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Abstract: The use of standard laboratory methods for trait evaluation is expensive and challenging,
especially for low-resource breeding programs. For carotenoid assessment, rather than the standard
HPLC method, these programs mostly rely on proxy approaches for quantitative total carotenoid
content (TCC) assessment. To ensure data transferability and consistency, calibration models were
developed using TCC iCheck and Chroma Meter proxy methods for the adoption of the alternative
near-infrared phenotyping method in cassava. Calibration was developed for dry matter content
(DMC) using a simple and inexpensive sampling procedure associated with the proxy TCC protocols.
The partial least square (PLS) and random forest (RF) models were compared for the two traits, and
the correlation (r) between the actual and predicted values in the training and validation (in bracket)
sets of r = 0.85 (0.76) and r = 0.98 (0.82) with PLS and RF, respectively, for iCheck, and r = 0.99 (0.96)
and r = 0.99 (0.96) with PLS and RF, respectively, for Chroma Meter, was obtained. The calibration
result of r = 0.93 (0.83) and r = 0.99 (0.81) using PLS and RF, respectively, was obtained for DMC. This
effort is valuable in carotenoids improvement and supports the ongoing effort in adopting portable
spectrometers for rapid and cheap phenotyping in cassava.
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1. Introduction

Cassava is a major food staple and a source of income for millions of people world-
wide [1,2]. Inherently, cassava roots are a major starch sink and are thus used as a source
of carbohydrate in human and animal diets. The crop has energy production of up to
1045 kJ/hectare, which places it higher than other starchy crops such as maize, sweet potato,
sorghum, rice, and wheat [3]. The crop is rich in most important micronutrients, although
in so many cases, the roots contain less zinc (14 ppm), iron (0.3 mg/100 g), and vitamin
A (5–30 µg/100 g) than the leaves (vitamin A (8300 µg/100 g) and zinc (71 ppm)) [4].
Consequently, communities and countries that heavily depend on cassava roots as their
staple food are highly vulnerable to micronutrient malnutrition, particularly vitamin A
deficiency [5]. The routine intake of poor-quality diets that are characterized by low mi-
cronutrients results in a hidden hunger. Hidden hunger mainly affects populations that
are economically challenged, and such communities can only access their staple foods
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and often do not have the means to grow or purchase more expensive micronutrient-rich
foods [6]. Hidden hunger makes a significant contribution to the disease burden of children
by limiting proper cognitive development, impairing physical development, and increasing
susceptibility to infectious diseases [7]. Indeed, epidemiological investigations have found
that low vitamin A status is frequently associated with increased disease incidence and is
often associated with high mortality rates [8].

Since 2003, breeders across the Consultative Group on International Agricultural
Research (CGIAR) and National Agricultural Research Systems (NARS) have devoted
attention to developing food crop varieties with significant levels of bioavailable, critical
micronutrients [6]. The micronutrients of focus are mainly vitamin A, iron, and zinc, which
are recognized by the International Nutrition Community as most limiting in diets [7]. Bio-
fortification provides a comparatively cost-effective, sustainable, and long-term means of
delivering more of these critical micronutrients. It can be considered a home-grown therapy
for addressing the key nutritional challenges that are commonplace in rural communities.
It provides a feasible means of reaching malnourished rural populations who may have
limited access to diverse diets, supplements, and commercially fortified foods [9].

Cassava is a major target crop for biofortification due to its significance in the diets
and income of millions of people around the world. The current effort in increasing
genetic gain from a selection in a large segregating cassava population using the standard
high-performance liquid chromatography (HPLC) is not only challenging for the analyses
of thousands of samples but very expensive, highly technical, and requires standard
laboratory conditions and amenities which are often lacking in low-resource institutions
and remote trial sites [10–12]. As such, investments in proxy options have been made to
improve the evaluation of total carotenoid content (TCC) in cassava, including the use
of iCheck [13], Chroma Meter [13], and spectrophotometer [14]. Alternatively, the use of
near infra-red spectroscopy (NIRS), now available in a portable format, provides a rapid,
accurate, and inexpensive alternative for both total and individual carotenoid evaluation
in cassava [12,15–17].

