz with 64 patch elements uniform planar array antenna and 3D beamforming capability. The
novelty introduced in the methodology of the exposure’s evaluation was the combining of traditional
computational methods with a new approach based on stochastic dosimetry, called polynomial chaos
kriging method, in order to estimate the exposure levels for 1000 different antenna beamforming
patterns with low computational efforts. The simulations were evaluated considering a child model
and computing the specific absorption rate (SAR) in different tissues. The analysis of the results
highlighted a high exposure variability scenario depending on the beamforming patterns of the array
antenna and identified the ranges of elevation and azimuth angles of the main antenna beam that
may cause the highest levels of exposure.

Keywords: 5G networks; RF-EMF indoor exposure assessment; stochastic dosimetry; antenna arrays;
beamforming technique

1. Introduction

The Fifth Generation (5G) of wireless cellular networks was designed to satisfy ambi-
tious goals such as very low latency, dramatic increase in the number of connected devices
and data rates, ultra-reliable links, and high coverage. Deployment of 5G will allow the next
future to be characterized by the reality of smart homes, cities, and societies, bringing new
services and utilities to the whole population in an Internet of Things world [1]. Innovative
technologies have been proposed in recent years and are being carried out, i.e., deploy-
ment of small-cell networks, use of massive multiple-input–multiple-output (MIMO) base
station antennas, device-to-device (D2D) communication, heterogeneous networks, and
three-dimensional beamforming (3DBF) techniques [2–5]. To provide enhanced broadband
communications, additional spectrums have been allocated in millimeter wave (mm wave)
bands between 3 and 100 GHz to make available very large channel bandwidths; how-
ever, at these high frequencies, there is the need to counterbalance the high path loss that
signals experience. The use of dense micro cells’ deployments combined with antennas
capable of focalizing the beam adaptively in the desired direction, by sophisticated 3DBF
techniques, may effectively combat the severe path loss and reduce network interference
and electromagnetic emission towards undesired directions [6,7].

In the vast multitude of studies dealing with the performance of technological solu-
tions for 5G network deployment, some of them also deal with human exposure levels
that such deployments will induce [8–15]. The authors in References [8,9] used simplified
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exposure models to evaluate the impact of the new mm wave frequency bands. In Refer-
ences [10–12], the authors studied the exposure levels caused by specific devices in uplink
and downlink scenarios but limited only on a few configurations, and in References [13–15],
the authors faced the variability of the exposure scenario by using ray tracing and statistical
techniques [13–15].

It is undeniable that the introduction of new frequencies and new techniques of
radio physical access will have an impact on human radio-frequency electromagnetic field
(RF-EMF) exposure, and the design of new exposure assessments that take into account
the heterogeneity of different link parameters (e.g., the number of array antennas, the
dielectric properties of users, the 3D beamforming patterns) still represents a challenging
task [16–18].

The present work aimed to face the challenge of studying the exposure variability
in presence of this heterogeneity. In particular, the novelty of the paper is the use for the
first time stochastic (metamodeling) techniques combined with the classical computation
techniques (deterministic dosimetry). Stochastic dosimetry was successfully applied previ-
ously for both low- and high-frequency exposure scenarios [19,20], allowing to enormously
reduce the associated computational costs by substituting an expensive computational
model with a functional approximation of the original model, much faster to evaluate. In
this way, starting from the results of a small number of expensive computational simula-
tions and coupling them with surrogate models (metamodeling), it is possible to estimate
the exposure in a large number of configurations and conduct statistics and sensitivity
analyses [19].

The heterogeneity afforded in this study was introduced by the beamforming capa-
bility of the antenna of an access point (AP) in an indoor environment. In detail, the AP
antenna was modeled by a uniform planar array (UPA) with 64 patch elements at 3.7 GHz
that is inside the licensed range of frequencies below 6 GHz that the first 5G network
installations will use (in Italy the range is 3.6–3.8 GHz [16]). A child model was used in the
simulations to obtain the human exposure levels in terms of the specific absorption rate
(SAR), as specified in the International Commission on Non-Ionizing Radiation Protection
(ICNIRP) guidelines [21]. The joint use of deterministic and stochastic methods allowed us
to expand the exposure assessment from a few specific beamforming patterns of the UPA
antenna (as investigated in our previous study [22]) to the entire space of variability of the
antenna pattern.

