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Abstract: Driven by economic development, the dramatic increase in carbon emissions has led to
global warming and a series of environmental problems. The question of how to ensure harmonized
coordination between economic development, carbon emissions and environmental protection has
become increasingly important. The conflicts between the use of energy and emission reductions in
China have become more intense. It is an inevitable requirement for China’s sustainable development
to promote a low-carbon circular economy and the simultaneous and coordinated development
of carbon emissions, the economy and the environment. The present study took 30 provinces
(municipalities and autonomous regions directly under the Central Government) as the research
objects (Tibet, Hong Kong, Macau, and Taiwan are not included in the study due to the lack of relevant
data), and applied quantitative analysis methods, such as three-stage data envelopment analysis
(DEA) models, coupling coordination degree models and spatial analysis models, to construct a
measurement index system. On the basis of the measurement of its carbon emission efficiency, the
level of China’s coordination degree in regard to carbon emissions, economic development, and
environmental protection at both spatial and temporal dimensions was analyzed comprehensively in
order to reveal its temporal and spatial characteristics. The conclusions are as follows: (1) China’s
overall carbon emission efficiency displayed a gradual upward trend, although the overall level was
not that high. Therefore, there is still much scope for further improvement. (2) The level of China’s
coordination degree in regard to carbon emissions, economic development, and environmental
protection showed a steady yet rising trend. All provinces reached different levels of coordination
development, and there was no province that displayed a disorderly declining trend. However, the
number of provinces that reached or went beyond the intermediate level of coordination development
was quite limited. (3) The level of China’s coordination degree in regard to carbon emissions,
economic development, and environmental protection displayed obvious spatial aggregation patterns
at the provincial level, showing an apparent spatial dependence and heterogeneity. Over time, the
level of spatial aggregation patterns in regard to coordination degree tended to weaken. Overall, the
values were high in the eastern region and low in the western region, decreasing from the eastern
coastal zone towards the western inland zone, thus demonstrating a contrasting east-west spatial
distribution pattern.

Keywords: carbon emissions; economic development; environmental protection; coordination; China

1. Introduction

The dramatic increase in carbon emissions, driven by economic development, has
led to global warming and a series of environmental problems. Global sea levels have
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risen unprecedently, the diversity of species is declining sharply, and extreme weather
events that have become more frequent pose a serious threat to human beings and the
environment. The conflicts between the use of energy and the reduction in emissions, or
between economic development and environmental protection, have become increasingly
intense [1]. Therefore, the question of how to coordinate harmonious development be-
tween economic development, carbon emissions and environmental protection has become
increasingly important, as well as a research topic of great interest. Historical evidence has
proved that carbon emissions, the economy and the environment represent interconnected
parts of a complex system, and the implementation of a coordinated development of car-
bon emissions, economic development, and environmental protection is essential for the
achievement of sustainable development goals [2]. Therefore, the effective coordination of
the relationships between these three factors and how to efficiently explore the underlying
principles for change have become important issues that need to be addressed urgently by
governments and academia.

As the world’s largest developing country and second largest economy, China has
made some spectacular achievements in economic development. However, with the rapid
development of its economy, a large number of carbon emissions have inevitably been
produced, and such development comes with a high cost with regard to China’s ecologi-
cal environment. Moreover, the increase in carbon emissions intensifies the greenhouse
effect, and the conflicts between the use of energy and emission reductions in China have
become more intense [3]. President Xi Jinping has pointed out that “Clear waters and green
mountains are as valuable as mountains of gold and silver”. Economic development is no
longer just about the growth of gross domestic product (GDP). Rather, the protection of the
ecological environment has become an important indicator by which to measure the com-
prehensive development level of a nation. Therefore, the promotion of a low-carbon circular
economy and the simultaneous and coordinated development of carbon emissions, the
economy and the environment are inevitable requirements for China’s sustainable develop-
ment. Circular economy is an optimal mode to realize sustainable development. One of the
main requirements of circular economy is to realize the coordinated development of carbon
emissions, the economy and the environment. The idea of circular economy sprouted from
“spaceship economy” [4,5], and the concept was first put forward by Pearce [6]. At the end
of the 20th century, the concept of circular economy was systematically introduced into
China. Circular economy is a systematic thinking to solve the increasingly serious conflict
between economic growth and ecological environment. The idea pursues the sustainable
development of “optimal production, moderate consumption and minimum waste”. The
core goal is to make better use of resources and materials through reuse and recycling, so as
to minimize the impact on the environment [7–10]. Under the guidance of circular economy,
it is necessary to realize the coordinated development of carbon emissions, the economy
and the environment. Therefore, the coordination of the relationships between carbon
emissions, economic development, and environmental protection in China represents an
important issue that needs to be addressed urgently.

The present study took 30 provinces (municipalities and autonomous regions directly
under the Central Government) as the research objects (Tibet, Hong Kong, Macau, and Tai-
wan are not included in the study due to the lack of relevant data), and applied quantitative
analysis methods, such as three-stage data envelopment analysis (DEA) models, coupling
coordination degree models and spatial analysis models, to construct a measurement index
system. On the basis of the measurement of its carbon emission efficiency, the level of
China’s coordination degree in regard to carbon emissions, economic development, and
environmental protection at both spatial and temporal dimensions was analyzed compre-
hensively in order to reveal its temporal and spatial characteristics. On the one hand, the
present study serves as a vital complement to current research on the topic of a low-carbon
economy, both theoretically and empirically, and enriches the theoretical content of hu-
man geography and sustainable development with theoretical significance. On the other
hand, the present study can help promote the coordinated development of China’s carbon
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emissions, economic development, and environmental protection simultaneously, and thus
provide theoretical support and a decision-making basis for China to further improve its
low-carbon economy and promote the smooth implementation of the construction of an
ecological civilization and sustainable development strategies.