Generally, the deployment of NIRS requires the development of reliable calibration
equations from a standard reference analytical method. So far, the current effort in de-
veloping calibration for carotenoids using portable NIRS has relied on the collaborative
effort between low-resource and more advanced resource institutions [16,18]. However, as
most low-resource breeding programs continue to embrace the use of NIRS for carotenoid
evaluations, most of the available reference values and genetic improvement studies were
developed by the proxy iCheck and Chroma Meter protocols for TCC rather than HPLC val-
ues due to the lack of infrastructures and human capacity to run standard laboratories [19].
Therefore, for consistency and transferability of data, the need for alternative calibration
using non-HPLC reference values becomes inevitable for the large-scale screening and
breeding for TCC in cassava.

Consequently, this study was in response to the need to develop a direct NIRS cali-
bration equation for TCC on reference values derived from low-cost and simple sampling
proxy methods for TCC on wider African cassava breeding populations. We compared
calibration performances from two evaluation protocols: iCheck and Chroma Meter, which
have been previously deployed for TCC quantification in cassava roots [13,18]. The benefit
of using a non-linear machine learning algorithm over the traditional partial least square
(PLS) for carotenoids has been previously reported [16,20,21]; therefore, we compared
calibrations from the random forest (RF) and PLS models. The effect of sample preparation
on calibration performance has been reported where root mashing to obtain homogeneous
samples was beneficial [16]. However, root mashing requires special devices and infras-
tructures which might not be available for off-site trials. Sample preparations for iCheck
and Chroma Meter require relatively simple and low-cost chopping of roots with knives.
Therefore, we equally developed calibration for root dry matter content (DMC) using the
simple and cheap sampling method.
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2. Materials and Methods
2.1. Study Population

A set of 190 clones with varying levels of visual root color was selected using a simple
random sampling technique from the genetic gain population of the International Institute
of Tropical Agriculture (IITA), Ibadan, Nigeria. The genetic gain represents a diverse
collection of clones developed at IITA over the years and has been fully described in many
other studies [22,23]. This population was planted in the 2015 cropping season at Ubiaja,
which is the IITA field station in Nigeria. Ubiaja has an altitude of 221 m and is located at a
latitude of 6.6493◦ N and a longitude of 6.3918◦ E. This location has annual rainfall means
ranging from 1800 mm to 2000 mm.

2.2. Sample Preparation

From a plot of ten plants, three were harvested, from which three sizable roots were se-
lected for laboratory analyses. Within six hours, the selected sample roots were transported
to the laboratory in IITA, Ibadan. Because of the distance between Ubiaja and Ibadan, the
sampled roots were stored in a freezer at 0 ◦C for processing the next day. Before analyses,
the roots were peeled, washed with tap water, and dried with a paper towel. During
sample preparation, care was taken to prevent samples from being exposed directly to
sunlight by harvesting early in the day and covering all laboratory openings with filters.
Using a stainless kitchen knife, each root was cut longitudinally into two halves. The
halves were then cut longitudinally into four quarters from each root, and the two opposite
quarters of the two halves were selected and chopped into very tiny pieces (approximately
<0.2 cm3) and later mixed uniformly. From this uniform sample, 150 g was packed into a
transparent zipped polythene bag as a representative sample to be used for analyses.

2.3. iCheck TCC Assessment

A homogenized sample weighing 5 g was ground using a mortar and pestle. In the
process of grinding, 10 mL of distilled water was added to make the grinding process easy.
The sample was ground until it formed a fine paste. This paste was then transferred into a
calibrated 50 mL falcon tube. Another 5 mL of distilled water was used to wash the mortar
and then poured into the falcon tube. The volume of the falcon tube was adjusted to 25 mL.
The contents of the falcon tube were then shaken thoroughly, and thereafter, 0.4 mL of
the solution was injected into a disposable reagent vial using a needle and syringe. After
shaking the reagent vial with its contents for 10 s and left to stand for 5 min, the sample
TCC value was assessed with the iCheck device.