Details of the methodology used and a brief discussion on the surrogate models
adopted are presented in Section 2. The numerical results of the simulation campaign
interpolated by the use of the surrogate models are presented and analyzed by means
of statistical and global sensitivity in Section 3. The results of statistical and sensitivity
analyses are discussed in Section 4. Finally, the conclusions of the work are drawn in
Section 5.

2. Materials and Methods

The considered exposure scenario, shown in Figure 1, was modeled to assess the
exposure variability of a single user due to an AP operating at 3.7 GHz with a 64 elements
UPA antenna. As detailed in Reference [22], each element of the antenna was composed
by a simple patch antenna characterized by three layers. The three layers were composed
by the ground layer, the patch layer modeled as PEC materials, and the substrate layer
modeled by a dielectric material (dielectric properties: εr = 2.25 and σ = 0.0005 S/m, data
from Reference [13]. The total dimensions of the array were 29 × 29 × 0.5 cm (right side
of Figure 1), and the antenna was excited with a Gaussian signal with a total input power
of 100 mW in line with the maximum allowed input power values specified in the 3rd
Generation Partnership Project [23].
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Figure 1. (a) Exposure scenario and the two input parameters for the beamforming pattern with 
their ranges; (b) details and gain diagram of the uniform planar array (UPA) antenna with 64 ele-
ments at 3.7 GHz. 

The human exposure levels were evaluated in terms of the SAR in the child Roberta’s 
model (age = 5 years old, height = 1.1 m, mass = 17.6 𝑘𝑔 and BMI = 14.8 𝑘𝑔/𝑚) from the 
Virtual Classroom [24] as illustrated in the left part of Figure 1. The UPA antenna was 
placed laterally in respect to the model head at a fixed distance of 50 cm to the central 
point of the head. The choices of simulating a child model, instead of an adult one, and a 
lateral configuration of the antenna were suggested by the findings of our previous work 
[22]: for fixed zero-phase shift among the different array elements (i.e., for the maximum 
gain in the direction perpendicular to the antenna array), the child Roberta model and the 
lateral configuration of the antenna showed the highest exposure levels.  

To study the impact of the 3D beamforming capability of the UPA antenna, we intro-
duced the two scan angles that regulated the beamforming direction in the H-plane (azi-
muth plane) and in the E-plane (elevation plane), varying respectively in the range (-50°, +50°) and (−25°, +25°) as reported in Reference [25]. As an example, Figure 2 shows the 
spatial antenna gain patterns for the scan angles at the extreme values of their ranges (re-
spectively +/−50° and +/−25° for azimuth and elevation planes). 

 
Figure 2. Gain radiation patterns of the UPA antenna at 3.7 GHz for four different configurations of the azimuth and 
elevation angles of beamforming direction. 

Figure 3 shows a flow chart of the methodology adopted. It combines the traditional 
computational methods with the stochastic dosimetry, an innovative technique that uses 
surrogate models to obtain the variable of interest with really low computational cost in 
respect to traditional computational methods. This technique was already applied either 
in low- or in high-frequency ranges to assess the EM exposure levels of users [19,20]. The 

Figure 1. (a) Exposure scenario and the two input parameters for the beamforming pattern with their ranges; (b) details
and gain diagram of the uniform planar array (UPA) antenna with 64 elements at 3.7 GHz.

The human exposure levels were evaluated in terms of the SAR in the child Roberta’s
model (age = 5 years old, height = 1.1 m, mass = 17.6 kg and BMI = 14.8 kg/m) from the
Virtual Classroom [24] as illustrated in the left part of Figure 1. The UPA antenna was
placed laterally in respect to the model head at a fixed distance of 50 cm to the central point
of the head. The choices of simulating a child model, instead of an adult one, and a lateral
configuration of the antenna were suggested by the findings of our previous work [22]: for
fixed zero-phase shift among the different array elements (i.e., for the maximum gain in
the direction perpendicular to the antenna array), the child Roberta model and the lateral
configuration of the antenna showed the highest exposure levels.