2. Literature Review
2.1. Research on Carbon Emission Efficiency

Currently, research on carbon emission efficiency abroad mainly focuses on the se-
lection of appropriate indexes that reflect carbon emission efficiency and the methods
for quantifying it. The selection of appropriate indexes mainly focuses on either a single
element or full elements. A single element is the ratio of carbon emissions to a certain
element. For example, Alcantara et al. [11] and Sun [12] defined carbon emission effi-
ciency as the amount of carbon emissions per unit of GDP. Mielnik et al. believed that
it is more realistic to measure the carbon emission efficiency of developing countries in
regard to the amount of carbon emissions per unit of energy consumption [13]. Ang also
thought that energy consumption intensity is the best indicator to measure a country’s
carbon emission efficiency [14]. However, the single-element method applied to measure
carbon emission efficiency is prone to certain errors and uncertainties, and thus cannot
objectively and comprehensively reflect the results of carbon emission efficiency. Con-
sequently, researchers have proposed all-element indexes to quantify carbon emission
efficiency. For example, Ramanathan proposed an assessment framework of energy con-
sumption, economic development, and carbon emissions [15]. Zaim et al. developed the
concept of a comprehensive index system for measuring carbon emission efficiency, and
provided environmental efficiency assessment indices for the Organization for Economic
Co-operation and Development (OECD) countries [16]. Zofio et al. evaluated the carbon
emission efficiency of manufacturing industries in OECD countries on the basis of DEA
models (with undesired output included) [17]. Zhou et al. considered slack variables in
their assessment framework to measure the efficiency of all-element carbon emissions,
and measured the overall carbon emission efficiency of OECD countries [18]. Currently,
the main methods used to measure carbon emission efficiency abroad include DEA and
stochastic frontier analysis (SFA). DEA has been widely used; for example, Bekun et al.
applied DEA to analyze the carbon emission efficiency in South Africa [19]. Moreover,
Liimatainen et al. used DEA to assess the carbon emission efficiency of some industries
and regions [20]. Iftikhar et al. successfully applied DEA to measure the carbon emission
efficiency of various countries [21]. However, traditional DEA has certain limitations, and
thus is unable to eliminate some uncertain elements. SFA, by contrast, can make up for the
shortcomings of the traditional DEA method, and represents another important method
for measuring carbon emission efficiency. For example, Herrala et al. measured the carbon
emission efficiency of 170 countries based on the SFA method [22] and Mohiuddin et al.
applied SFA to measure the carbon emission efficiency in Pakistan [23].

Research on carbon emission efficiency in China is consistent with the international
trend, with specific focuses on the selection of measurement indices that reflect carbon
emission efficiency and the measurement methods that can help quantify it. The selection
of appropriate indices is mainly concentrated on the question of whether to choose single-
element or all-element methods. The single-element method used to measure carbon
emission efficiency is mainly based on carbon productivity and carbon emission intensity.
For example, Wang Kang measured the carbon productivity in China at the provincial
level [24]. Zhou Sijun et al. [25], Qiaojian et al. [26], and Yin Weihua et al. [27] considered
carbon emission intensity as an important indicator reflecting the carbon emission efficiency
of the manufacturing industry or in a region. In regard to the all-element method used
to measure carbon emission efficiency, Xie Zhixiang et al. evaluated the low-carbon
economic development performance of 31 provinces in China on the basis of the all-element
Malmquist productivity index [28]. Guo Bingnan et al. applied the all-element method to
reflect the carbon emission efficiency around the region of the Yangtze River Delta [29].
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Measurement methods commonly applied to quantify carbon emission efficiency include
DEA and SFA. The former has been widely applied; for example, Li Jian et al. used DEA
to measure the carbon emission efficiency in the region of the Yangtze River Delta, Pearl
River Delta, and Beijing-Tianjin-Hebei region [30]. Dong Feng et al. and Chen Xiaohong
et al. applied DEA to quantify the efficiency of China’s regional carbon emissions [31,32].
In regard to the application of SFA, Yu Dunyong et al. used this method to analyze the
carbon emission efficiency in Tianjin [33], Wang Tianfei et al. applied SFA to quantify the
carbon emission efficiency in Shandong Province [34], and Zhou Rui et al. used SFA to
calculate and analyze the carbon emission efficiency in Xinjiang [35].

2.2. Research on the Relationship between Carbon Emissions, Economic Development, and
Environmental Protection

There are few studies on the ternary relationship between carbon emissions, eco-
nomic development, and environmental protection abroad. Instead, the focus is often
on the dual relationship between carbon emissions and economic development, or be-
tween economic development and environmental protection, with a specific focus on the
selection of appropriate measurement models. Commonly used measurement models
include neoclassical growth models, endogenous growth models, input-output models,
environmental computable general equilibrium (CGE) models, environmental Kuznets
curve (EKC) models, and comprehensive assessment models [36–38]. For example, Gross-
man et al. proposed an inverted U-shaped relationship between carbon dioxide emissions
and economic growth [39]. Tucker analyzed the relationships between per capita carbon
emissions and per capita GDP across 137 countries [40]. Ramos et al. analyzed the level
of the coordinated development of the economy and the environment in Scotland [41].
Ramanathan studied the relationship between global CO2 emissions and GDP growth [42],
and Bildirici et al. studied the relationship between CO2 emissions and economic growth
across various countries [43].

In China, research on the relationship between carbon emissions, economic develop-
ment, and environmental protection mainly focuses on binary relationship analysis and
the selection of appropriate measurement models, including EKC, decoupling models, and
coupling coordination models. For example, Wang Jian et al. used the EKC to analyze the
relationship between carbon emissions and economic development in the Yangtze River
Economic Zone [44]. Fan Dan quantified the EKC between carbon dioxide emissions and
economic growth in China [45]. Sun Yefei et al. analyzed the decoupling relationship
between China’s economic development and carbon emissions [46]. Huang Yusheng et al.
quantified the relationship between China’s carbon emissions and environmental protec-
tion by measuring the carbon carrying capacity [47]. By contrast, domestic research on
the ternary relationship between carbon emissions, economic development, and environ-
mental protection started late, with relatively few research results. Among the few related
studies, the research focus is on the aspect of the measurement and quantification of the
coordination degree of the 3E (energy-economy-environment) system. For example, Huang
Xinhuan et al. analyzed the coordination degree of China’s 3E system [48], Cao Ruirui
et al. quantified the coordination degree of Shanghai’s 3E system [49] and Liu Qian et al.
analyzed the coordination degree of the 3E system in Guangdong province [50].