2.4. Chroma Meter TCC Measurement

A Chroma Meter (CR-400) was used to estimate TCC in cassava roots based on root
color intensity (measured in b values). This device uses the LAB color space, which
mathematically points out all perceivable colors in L*, a*, and b* dimensions (where the
L* coordinate corresponds to a lightness coordinate, and the a* coordinate corresponds
either to red (positive values) or to green (negative values)). TCC was measured in the
b* dimension, where the negative values represent the blue color and the positive values
represent the yellow color. Therefore, positive values in the b* dimension were used for the
measurement of TCC [18,24].

2.5. Repeatability Check: iCheck and Chroma Meter

The repeatability precision (reproducibility) of the iCheck and Chroma Meter results
were evaluated accordingly using the Horwitz equation [25], where the predicted relative
standard deviation (PRSD) was compared with the actual relative standard deviation (RSD).
On each genotype of 10 randomly selected sub-samples, TCC was measured five times on
the same sample using both iCheck and Chroma Meter. PRSD was calculated by Horwitz’s
equation: PRSD = 2Cˆ (−0.15), where C is the concentration of the analyte (mean) expressed
as a decimal fraction. Herein, iCheck values were measured in µg/g (parts per million),
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and therefore to acquire C, these values were converted to µg/106 µg. On the other hand,
Chroma Meter values were measured out of 100, and thus, to acquire C, these values were
divided by 100. RSD was computed using the following formula:

RSD = (Standard deviation/Mean) × 100

Repeatability precision of a method is accepted when PRSD > RSD [26]. The repeata-
bility (reproducibility) of these methods was further evaluated using the HorRat equation.
This is one of the chemical methods that has been adopted by the Association of Analytical
Chemists (AOAC) to test the repeatability of methods employed in food analyses [25].
Accordingly, a method is fully acceptable with high precision or reproducibility when 0.3 ≤
HorRat ≤ 1 [25,27]. The HorRat equation was calculated using the following formula:

HorRat = RSD/PRSD

2.6. Dry Matter Content Oven-Drying Reference

An electric-based large oven was used to determine root DMC, the percentage of dry
weight relative to a given fresh weight of the root samples. Two replicates of about 100 g
of chopped and homogenized roots were oven-dried at a constant temperature of 105 ◦C
for 24 h at IITA, Ibadan, Nigeria. Samples were weighed before and after drying, and the
average DMC of the two replications was used for analyses.

2.7. Spectra Collection

A portable NIRS device (QualitySpec Trek: S-10016) was used to collect spectrum data.
The chopped and uniformly mixed cassava root samples were fed into NIRS sampling cups.
The sampling cups with the chopped and homogenized cassava root sample was placed
against the portable NIRS device window for spectra data collection. With 50 count average
(how many times the entire wavelength range is scanned and then averaged together to
produce a spectrum), the spectral acquisition time was 5 s.

2.8. NIRS Calibration

The spectrum data were first pre-treated using standard normal variate and detrending
(SNVD) (D = 2, G = 5, S1 = 2, S2 = 1) to correct for external interferences on the spectrum
data. D indicates the derivative order number (0 indicates no derivation, 1 means the first
derivative, and so on), G indicates the gap (the number of data points over which derivation
is computed), S1 indicates the number of data points in the first smoothing (1 means no
smoothing), and S2 indicates the number of data points in the second smoothing (1 means
no smoothing) [15,16].

Calibration equations were developed in the R statistical platform using the PLS and
RF models from the caret package. The datasets were first screened for outliers using
the Mahalanobis distance method [28,29], and the retained set (n = 177) was divided into
calibration and validation sets in a ratio of 3:1, respectively. The repeated cross-validation
method was used in developing equations for TCC using iCheck and Chroma Meter
as well as for DMC. The performance of the cross-validated (10-fold cross-validation
repeated 25×) equations was used in predicting the values of the validation set. The entire
process from the data division into calibration and validation sets to the prediction of
validation set values was repeated five times, and the reported statistics (the average of
five by twenty-five cross-validation replications) include the root mean square error of
cross-validation (RMSECV), the root mean square error of prediction (RMSEP), and the
coefficient of correlation (r) in both the calibration and validations sets.