To study the impact of the 3D beamforming capability of the UPA antenna, we
introduced the two scan angles that regulated the beamforming direction in the H-plane
(azimuth plane) and in the E-plane (elevation plane), varying respectively in the range
(−50◦, +50◦) and (−25◦, +25◦) as reported in Reference [25]. As an example, Figure 2 shows
the spatial antenna gain patterns for the scan angles at the extreme values of their ranges
(respectively +/−50◦ and +/−25◦ for azimuth and elevation planes).
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elevation angles of beamforming direction.

Figure 3 shows a flow chart of the methodology adopted. It combines the traditional
computational methods with the stochastic dosimetry, an innovative technique that uses
surrogate models to obtain the variable of interest with really low computational cost in
respect to traditional computational methods. This technique was already applied either
in low- or in high-frequency ranges to assess the EM exposure levels of users [19,20]. The
surrogate models were obtained for the SAR values averaged on the whole body, the whole
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head and the whole brain and for the maximum values of SAR averaged on 10 g for specific
tissues (e.g., the skin, the brain gray matter, and the cerebellum).
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The three steps of the process are described in details in the sub-sections below: “Exper-
iment Design” motivates the choice for the input setting and the deterministic simulations,
“Surrogate Modeling and Validation” illustrates the construction of the surrogate models
with stochastic dosimetry and their validation, “Analysis of the Exposure” highlights how
the surrogate models allowed to calculate the SAR values in the tissues of interest with low
computational costs, so providing a fine variability analysis of exposure assessment with
3D beamforming.

2.1. Experiment Design

The problem of the evaluation of EMF exposure can be seen as the problem of finding
a computational model M in the formula:

Y = M(x), (1)

where x denotes the vector of input parameters that influence the exposure scenario, and
Y represents the quantity of interest for the EMF exposure assessment, i.e., the averaged
and the maximum SAR values in different body areas and tissues.

In this case, the input parameters are the two scan angles (Figure 1) that characterize
the 3D beamforming of the UPA antenna, assuming the directions of maximum radiation
in the azimuth and elevation planes uniformly distributed in the ranges (−50, +50) and
(−25, +25), respectively. To generate the input coordinates, within the operational ranges,
the Latin Hypercube sampling (LHS) method was applied on the input probability density
functions [26].

The deterministic dosimetry simulations were then performed on the set of input
parameters in Sim4Life platform (ZMT Zurich Med Tech AG, Zurich, Switzerland, www.
zurichmedtech.com (accessed on 6 February 2021)), that implements the finite-difference
time-domain (FDTD) solver. The computational domain of all simulations with the UPA
antenna included the entire Roberta’s model discretized with a non-uniform grid with a
maximum step of 0.9 mm for the human body. The Roberta’s tissues dielectric properties
were chosen according to the literature [27,28], considering the antenna frequency of
3.7 GHz. At last, perfectly matched layer (PML) absorbing conditions were assumed at the
domain boundaries.

To conduct the exposure assessment, the SAR was evaluated in some specific tissues.
In detail, the SAR averaged on tissue mass was assessed for the whole body (SARwb),

www.zurichmedtech.com
www.zurichmedtech.com


Appl. Sci. 2021, 11, 1751 5 of 14

the whole head (SARwh), and the whole brain (SARwbr), where the brain included the
following tissues: brain grey matter, brain white matter, hippocampus, hypophysis, hy-
pothalamus, medulla oblongata, midbrain, pineal body, pons, and thalamus. Furthermore,
the SAR averaged on 10 g (SAR10g) was considered for the skin, the brain grey matter, and
the cerebellum.

The results obtained with deterministic dosimetry were used to implement the surro-
gate models by the polynomial chaos kriging methods as described below.

2.2. Surrogate Modeling and Validation

A metamodeling (or surrogate modeling) technique allows for the reduction of the
associated computational costs by substituting the expensive computational model M(x)
with a metamodel such as:

Ŷ = M̂(x), (2)

where Ŷ represents an analytical function with similar statistical properties as Y, but
obtainable with significantly lower computational cost comparing to the cost of determinis-
tic dosimetry.