Overall, although related research has achieved some fruitful results, a number of
obvious shortcomings still persist. Firstly, research on the ternary coordination relationship
between carbon emissions, economic development, and environmental protection is still
lacking, and relevant research on the basis of the core perspective of carbon emissions is
especially rare. Secondly, judged from the perspective of research ideas and methods, and
given the fact that geographic information system (GIS) technology and spatial analysis
models keep advancing, the number of studies that address the three-dimensional coordi-
nation relationship between carbon emissions, economic development, and environmental
protection, and that consider spatial and temporal aspects explicitly and simultaneously, is
surprisingly limited. The present study should be able to make up for the lack of knowledge
referred to above.
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3. Data and Method
3.1. Index System and Data Sources

Having summarized and integrated the existing research results [51–53] and consid-
ered China’s actual situation, the present study develops a measurement index system to
quantify carbon emission efficiency from three aspects; namely, input variables, output
variables, and external environmental variables (Table 1). Additionally, through following
the principles of comprehensiveness, effectiveness, systematicness, representativeness, and
independence and by analyzing the existing research results [54–56], a three-dimensional
coordination degree assessment index system is further developed, which reflects the rela-
tionship between carbon emissions, economic development, and environmental protection
on the basis of carbon emission efficiency (Table 2). The present study uses 2009–2018 as
the research period. The original data come from the “China Statistical Yearbook”, “China
Environmental Statistics Yearbook”, “China Energy Statistical Yearbook”, and “China
Employment Statistical Yearbook”, the Statistical Yearbook of all provinces, with munici-
palities and autonomous regions included, the National Economic and Social Development
Statistical Bulletin, Environmental Status Bulletin, and other relevant statistical materials
and literature.

Table 1. The measurement index system of carbon emission efficiency.

Target Layer Criterion Layer Index Layer

C
arbon

em
ission

efficiency
Input variables

Number of employees

Capital stock

The amount of energy consumption

Output variables
GDP

The amount of CO2 emissions

External environmental variables

Energy consumption per
ten thousand GDP

The total import and export volume
accounting for the proportion of GDP

The added value of the secondary
industry accounting for the proportion

of GDP

The fiscal expenditure accounting for the
proportion of GDP

3.2. Research Method

As shown in Figure 1, three-stage DEA model is used to calculate carbon emission effi-
ciency. Then, the coupling coordination degree model is used to calculate the coordination
degree of carbon emissions, economic development, and environmental protection. At last,
the spatial pattern of coordination degree is analyzed by the global spatial autocorrelation
model and hot spot analysis model.



Appl. Sci. 2021, 11, 1750 6 of 20

Table 2. The assessment index system of the coordination degree in regard to carbon emissions,
economic development, and environmental protection.

Target Layer Criterion Layer Index Layer

Economic
development

Economic scale

GDP per capita
The per capita disposable income of urban

residents
The per capita disposable income of rural

residents
The per capita investment in fixed assets

The per capita retail sales of consumer goods

Growth
potential

Engel coefficients of urban residents
The added value of the tertiary industry as a

proportion of GDP
Fiscal expenditure per capita

Environmental
protection

Environmental pressure

The amount of wastewater discharge
The amount of exhaust emissions

The average temperature
The amount of solid waste discharge

Environmental
management

Wastewater discharge compliance rate
Comprehensive utilization rate of solid waste

Exhaust emission compliance rate
Environmental protection investment as a

proportion of GDP
Vegetation coverage

Carbon
emissions

Current status of carbon
emissions

Carbon emissions per capita
Carbon productivity

Carbon emission intensity
Carbon emission density

Carbon emission efficiency
Comprehensive efficiency
Pure technical efficiency

Scale efficiency

3.2.1. Three-Stage DEA Model

The three-stage DEA model has three stages, as its name suggests. The environmental
conditions of the samples are different, and the management level and technology are also
different, which will lead to the deviation of the results. It is believed that the main envi-
ronmental factors are energy efficiency, dependence on foreign trade, industrial structure
and government intervention. Compared with the traditional DEA, the three-stage DEA
model can effectively remove the influence of environmental variables and random errors,
making the measurement results more accurate and objective [57].

The first stage: the slacks-based measure (SBM)-DEA model is as follows:

ρ = min
1− 1

N ∑N
n=1

Sx
n

xt
kn

1+ 1
M+1

(
∑M

m=1
S

y
m

y
y
km

+∑L
i=1

Sb
i

bt
ki

)

s.t.
k
∑

k=1,k 6=j
zt

kxt
kn + Sx

n = xt
kn, n = 1 . . . . . . N

k
∑

k=1,k 6=j
zt

kyt
kn − Sy

m = yt
km, m = 1 . . . . . . M

k
∑

k=1,k 6=j
zt

kbt
ki + Sb

i = bt
ki, i = 1 . . . . . . I

zt
k ≥ 0, Sx

n ≥ 0, Sy
m ≥ 0, Sb

i ≥ 0, k = 1 . . . . . . K

(1)
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In this formula: ρ is the efficiency value, N is the number of inputs, M is the num-
ber of expected outputs,

(
Sx

n, Sy
m, Sb

i

)
represent the slack variables of input and output,(

xt
kn, yt

km, bt
ki
)

is the input-output value of the k-th production unit within the t-th period,
and zt

k represents the input-output weight, with 0 < ρ ≤ 1. When ρ = 1, the production
unit is fully effective, but when ρ < 1, there is an efficiency loss in the production unit.
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The second stage: an SFA regression model is developed to decompose the slack
variables into three independent variables, namely, environmental factors, random factors,
and management inefficiency. The function model of SFA is as follows:

Sni = fn(Zi,βn) + Vni + Uni
n = 1, 2, . . . . . . N.; i = 1, 2, . . . I

(2)

In this formula: the slack variable, Sni, is the i-th decision-making unit of the n-th input.
Zi = (Z1i, Z2i, . . . . . . , Zki) represent K environmental variables. fn(Zi,βn) reflect the influ-
ence of environmental variables on the slack variable Sni; (Vni + Uni) represent mixed error
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terms, and Vni represents a random interference term. Uni means that the management has
no performance term, and Vni, Uni means they are independent of each other.

The new input value is quantified in a homogeneous environment:

X∗ni = Xni + [max(Ziβ
n)− Ziβ

n] + [max(Vni)−Vni]
n = 1, 2, . . . . . . N.; i = 1, 2, . . . . . . I

(3)

In this formula: X∗ni is the new input value, Xni is the original input value, and
[max(Ziβ

n)− Ziβ
n], [max(Vni)−Vni] are the adjustment items.

The third stage: the original input data are replaced by the adjusted input data from
the second stage, with the operation process of the first stage repeated.