In the present work, among the possible non-intrusive approaches useful to obtain
surrogate models, the Polynomial Chaos Kriging technique (PC-Kriging) was chosen,
which is a novel metamodeling technique that allows to combine the advantages of Kriging
(Gaussian process modelling) with those of Polynomial Chaos Expansions (PCE) [29,30].
Briefly, the PC-Kriging is formed by a universal kriging model that has a trend which is
modeled by a sparse set of orthogonal polynomials. Details of the individual PCE and
kriging techniques plus the description of the PC-Kriging method and his validation are
reported below.

2.2.1. Universal Kriging

The universal kriging, also known as Gaussian process modeling, represents a sta-
tistical interpolation method that splits the random function into a linear combination of
deterministic functions, known at any point of the domain input, and a random component,
the residual random function, described by a Gaussian noise depending on the input vector.
The model function M̂(x) is then described by the following equation (the apex “K” stays
for “kriging”):

ŶK = M̂K(x) =
p

∑
j=1

β j f j(x) + Z(x), (3)

where ∑
p
j=1 β j f j(x) is a linear combination of a given functional basis f with non- zero

coefficients β j and represents the mean value of ŶK, and Z(x) represents the stationary
Gaussian process with zero mean and stationary autocovariance:

E
[
Z(x), Z

(
x′
)]

= σ2R
(
x− x′, θ

)
, (4)

Characterized by the (constant) variance σ2 of the Gaussian process, and by R which
is its stationary autocorrelation depending on the difference between two sample points
(x− x′) and its hyperparameters θ. In the present work, the Matérn correlation function R
was used and its hyperparameters σ2 and θ were estimated by cross-validation estimation
and covariance matrix adaptation-evolution strategy (CMA-ES). Further details of the
autocorrelation functions properties and of the universal kriging method can be found
in [31,32].

2.2.2. Polynomial Chaos Expansions

Polynomial chaos expansions (PCE) are a family of powerful stochastic techniques that
provide functional approximation of a generic computational model through its spectral
representation based on a suitably built basis of polynomial functions. The PCE method
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can be described by the following equation (the apex “PCE” stays for “polynomial chaos
expansions”):

ŶPCE = M̂PCE(X) =
p

∑
j=1

αjψj(X), (5)

where X describes the probability density function of the chosen input parameters x, p is
the size of the polynomial basis Ψ(X), ψj(X) are the orthonormal polynomials belonging
to Ψ(X) and αj are the corresponding unknown coefficients to be estimated. In this work,
given the uniformly distributed input parameters x, the Legendre polynomials up to the
fourth order were selected as polynomial basis. Details of the different PCE techniques can
be found in References [19,33].

2.2.3. Polynomial Chaos Kriging

The combination of the universal kriging with the PCE methods allows to obtain a
new metamodeling technique that is more efficient than the two methods separately taken.
The PC-Kriging in fact uses the regression-type PCE for capturing the global behavior
of the computational model, whereas interpolation-type kriging allows to capture local
variations as a function of the neighboring points of the experimental design. At the end, a
more accurate metamodel is achieved by the use of the two techniques combination. The
PC-Kriging method can be defined as a universal kriging model, whose mean value (trend)
is formed by a set of orthonormal polynomials as in PCE technique and can be described
by the following equation (the apex “PCK” stays for “polynomial chaos kriging”):

ŶPCK = M̂PCK(x) =
p

∑
j=1

αjψj(X) + Z(x), (6)

where it can be noticed that the first term ∑
p
j=1 αjψj(X) represents the trend of the model

and is equal to the PCE solution (Equation (5)) whereas the second term Z(x) is a calibration
term as in Equation (3), represented by the stationary Gaussian process.

It is thus evident that the construction of PC-Kriging model requires two steps: (i) the
determination of the orthogonal polynomials and their coefficients αj to estimate the trend
and (ii) the calibration of the Kriging model, by evaluating the variance σ2 of the Gaussian
process and the hyperparameters θ of the autocorrelation function R as in Equation (4).

There are various ways to jointly optimize the two parts. Among all the PC-Kriging
models available, we chose the optimal PC-Kriging (OPCK) metamodel as the best one that
minimizes the leave-one-out error, as detailed in the next sub-section. The OPCK estimates
the optimal set of polynomials by least angle regression selection (LARS) algorithm [34],
which detects a sparse set of polynomials and their corresponding coefficients in decreasing
order according to their correlations to the current residual at each LARS iteration. Then,
it estimates the trend of PC-Kriging model by adding each polynomial individually and
calibrating for each iteration the new PC-Kriging model. The surrogate models’ solutions
to PC-Kriging procedure were obtained by the software “UQLab: The Framework for
Uncertainty Quantification” [35].

2.2.4. Validation of Surrogate Models

To validate the obtained surrogate models, the leave-one-out cross-validation (LOO-
CV) technique, already tested on previous works [19,20], was used. The method was
applied to counterbalance the needs of obtaining an acceptable error and of minimizing the
number N of simulations conducted with deterministic dosimetry. In fact, starting from the
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initial experimental design x and its corresponding responses Y = M(x) calculated with
deterministic dosimetry, the LOO-CV error is expressed by:

εLOO =
1
N

∑N
i=1

(
M(xi)− M̂PCK

(−i) (xi)
)2

Var[Y]

, (7)

where M(xi) represents the model output in xi obtained with deterministic dosimetry,
M̂PCK

(−i) (xi) represents the output of kriging metamodel in xi obtained using all the points of
the experimental design x except xi, and Var[Y] is the variance of the output data obtained
with computational methods.

Here, the number of N = 60 simulations turned out to be adequate to guarantee an
acceptable LOO-error.

2.3. Analysis of the Exposure

After the validation of the PC-Kriging, we built the surrogate models of the SAR
quantities of interest. The average SAR (namely, for the whole body, the whole head and
the whole brain) and the maximum SAR10g in specific tissues (e.g., the skin, the brain gray
matter, and the cerebellum) were estimated on 1000 different combinations of the two input
angles in the azimuth and elevation planes. To better characterize the exposure levels, the
data were statistically processed, calculating the Quartile Dispersion Coefficient (QDC) for
each SAR distribution as:

QDC =
Q3 −Q1

Q3 + Q1
, (8)

where Q1 and Q3 are respectively the first and third quartiles of the distribution.
To identify the scan angles ranges that might cause the highest exposure levels, an

analysis of the ranges inducing SAR values higher that the 70% of their maximum value
was conducted for each SAR distribution.

Finally, in order to evaluate which angle, between azimuth and elevation, mostly
influences the exposure levels, a global sensitivity analysis was conducted using the Sobol
variance-based method [36]. This method decomposes the system output variance as
the sum of the partial variances as contributions due to the fact of each input parameter;
the Sobol indices are calculated as the ratios between the partial variances and the total
variance of the system output. The Sobol indices reported in the tables are normalized with
respect to the sum of all the Sobol indices under consideration.

3. Numerical Results

Here, we report the numerical results obtained following the illustrated methodology
(Figure 3).

First of all, the validation LOO-CV errors (Equation (7)) have been computed for the
obtained surrogate models based on the results of N = 60 simulations, i.e., 60 different
combinations of beamforming scan angles. The error values are reported in Table 1. They
ranged from a minimum of 0.27%, computed for the average SAR in the whole head, to a
maximum of 5.70% for the SAR10g in the cerebellum, thus proving sufficiently low error
values to validate the model.

Table 1. LOO-Error values of the surrogate models for tissue average SAR in the whole body, whole head, and whole brain
and for SAR10g in skin, brain grey matter, and cerebellum.

Whole Body Whole Head Whole Brain Skin Brain Grey Matter Cerebellum

LOO Error 0.31% 0.27% 0.94% 2.85% 2.06% 5.70%
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Once the surrogate models were validated, they were used to estimate the exposure
levels in terms of both average SAR and maximum SAR10g for 1000 different combinations
of azimuth and elevation angles of the main radiation beam.