3.2.2. Coupling Coordination Degree Model

Calculate the ratio coefficient Pij of the index xij:

Pij =
xij

∑m
i=1 xij

(4)

Calculate the entropy value ej of the index:

ej = −k
m

∑
i=1

pij ln
(

pij

)
, k =

1
ln(m)

(5)

Calculate the information entropy redundancy dj:

dj = 1− ej (6)

Calculate the weight of the index:

wj =
dj

∑n
j=1 dj

(7)

Calculate the comprehensive assessment index of carbon emissions, economic devel-
opment, and environmental protection, respectively [58,59]. The formula is as follows:

Ui =
n

∑
j=1

wjxij
′ (8)

In this formula: wj is the weight of each index, xij
′ is the standardized value of each index,

and Ui represents the comprehensive assessment index of carbon emissions, economic
development, and environmental protection, respectively.

The coupling degree and coordination degree are quantified, respectively, using the
following formula [60]:

C =
{
(X× Y× Z)/[(X + Y + Z)/3)]3

}1/3
(9)

D =
√

C× T, where T = αX + βY + γZ (10)

In this formula: D is the coordination degree between carbon emissions, economic devel-
opment, and environmental protection. C is the coupling degree between the three factors.
X, Y, and Z represent the comprehensive assessment index of carbon emissions, economic
development, and environmental protection, respectively. T is the comprehensive assess-
ment index. α, β, and γ are undetermined coefficients. Based on the existing research
literature, carbon emissions, economic development, and environmental protection are
equally important [51,61,62]. Given that carbon emissions, economic development, and
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environmental protection are of equal importance, the value is set at 1/3 here for each
undetermined coefficient.

In reference to the classification method of the coordination degree in the relevant
literature, we divide the coordination degree into ten levels [63] (Table 3).

Table 3. The classification of the coordination degree.

Type The Coordination Degree Type The Coordination Degree

Extremely imbalanced
recession [0, 0.1) Very low coordination

development [0.5, 0.6)

Severely imbalanced
recession [0.1, 0.2) Primitive coordination

development [0.6, 0.7)

Intermediate imbalanced
recession [0.2, 0.3) Intermediate coordination

development [0.7, 0.8)

Mild imbalanced
recession [0.3, 0.4) Good coordination

development [0.8, 0.9)

Near imbalanced
recession [0.4, 0.5) Excellent coordination

development [0.9, 1]

3.2.3. Global Spatial Autocorrelation

The global spatial autocorrelation can be applied to test whether the regional coordi-
nation degree in regard to carbon emissions, economic development, and environmental
protection displays some dispersion or aggregation patterns statistically. The formula is as
follows [64–67]:

I =
n ∑n

i=1 ∑n
j=1 Wij

(
Yi − Y

)(
Yj − Y

)
∑n

i=1 ∑n
j=1 Wij ∑n

i=1
(
Yi − Y

)2 (11)

In which I is the global Moran’s I index, n is the number of evaluation objects, and Y is the
average of the sample values of all evaluation objects. Yi and Yj represent the sample values
of the i-th and j-th evaluation objects, respectively, and Wij is the spatial weight matrix.

In order to further determine whether there is a spatial autocorrelation relationship,
the significance test of I is required. The test formula is:

Z =
I − E(I)√

Var(I)
(12)

In which Z is the global Moran’s I test value, E(I) is the expectation of I, and Var(I) is the
variance of I.

3.2.4. Hot Spot Analysis (Partial Getis-Ord G*index)

The hot spot analysis method is applied to reflect the local spatial dependence and
spatial heterogeneity in regard to the coordination degree of regional carbon emissions, eco-
nomic development, and environmental protection, and to explore the characteristics and
principles of the local spatial autocorrelation. The calculation formula is as follows [68,69]:

G∗i =
∑n

j=1 Wijxj

∑n
j=1 xj

(j 6= i) (13)

In which xj is the sample value of the j-th evaluation object, n is the number of evaluation
objects, and Wij is the spatial weight matrix. If the value of G∗i is significantly positive, it
suggests that the value around area i is relatively higher, and such an area represents a hot
spot. Otherwise, the area represents a cold spot.



Appl. Sci. 2021, 11, 1750 10 of 20

4. Results and Discussions
4.1. Measurement Analysis of Carbon Emissions

It can be seen from Table 4 that for the first stage, the overall national carbon emission
efficiency was 0.514, out of which 10 provinces had higher levels beyond the national
average, and the remaining provinces had lower levels than the national average. This
finding clearly shows that the overall carbon emission efficiency in China remains low,
and the situation regarding energy conservation and emission reduction is still suboptimal.
The national average of the pure technical efficiency of carbon emissions was 0.608, and
provinces with a higher efficiency include Beijing, Guangdong, and Hainan. The average
scale efficiency of national carbon emissions is 0.865. Apart from provinces such as Qinghai,
Ningxia, and Hainan, which have a lower scale efficiency, the scale efficiency of the other
provinces is generally higher. Compared with the first stage, the national average level of
comprehensive carbon emissions in the third stage dropped slightly, with an average value
of 0.500, and the differences in comprehensive carbon emissions across different provinces
increased. Zhejiang, Guangdong, Jiangsu, and other provinces with high efficiency levels
further improved their efficiency, whereas the efficiency of Ningxia, Qinghai, and other
provinces with low efficiency levels further decreased. Out of these, the overall carbon
emission efficiency of 17 provinces was higher than the national average, and that of
13 provinces was lower than the national average. The average value of pure technical
efficiency of national carbon emissions was 0.778, which displayed an increasing trend
when compared to the first stage. Provinces with a higher efficiency included Guangdong,
Hainan, and Zhejiang. The national average carbon emission scale efficiency was 0.638,
which displayed a decreasing trend when compared to the first stage. Qinghai, Ningxia,
Hainan, and other provinces had a lower scale efficiency, whereas the rest of the provinces
generally displayed a higher scale efficiency.