Figures 4 and 5 and Table 2 refer to the average SAR results on the whole body on the
whole head and on the whole brain, while Figures 6 and 7 and Table 3 refer to maximum
SAR10g results on the skin, on the brain grey matter and on the cerebellum. The exposure
levels are estimated for a total input power of the UPA antenna equal to 100 mW.
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Figure 5. Averaged SAR levels for 1000 combinations of azimuth and elevation angles for (a) the whole body, (b) the whole
head, and (c) the whole brain tissue. The first row shows the maps as function of the azimuth and elevation angles; the
second row shows the graphs, extracted from the maps, fixed the elevation angle to 0◦; the third row shows the graphs,
extracted from the maps, fixed the azimuth angle to 0◦.
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Table 2. The QDC values, the percentage of SAR values higher than the 70% of the maximum values,
and the corresponding ranges of elevation and azimuth angles for whole body, for whole head, and
for whole brain.

Whole Body Whole Head Whole Brain

QDC 71.7% 73.5% 74.8%
% > 0.7 maximum 7.2% 4.7% 3.3%

Range H-plane From −7◦ to 7◦ From −8◦ to 6◦ From −6◦ to 7◦

Range E-plane From −22◦ to 7◦ From −10◦ to 7◦ From 1◦ to 7◦
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Table 3. The QDC values, the percentage of SAR10g higher than the 70% of the maximum values and
the variation range extremes of the two input parameters for the skin, for the brain grey matter and
for the cerebellum.

Skin Brain Grey Matter Cerebellum

QDC 67.4% 74.6% 76.0%
% > 0.7 maximum 3.3% 4.2% 2.8%

Range H-plane From −5◦ to 5◦ From −10◦ to 6◦ From −5◦ to 5◦

Range E-plane From −11◦ to 4◦ From −5◦ to 10◦ From −4◦ to 8◦

Minimum, maximum, and median values and the first and the third quartiles of the
SAR distributions are shown as boxplots in Figure 4. We can see that (i) the highest SAR
values were obtained for the whole head, with a maximum of 8.35 mW/kg, a median of
0.42 mW/kg and a mean value of 1.23 mW/kg; (ii) the SAR values for the whole brain were
around half of those computed for the head (maximum 4.17 mW/kg, median 0.16 mW/kg
and mean 0.48 mW/kg), and (iii) the lowest values were obtained for the whole body with
a maximum of 1.75 mW/kg, a median of 0.12 mW/kg, and a mean value of 0.32 mW/kg.
The highest SAR values obtained for the whole head and for the whole brain could be
explained considering the position of the UPA antenna with respect to the model. In fact,
the head was with higher probability hit by the boresight beam of the UPA antenna (that is
the beam with direction orthogonal to the array and providing the highest power) and this
did not happen for the lower part of the body. Furthermore, we noticed that for all the three
SAR distributions mean and median values were close, while the maximum values differed
by about one order of magnitude w.r.t. them, meaning that the distributions concentrated
in a small range around their mean values as the boxplots show.

Figure 5 shows, for each surrogate model, a map of the SAR on the plane of the
1000 combinations of azimuth angles, in the range (−50◦, +50◦), and elevation angles, in the
range (−25◦, +25◦) (first row of Figure 5), and two graphs, extracted from the corresponding
map of SAR, one varying the azimuth angles of the beam, fixed the elevation angle to 0◦

(second row of Figure 5), and the other one varying the elevation angles, fixed the azimuth
angle to 0◦ (third row of Figure 5). The plots highlight the high variability of the exposure
levels in all the three SAR distributions depending on the beamforming patterns in the
H- and E-planes. To give a quantitative idea of this variability Table 2 reports the QDC
values, the percentages of values greater than 70% of the maximum value and the ranges
of elevation and azimuth angles corresponding to these highest exposure levels.

The table shows that QDC values vary from a maximum of 75% in the whole brain to
a minimum of 72% in the whole body and the percentage of values higher that the 70%
of the maximum values are really low, 7.2% for the whole-body, 4.7% for the whole head
and only 3.3% for the whole brain. Looking at the SAR maps in Figure 5 and the “Range
H-plane” values in Table 2, we realize that, for all the three SAR distributions, the highest
exposure levels corresponded to beamforming patterns with the beam focused on the
azimuth plane in a symmetric narrow range (about 14◦) approximately 0◦, that is just the
alignment direction between the antenna and Roberta’s body in the H-plane. On the other
hand, in the E-plane, things change, and the area of higher exposure varies depending on
the part of the body. The highest SAR levels in the whole body distribute on the range
(−22◦, 7◦), covering the shoulder area of the model. Instead, the highest SAR levels for the
whole head and for the whole brain concentrate in narrower ranges, respectively, (−10◦, 7◦)
and (0.6◦, 7◦), and out of these narrow ranges the main antenna beam does not intercept
these body areas.

The same analysis was also conducted for the maximum SAR averaged on 10 g for
the skin, the brain grey matter, and the cerebellum. The boxplot of the 1000 SAR10g values
obtained are reported in Figure 6.

In this case, the highest SAR10g values were obtained for the skin tissue, with a
maximum value of 222.23 mW/kg, a median value equal to 9.71 mW/kg, and a mean value
equal to 26.80 mW/kg. The SAR10g obtained for the brain grey matter and cerebellum were
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close to each other with values that were around half of the values obtained for the skin
(precisely, max = 95.24 mW/kg, median = 4.89 mW/kg, mean = 13.30 mW/kg for the brain
grey matter and max = 105.32 mW/kg, median = 4.37 mW/kg mean = 10.86 mW/kg for
the cerebellum).

Figure 7 reports, analogously to Figure 5, a map of the values on the plane of the
1000 combinations of azimuth angles, in the range (−50◦, +50◦), and elevation angles in
the range (−25◦, +25◦), and two graphs, one varying the azimuth angles of the beam, fixed
the elevation angle to 0◦, and the other one varying the elevation angles fixed the azimuth
angle to 0◦.

The results of the deeper statistical analysis, i.e., the QDC values, the percentage of
SAR10g values higher than 70% of the maximum and the ranges of elevation and azimuth
angles corresponding to these highest exposure levels are reported in Table 3.

In addition, for SAR10g, the QDC values remained high (from a maximum value of
76% for the cerebellum to a minimum of 67.4% for the skin), whereas the percentage of
highest values is really low. For the skin this percentage was only 3.3%, the brain grey
matter was 4.2%, and the cerebellum only 2.8%. It can be noticed again that the highest
SAR10g levels corresponded to beams concentrated in a symmetrical small range around
0◦ in the azimuth plane for the skin and the cerebellum, while for the brain grey matter
the range was slightly unbalanced (−10◦, 6◦). A slightly larger variability on the exposure
levels was measured varying the beam direction on the elevation plane, but the amplitude
of ranges remained small, varying from 12◦ to 15◦.

Finally, a global sensitivity analysis based on Sobol indices was conducted for all the
SAR distributions here considered, and the results are reported in Figure 8. The normalized
Sobol indices for the azimuth angles showed high values, from 70% and 80%, definitely
higher than the values measured for the elevation angles. Moreover, the Sobol indices for
the elevation angles showed non-negligible values, especially for the brain tissues (i.e.,
the whole brain, the brain gray matter, and the cerebellum), where are around 30%. This
is a quite interesting result, that highlights how the azimuth angles of the main beam of
antenna arrays with 3D beamforming capability have a predominant role on the exposure
levels, even if also the elevation angles have a non-negligible impact on exposure levels
especially for the brain area. These considerations obviously derive from the relative
position between the UPA antenna and the model and from the 3D shape of the human
body model.
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4. Discussion

In the present paper, an innovative approach that combined universal kriging with
polynomial chaos expansions technique (called polynomial chaos kriging PCK method)
was used in the electromagnetic dosimetry framework in order to assess for the first
time the exposure levels of a single user in a future indoor 5G scenario that deploys an
antenna array with beamforming capability. This method represents a further option to the
approaches previously used in stochastic dosimetry [19,20], which typically focused on the
use of surrogate models to describe the variability of exposure in uncertain conditions.