It can be seen from Table 5 that between 2009 and 2018, the comprehensive carbon
emission efficiency of Jiangsu, Zhejiang, Beijing, and other provinces showed a rapid
rise with a high magnitude of change. The comprehensive carbon emission efficiency of
Guangdong, Heilongjiang, and Liaoning displayed a fluctuating trend, whereas the rest
of the provinces generally showed a slow upward trend. The national average carbon
emission efficiency gradually increased, and the magnitude of the increase was about 41%.
Specifically, Jiangsu’s comprehensive carbon emission efficiency value in 2017 and 2018
was 1, which was at the forefront of the entire production, although it did not reach such an
effective state in the remaining years. In 2018, Beijing’s overall carbon emission efficiency
value was 1, which was also at the forefront of the entire production. Similarly, Beijing’s
carbon emission efficiency in other years was relatively low. Guangdong’s comprehensive
carbon emission efficiency value in 2011 and 2018 was 1, which was again at the forefront of
the entire production. Although the comprehensive efficiency value of the remaining years
did not reach 1, it was relatively high. By contrast, the overall carbon emission efficiency of
the remaining provinces did not reach the aforementioned frontier production level. It can
be seen that the provinces with a low overall carbon emission efficiency (e.g., lower than
the national average) throughout the year were mainly distributed around economically
underdeveloped areas within the central and western regions.
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Table 4. Carbon emission efficiency during China’s first and third stages (2009–2018 annual average values).

Province

The First Stage DEA Measurement Results The Third Stage DEA Measurement Results
Comprehensive

Efficiency
(TE)

Pure Technical
Efficiency

(PTE)

Scale
Efficiency

(SE)

Comprehensive
Efficiency

(TE)

Pure Technical
Efficiency

(PTE)

Scale
Efficiency

(SE)

Heilongjiang 0.459 0.512 0.898 0.425 0.691 0.617
Jilin 0.433 0.510 0.849 0.453 0.877 0.516

Liaoning 0.473 0.489 0.967 0.503 0.705 0.712
Inner Mongolia 0.439 0.492 0.894 0.405 0.678 0.597

Shaanxi 0.474 0.518 0.914 0.503 0.812 0.617
Ningxia 0.329 0.746 0.444 0.161 0.673 0.240
Gansu 0.351 0.458 0.766 0.310 0.741 0.419

Xinjiang 0.406 0.515 0.791 0.312 0.641 0.491
Qinghai 0.320 0.964 0.332 0.153 0.827 0.191
Sichuan 0.558 0.576 0.969 0.608 0.772 0.784

Chongqing 0.540 0.610 0.882 0.511 0.893 0.572
Guizhou 0.415 0.490 0.844 0.356 0.682 0.517
Yunnan 0.381 0.428 0.890 0.375 0.649 0.578
Guangxi 0.432 0.475 0.910 0.503 0.835 0.603
Anhui 0.392 0.424 0.925 0.437 0.678 0.645

Zhejiang 0.707 0.757 0.939 0.759 0.918 0.824
Fujian 0.489 0.511 0.959 0.538 0.754 0.715

Guangdong 0.870 0.921 0.945 0.929 0.951 0.976
Hainan 0.536 0.944 0.570 0.303 0.931 0.327
Beijing 0.821 0.874 0.935 0.680 0.873 0.768
Tianjin 0.637 0.745 0.857 0.498 0.875 0.570
Hebei 0.442 0.450 0.982 0.503 0.651 0.774
Shanxi 0.400 0.454 0.881 0.349 0.599 0.582

Shanghai 0.749 0.784 0.953 0.562 0.765 0.732
Jiangsu 0.726 0.785 0.930 0.818 0.876 0.930
Jiangxi 0.549 0.599 0.915 0.567 0.935 0.608

Shandong 0.533 0.583 0.918 0.655 0.714 0.916
Henan 0.428 0.446 0.962 0.524 0.641 0.816
Hubei 0.564 0.585 0.965 0.649 0.859 0.753
Hunan 0.571 0.590 0.968 0.638 0.842 0.754

Average 0.514 0.608 0.865 0.500 0.778 0.638

4.2. Measurement Analysis of the Coordination Degree

China’s coordination degree in regard to carbon emissions, economic development,
and environmental protection generally displayed a slow upward trend. The magnitude
of such an increase was relatively small, with the coordination degree generally display-
ing a steady rising trend. The average coordination degree was 0.669, suggesting that
such a coordination development remains at the primitive level (Table 6). Specifically,
the coordination degree decreased slightly between 2013 and 2015, suggesting a slight
decrease in the level of coordination development. From the perspective of coordination,
the coordination degree of most provinces displayed a slow upward trend. Only a few
provinces showed a slight declining trend, suggesting that the coordination level of most
provinces generally exhibited a steady rising trend. According to the average value of
the coordination degree, only Beijing has achieved a good level of such a coordination
development. Seven provinces, including Jilin, Zhejiang, and Guangdong, have reached
the intermediate level of coordination development, and they are also in the first echelon
of the entire country. Seventeen provinces, including Heilongjiang, Liaoning, and Inner
Mongolia, are at the primitive level of coordination development. Xinjiang, Guizhou,
Yunnan, and the other five provinces are at the lowest level of coordination development.
For the present study, there are no provinces in a state of dysregulation or recession.
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Table 5. The comprehensive carbon emission efficiency during China’s third stage (2009–2018).

Province 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Average

Heilongjiang 0.427 0.405 0.444 0.437 0.439 0.433 0.425 0.42 0.415 0.406 0.425
Jilin 0.368 0.387 0.422 0.444 0.47 0.482 0.483 0.497 0.496 0.477 0.453

Liaoning 0.424 0.461 0.5 0.516 0.552 0.565 0.591 0.451 0.471 0.498 0.503
Beijing 0.47 0.508 0.532 0.56 0.614 0.646 0.702 0.839 0.925 1 0.680
Tianjin 0.413 0.43 0.46 0.472 0.494 0.505 0.511 0.547 0.576 0.574 0.498
Hebei 0.469 0.481 0.518 0.511 0.508 0.512 0.491 0.505 0.513 0.524 0.503

Shandong 0.541 0.566 0.6 0.615 0.662 0.677 0.682 0.709 0.742 0.759 0.655
Shanghai 0.453 0.485 0.513 0.522 0.553 0.578 0.569 0.613 0.656 0.682 0.562
Jiangsu 0.615 0.671 0.728 0.752 0.795 0.832 0.864 0.93 1 1 0.818

Zhejiang 0.59 0.658 0.712 0.736 0.753 0.775 0.782 0.821 0.86 0.901 0.759
Guangdong 0.834 0.94 1 0.964 0.939 0.883 0.859 0.91 0.962 1 0.929

Hainan 0.238 0.258 0.283 0.291 0.303 0.302 0.294 0.334 0.362 0.37 0.303
Fujian 0.471 0.501 0.521 0.526 0.53 0.532 0.533 0.556 0.588 0.625 0.538
Shanxi 0.287 0.332 0.367 0.357 0.346 0.328 0.333 0.337 0.395 0.412 0.349

Inner Mongolia 0.364 0.385 0.421 0.423 0.442 0.439 0.416 0.41 0.364 0.385 0.405
Shaanxi 0.383 0.431 0.457 0.493 0.513 0.523 0.497 0.528 0.571 0.632 0.503
Henan 0.459 0.479 0.498 0.499 0.518 0.519 0.519 0.546 0.587 0.614 0.524
Hubei 0.482 0.541 0.642 0.656 0.687 0.686 0.646 0.685 0.715 0.749 0.649
Hunan 0.498 0.538 0.589 0.599 0.608 0.663 0.674 0.708 0.74 0.765 0.638
Jiangxi 0.438 0.492 0.548 0.552 0.568 0.572 0.565 0.61 0.636 0.685 0.567
Anhui 0.36 0.406 0.449 0.439 0.44 0.444 0.445 0.463 0.44 0.486 0.437

Sichuan 0.475 0.504 0.555 0.576 0.599 0.611 0.62 0.661 0.716 0.766 0.608
Chongqing 0.371 0.39 0.426 0.451 0.494 0.512 0.543 0.603 0.646 0.674 0.511

Guizhou 0.255 0.263 0.284 0.302 0.338 0.359 0.385 0.413 0.468 0.493 0.356
Yunnan 0.323 0.313 0.347 0.358 0.382 0.384 0.386 0.401 0.424 0.431 0.375
Guangxi 0.445 0.46 0.492 0.493 0.502 0.509 0.515 0.54 0.524 0.548 0.503
Ningxia 0.122 0.138 0.15 0.156 0.162 0.163 0.163 0.176 0.183 0.195 0.161
Gansu 0.263 0.286 0.317 0.324 0.333 0.33 0.301 0.306 0.306 0.328 0.31

Xinjiang 0.259 0.288 0.307 0.313 0.325 0.326 0.317 0.311 0.331 0.346 0.312
Qinghai 0.108 0.13 0.144 0.151 0.158 0.159 0.158 0.176 0.171 0.175 0.153
Average 0.407 0.438 0.474 0.483 0.501 0.508 0.508 0.534 0.559 0.583 0.500

Table 6. The coordination degree in regard to carbon emissions, economic development, and environmental protection.

Province 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Average

Heilongjiang 0.672 0.675 0.678 0.686 0.705 0.689 0.661 0.668 0.662 0.662 0.676
Jilin 0.693 0.704 0.703 0.720 0.718 0.733 0.723 0.721 0.723 0.709 0.715

Liaoning 0.677 0.706 0.708 0.725 0.735 0.753 0.685 0.654 0.639 0.639 0.692
Inner Mongolia 0.681 0.685 0.689 0.694 0.691 0.699 0.664 0.670 0.665 0.617 0.676

Shaanxi 0.652 0.661 0.664 0.682 0.669 0.646 0.631 0.666 0.679 0.697 0.665
Ningxia 0.634 0.645 0.641 0.644 0.636 0.645 0.619 0.633 0.622 0.636 0.635
Gansu 0.600 0.618 0.626 0.626 0.605 0.603 0.595 0.629 0.589 0.585 0.607

Xinjiang 0.568 0.594 0.580 0.590 0.592 0.594 0.577 0.583 0.585 0.569 0.583
Qinghai 0.578 0.590 0.595 0.609 0.617 0.611 0.588 0.605 0.614 0.607 0.601
Sichuan 0.588 0.602 0.588 0.609 0.613 0.620 0.618 0.654 0.653 0.674 0.622

Chongqing 0.673 0.688 0.683 0.688 0.683 0.675 0.695 0.698 0.715 0.718 0.692
Guizhou 0.533 0.552 0.560 0.576 0.589 0.551 0.560 0.598 0.608 0.622 0.575
Yunnan 0.547 0.578 0.582 0.590 0.589 0.566 0.573 0.607 0.614 0.619 0.586
Guangxi 0.611 0.646 0.632 0.640 0.631 0.623 0.627 0.638 0.637 0.650 0.634
Anhui 0.574 0.608 0.592 0.600 0.586 0.547 0.551 0.591 0.596 0.617 0.586

Zhejiang 0.752 0.757 0.768 0.774 0.775 0.778 0.777 0.783 0.773 0.770 0.771
Fujian 0.694 0.710 0.717 0.746 0.743 0.743 0.737 0.744 0.753 0.747 0.733

Guangdong 0.697 0.713 0.710 0.714 0.687 0.678 0.684 0.707 0.712 0.703 0.701
Hainan 0.612 0.632 0.632 0.641 0.650 0.651 0.647 0.655 0.671 0.666 0.646
Beijing 0.853 0.851 0.849 0.849 0.854 0.853 0.868 0.880 0.895 0.903 0.865
Tianjin 0.795 0.789 0.788 0.787 0.781 0.786 0.789 0.791 0.778 0.777 0.786
Hebei 0.640 0.648 0.624 0.625 0.621 0.614 0.595 0.606 0.578 0.583 0.613
Shanxi 0.573 0.595 0.583 0.598 0.605 0.606 0.580 0.592 0.572 0.593 0.590

Shanghai 0.777 0.777 0.770 0.766 0.760 0.766 0.758 0.768 0.769 0.763 0.767
Jiangsu 0.720 0.730 0.721 0.738 0.736 0.739 0.739 0.732 0.744 0.730 0.733
Jiangxi 0.620 0.644 0.637 0.642 0.634 0.618 0.622 0.658 0.666 0.670 0.641

Shandong 0.690 0.699 0.689 0.689 0.692 0.688 0.660 0.662 0.673 0.667 0.681
Henan 0.634 0.647 0.635 0.642 0.636 0.630 0.616 0.638 0.636 0.643 0.636
Hubei 0.650 0.680 0.668 0.688 0.693 0.713 0.704 0.715 0.715 0.717 0.694
Hunan 0.639 0.663 0.665 0.672 0.675 0.680 0.678 0.698 0.710 0.712 0.679