Although there are not yet at present commercial solutions to 5G indoor access points
with 3D adaptive beamforming, the roll-out of small cells will be a key point for success
of 5G networks as reported in Reference [16]. The massive deployment of low-power
AP will be primarily in the frequency band of 3.5–3.7 GHz, and in the future, in higher
frequency bands above the 24 GHz in order to bring higher data capacities and higher
data rate transmission. In this work, we modeled a 64 patch element UPA antenna at
3.7 GHz with 3D beamforming capability for a total input power of 100 mW, in line with
the maximum allowed input power for indoor hotspot reported in the 3rd Generation
Partnership Project [23], i.e., 250 mW. The distance between the UPA antenna and the
model head was simulated at 50 cm to evaluate the highest SAR levels. Greater distances
between the AP and the human body will lead to lower SAR levels.

The aim of the work was to validate the stochastic dosimetry methodology to obtain
a complete description of the exposure levels for any beamforming patterns of the UPA
antenna in terms of SAR distributions with an affordable computational effort respect to
deterministic simulation methods; this aim was reached by identifying the effectiveness of
the PCK method.

Even if the distance between the antenna and the human subject was closer compared
to a possible real implementation, the estimated exposure levels still led to low levels of
SAR that respect the EMF exposure limitations. In fact, all the highest observed values
for the SAR averaged on the whole body, the whole head, and the whole brain, and for
the SAR10g on tissues were significantly below the reference levels that ICNIRP guidelines
introduce as basic restrictions for general public exposure, i.e., 0.08 W/kg for the whole
body average SAR and 2 W/kg for the local head and torso SAR10g [21]. These results are
also in line with those of previous studies regarding 5G networks deployments, which
estimated the exposure levels in indoor environments and highlighted that the ICNIRP
guidelines will be well respected [13,14]. Furthermore, the analysis conducted on the
QDC values showed QDC values always higher than 67% for all the six examined SAR
distributions. This means that, although low, the exposure levels change consistently as a
function of the azimuth and elevation angles of the antenna beam that describes the space
of variability of the 3D beamforming of the UPA antenna. This was an expected result, as
3D beamforming techniques inherently focus the radiation in narrow beams to increase the
gain in the target direction and not everywhere [5–7] thus introducing a high variability on
the induced SAR in the child model tissues.

This consideration is reinforced by the analysis of the SAR values higher than the
70% of their maximum values, that showed how the highest values of the SAR concentrate
in small ranges of the elevation and azimuth angles. The analysis highlighted also how
only the beamforming patterns directed primarily towards the model area led to high SAR
levels, whereas main antenna beams directed in other directions cause a rapidly decrease
of SAR values.

Moreover, the global sensitivity analysis showed that the azimuth angle, which de-
scribes the beamforming variation in the H-plane, has a predominant role in the induced
SAR exposure levels in all the six distributions examined, though also the elevation angle in
the E-plane is relevant, even if with a lower impact, especially for brain tissue. The variation
of the elevation angle can indeed influence the power of the radiated wave towards the
area where these tissues are morphologically placed. These considerations highlighted
that it is crucial to consider both the azimuth and the elevation angles to obtain surrogate
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models able to reliably describe the exposure level due to indoor 5G AP deploying antenna
arrays with 3D beamforming capability.

5. Conclusions

In conclusion, stochastic dosimetry has been shown to be suitable to face the variability
of the EMF body exposure levels in next generation networks, that will be characterized
by inherent growing uncertainty, heterogeneity and complexity. In this perspective, there
is the need of validating numerical estimation methods with affordable computational
efforts, passing from realistic to surrogate models. In particular, the PCK method revealed
to be an efficient tool for surrogate modelling dealing with the exposure levels caused by
3D beamforming of array antennas that 5G APs will introduce. The analysis conducted
with the proposed method highlighted the impact of the elevation and azimuth angles
of the main radiation beams on SAR distributions. Although in the future it will be very
interesting to carry out environmental measurements of the exposure levels caused by the
physical AP devices that will actually be implemented in 5G network, from the quantitative
results that this analysis provided we can confirm that the radiation focusing capability
that 3D beamforming implements will lead to low levels of SAR, significantly below the
ICNIRP guidelines for general public exposure.
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