Average 0.654 0.670 0.666 0.675 0.673 0.670 0.661 0.675 0.675 0.675 0.669
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It can be seen from Figure 2 that in 2009, only five provinces, including Zhejiang,
Beijing, and Shanghai, reached or went beyond the intermediate level of coordination
development. Eight provinces, including Xinjiang, Qinghai, and Guizhou, were at the very
low coordination level of development, and the rest of the provinces were at the primitive
level of coordination development. In 2012, the number of provinces that reached or went
beyond the intermediate level of coordination development increased to nine, and the
newly added provinces included Guangdong, Fujian, Jilin, and Liaoning. By contrast, the
number of provinces at the very low coordination development stage was reduced to five
(e.g., Xinjiang, Yunnan, and Shanxi), and the rest of the provinces were at the primitive
level of coordination development. In 2015, there were eight provinces at the intermediate
or higher level of coordination development, among which Liaoning and Guangdong
were withdrawn while Hubei was added. The number of provinces with a very low
level of coordination development increased to eight, and the newly added provinces
included Gansu, Qinghai, and Hebei. The remaining provinces were at the primitive level
of coordination development. In 2018, eleven provinces, including Beijing, Tianjin, and
Zhejiang, reached the intermediate or higher level of coordination development, of which
Beijing reached the level of high-quality coordination development. By contrast, Gansu,
Xinjiang, Hebei, and Shanxi were still at the very low coordination development stage. The
rest of the provinces were all at the primitive level of coordination development. Overall,
provinces with a high level of coordination development in terms of carbon emissions,
economic development, and environmental protection were mainly distributed around the
eastern coastal regions, and provinces with a low level of coordination development were
mainly distributed in the underdeveloped areas within the central and western regions,
with an increase in the inter-regional gap.
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4.3. Spatial Pattern Analysis of the Coordination Degree
4.3.1. Global Spatial Autocorrelation Analysis

The global Moran’s I values of the coordination degree in regard to China’s carbon
emissions, economic development, and environmental protection between 2009 and 2018
(Table 7) were calculated. Such values were all positive over the years, with the z-test values
greater than the test critical value of 2.58, and were statistically significant at the 1% level,
with the statistical significance passing the 99% confidence level. It can be seen that the
level of China’s coordination degree in terms of carbon emissions, economic development,
and environmental protection displayed a positive spatial autocorrelation, with certain
aggregation patterns found at the provincial level. In other words, China’s coordination
degree was not randomly distributed. Rather, regions with a high or low degree generally
exhibited obvious spatial aggregation patterns. Specifically, provinces with a relatively
high level of coordination degree tended to be adjacent to each other, and provinces with
a relatively low level of coordination degree tended to be neighbors. Judging from the
change trend of the global Moran’s I index, the overall index shows a downward trend,
suggesting that the degree of spatial autocorrelation kept decreasing. Or, in other words,
the degree of spatial aggregation and distribution of provinces with high or low levels of
coordination has weakened to a certain extent.

Table 7. Global Moran’s I Index of the coordination degree in regard to carbon emissions, economic
development, and environmental protection.

Year Moran’s I Z Value P Value

2009 0.423632 6.034898 0.000000
2010 0.402181 5.753021 0.000000
2011 0.369365 5.325545 0.000000
2012 0.346711 5.025579 0.000010
2013 0.353462 5.095533 0.000000
2014 0.344581 4.975684 0.000001
2015 0.341490 4.940882 0.000001
2016 0.312948 4.574658 0.000005
2017 0.266098 3.951092 0.000078
2018 0.272729 4.041545 0.000053

4.3.2. Local Spatial Autocorrelation Analysis

The present study selected the years 2009, 2012, 2015, and 2018 to further conduct
a local spatial autocorrelation analysis in terms of the level of China’s coordination de-
gree regarding carbon emissions, economic development, and environmental protection,
and we also calculated the local Getis-Ord G* index to reflect the coordination degree.
China’s provinces were categorized into seven types of regions, including 99% hot spot
aggregation regions, 95% hot spot aggregation regions, 90% hot spot aggregation regions,
non-significant regions, 90% cold spot aggregation regions, 95% cold spot aggregation
regions, and 99% cold spot aggregation regions (Figure 3).

In 2009, Shanghai, Liaoning, and Jiangsu belonged to the category of 99% hot spot
aggregation regions, whereas Hebei, Beijing, and Shandong belonged to the category of
95% hot spot aggregation regions. There were no provinces belonging to the category
of 90% hot spot aggregation regions. By contrast, Qinghai and Sichuan belonged to the
category of 99% cold spot aggregation regions, Gansu, Chongqing, and Yunnan belonged
to the category of 95% cold spot aggregation regions, Xinjiang belonged to the category of
90% cold spot aggregation regions, and the rest of the provinces belonged to the category
of non-significant regions. The number of provinces belonging to the category of hot spot
aggregation regions accounted for 33% of the total, those belonging to the category of
cold spot aggregation regions accounted for 20% of the total, and the number of those
belonging to the category of hot spot aggregation regions was higher than those belonging
to the category of cold spot aggregation regions. In 2012, Shanghai, Liaoning, and Jiangsu
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evolved into the category of 95% hot spot aggregation regions, although the spatial scope
of the hot spot aggregation regions remained the same as that for the original provinces.
Xinjiang evolved into the category of 95% cold spot aggregation regions, and Chongqing
evolved into the category of 90% cold spot aggregation regions, although the overall spatial
scope of the cold spot aggregation regions remained the same as that for the original
provinces. In 2015, Inner Mongolia was withdrawn from the list of hot spot aggregation
regions, and some provinces such as Hebei and Beijing evolved into the category of 90% hot
spot aggregation regions. The spatial scope of the hot spot aggregation regions showed a
significant contraction trend, and the number of relevant provinces kept decreasing. Gansu
evolved into the category of 99% cold spot aggregation regions, and Xinjiang and Yunnan
evolved into the category of 90% cold spot aggregation regions. However, the spatial scope
of cold spot aggregation regions remained the same as that for the original provinces. In
2018, Hebei, Beijing, and Liaoning were withdrawn from the list of hot spot aggregation
regions. The spatial scope of hot spot aggregation regions further shrank, and the number
of relevant provinces decreased rapidly. Only four provinces, namely, Anhui, Jiangsu,
Shanghai and Zhejiang, belonged to the category of hot spot aggregation regions. Yunnan
and Chongqing were withdrawn from the list of cold spot aggregation regions, and the
spatial scope of cold spot aggregation regions also showed a significantly shrinking trend,
as the number of relevant provinces kept decreasing. Only Qinghai, Gansu, Sichuan and
Xinjiang remained in the category of cold spot aggregation regions.
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Overall, the level of China’s coordination degree in regard to carbon emissions, eco-
nomic development, and environmental protection across all provinces exhibited spatial
aggregation patterns, with an obvious spatial dependence and heterogeneity. As time went
by, both hot spot aggregation regions and cold spot aggregation regions generally shrank,
suggesting that the spatial aggregations and distributions of high-value and low-value
provinces in regard to coordination degree tended to weaken, which is in line with previous
analysis results based on the global Moran’s I index. Hot spot aggregation regions were
mainly distributed along the eastern coastal area, while cold spot aggregation regions were
mainly distributed along the western inland areas, developing a transition path from hot
spot aggregation regions in the east towards cold spot aggregation regions in the west. It
can be seen that the level of China’s coordination degree in regard to carbon emissions,
economic development, and environmental protection is generally higher in the east and
lower in the west, exhibiting a decreasing trend from the east coast towards the west inland,
and demonstrating a contrasting east-west spatial distribution pattern.

4.4. Discussions

In recent years, other scholars have also conducted similar research for the carbon
emission efficiency in China. For instance, Wang et al. found that urban carbon emission
performance in China increased steadily from 1992–2013. However, the overall level of
carbon emission performance remains low, and the spatial pattern of urban carbon emission
performance in China can be described as “high in the south and low in the north” [70].
Sun et al. found that the steady improvement for China’s carbon emission efficiency is
obvious, and there is an inverted U-shaped relationship between urbanization and carbon
emission efficiency [71]. Li et al. took the Yangtze River Delta, the Pearl River Delta and
the Beijing-Tianjin-Hebei Region as research objects, and found that regional industrial
structure, energy efficiency, FDI(Foreign Direct Investment) dependence, and urbanization
have a significant impact on the carbon emission efficiency [30].

In recent years, other scholars have also conducted similar research for the relationship
of carbon emissions, economic development, and environmental protection. However, such
studies remain limited, and some related studies focus on the coordination degree of the
3E (energy-economy-environment) system. For instance, Zhang found that the coupling
of carbon emissions, economic development, and environmental protection in Liaoning
Province is still at a low level [72]. Hu et al. found that economic growth is related to the
environmental input, and there is an inverted U-shape relationship between the environ-
mental input and carbon emissions [73]. Su et al. found that the coordination level of the 3E
system is not optimistic, and there are 26 provinces at different levels of maladjustment in
China [74]. Yan et al. found that China’s 3E system is in an intermediate coordination state,
and that the contradiction between energy consumption and environmental protection is
the biggest obstacle to the overall coordination of the 3E system [75].

Studies about spatial pattern analysis of the coordination degree of carbon emissions,
economic development, and environmental protection are still lacking, and some related
studies focus on the spatial pattern of the coordination degree of the 3E system. For
instance, Wang et al. found that the spatial pattern of the coordination degree of China’s
3E system shows a positive spatial correlation on the global perspective [76]. Luo et al.
analyzed the spatial distribution of the coordination degree of China’s 3E system, and
found the spatial pattern of the coordination degree from the eastern coastal areas to the
surrounding provinces [77]. Su et al. found that the spatial correlation of the coordination
level distribution of China’s 3E system is weak, and the spatial distribution lacks the
obvious positive effect of spatial agglomeration [78].

5. Conclusions

Between 2009 and 2018, China’s overall carbon emission efficiency displayed a gradual
upward trend, although the overall level was not that high. Therefore, there is still much
scope for further improvement. For most of the provinces, the overall carbon emission
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efficiency displayed an upward trend, although a few provinces showed fluctuations,
and a few provinces even exhibited a downward trend. The overall carbon emission
efficiency varied significantly across the provinces, and the gap among these provinces kept
increasing. Provinces with low levels of carbon emission efficiency, especially those with
lower levels than the national average level throughout the years, were mainly distributed
along economically underdeveloped areas within the central and western regions, whereas
provinces with high levels of carbon emission efficiency were mainly found in economically
developed areas within the eastern coast regions.

Between 2009 and 2018, the level of China’s coordination degree in regard to carbon
emissions, economic development, and environmental protection showed a steady yet
rising trend. For most provinces, the level of coordination degree kept increasing slowly,
although a limited number of provinces showed a slightly declining trend. All provinces
reached different levels of coordination development, and there was no province that
displayed a disorderly declining trend. However, the number of provinces that reached or
went beyond the intermediate level of coordination development was quite limited. Indeed,
most provinces were at the primitive level of coordination development or at the very low
level of coordination development. Generally, areas with higher levels of coordination
development were mainly distributed along the eastern coastal regions, and areas with
lower levels of coordination development were mainly distributed along underdeveloped
areas within the central and western regions. Moreover, the gap between such regions
kept increasing.

Between 2009 and 2018, the level of China’s coordination degree in regard to carbon
emissions, economic development, and environmental protection displayed obvious spatial
aggregation patterns at the provincial level, showing an apparent spatial dependence and
heterogeneity. Provinces with a relatively high level of coordination degree tended to be
adjacent to each other, and provinces with a relatively low level of coordination degree
tended to be neighbors. Over time, the level of spatial aggregation patterns in regard to
coordination degree tended to weaken. Provinces displaying hot spot aggregation patterns
with high levels of coordination degree were mainly distributed around the eastern coastal
regions, whereas provinces displaying cold spot aggregation patterns with low levels of
coordination degree were mainly distributed in the western inland regions. Overall, the
values were high in the eastern region and low in the western region, decreasing from the
eastern coastal zone towards the western inland zone, thus demonstrating a contrasting
east-west spatial distribution pattern.

When exploring the coordination degree of carbon emissions, economic develop-
ment, and environmental protection, the development advantages of provinces should be
combined in order to effectively improve the coordination level. For the eastern region,
based on strong economic strength, the technological innovation and efficient use of energy
should be strengthened. For the western region and the central region, while pursuing
economic growth, the guidance policy of green development should be adhered to, such as
green finance. The support of financial regulatory policies is required, and coordination
and positive interaction between financial and tax policies and industrial policies are also
required. The government needs to further improve the transmission effect of incentive
policies and guide capital to invest in green industries.

The spatial pattern analysis in this study is based on the provincial scale, so the results
and conclusions can be contributed to the decision-making process of regional development
at the provincial level. However, the provincial scale is relatively large, and there will
be some differences among the internal areas, so the current study is still open to further
research at smaller spatial units. In future studies, smaller spatial units within the province,
such as the municipal scale and county-level scale, should be focused on. Spatial analysis
methods for small-scale regions should be carried out in further research in order to explore
differences within the province.
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