The root mean square error of cross-validation/prediction (RMSECV/RMSEP) was
calculated as follows:

RMSECV (RMSEP)=

√√√√∑N
i=1(

^
yi−yi)

2

N
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where ŷi is the predicted value of each sample in the calibration or validation sets, yi is the
measured/actual value of each sample, and N is the sample number in the calibration and
prediction sets.

3. Results
3.1. Summary Statistics and Correlation between TCC (iCheck and Chroma Meter Measures)
and DMC

The summary statistics (Table 1) of the parameters showed that the value of TCC
measured with iCheck ranged from 0.12 µg/g to 10.18 µg/g, and Chroma Meter ranged
between 11.70 and 39.62. Similarly, the minimum and maximum values of DM were 7.56
and 42.70, respectively. The standard deviation values of TCC measured by iCheck and
Chroma Meter were 2.47 and 6.78, respectively, whereas that of DMC was 7.08.

Table 1. Summary statistics of traits.

Trait TCC DMC (%)

Methods iCheck (µg/g) Chroma Meter (b*Values) Oven-Drying

Min. 0.12 11.70 7.56

Max. 10.18 39.62 42.70

Mean 3.78 26.62 29.49

SD 2.47 6.78 7.08
Min. = minimum value, Max. = maximum values, SD = standard deviation, iCheck = iCheck CAROTENE.

There was a negative correlation between DMC and TCC measured by both iCheck
and Chroma Meter. The correlation between DMC and iCheck TCC values was r = −0.37,
and r = −0.33 between DMC and Chroma Meter TCC values. There was a high correlation
(r = 0.72) between iCheck TCC values with Chroma Meter TCC values (Figure 1).
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3.2. iCheck and Chroma Meter Repeatability Assessment

The two proxy iCheck and Chroma Meter TCC values showed high repeatability
precision, where both methods had high values of predicted relative standard deviation
(PRSD) compared to the actual relative standard deviation (RSD) (Figure 2).
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From the ten samples selected for repeatability precision analysis, the result showed
that iCheck and Chroma Meter had values that fall within the acceptable AOAC require-
ment (Table 2).

Table 2. HorRat values for iCheck and Chroma Meter.

Clones
HorRat Values

iCheck Chroma Meter

1 0.13 0.25

2 0.10 0.25

3 0.05 0.38

4 0.34 0.20

5 0.06 0.19

6 0.06 0.23

7 0.07 0.04

8 0.06 0.12

9 0.04 0.03

10 0.04 0.15

3.3. Calibration Performance of TCC and DMC Using PLS and RF Models

The RMSECV and RMSEP values were generally higher with PLS than the RF models
for all the traits (Table 3). The correlation between the actual and the predicted values
ranged from 0.85 to 0.99 in training and 0.76 to 0.96 across the traits. In the training set,
the mean correlation between the actual and predicted iCheck TCC values using RF and
PLS models was r = 0.98 and r = 0.85, respectively (Figure 3a). In the validation set, the
correlation between actual and predicted iCheck TCC values using the RF model and PLS
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model was r = 0.82 and r = 0.76, respectively (Figure 3b). In general, for TCC calibration
from iCheck, the mean correlation between actual TCC (iCheck) and predicted values was
higher using RF than PLS models.

Table 3. The root mean square error of cross-validation (RMSECV), and the root mean square error
of prediction (RMSEP) of TCC using iCheck and Chroma Meter evaluation methods and DMC under
different calibration methods: partial least square (PLS) and random forest (RF).

Trait Method
RMSECV RMSEP

PLS RF PLS RF

TCC
iCheck 1.28 0.61 1.59 1.43

Chroma Meter 0.81 0.87 1.92 1.92

DMC Oven-drying 2.35 1.16 3.50 3.60
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For TCC Chroma Meter, the correlation between the actual and predicted Chroma
Meter values in the training set using the PLS model was equal to that of the RF model,
r = 0.99 (Figure 4a). In the validation set, the correlation between actual and predicted
Chroma Meter TCC values using the PLS model was r = 0.96, while that of the RF model
was also r = 0.96 (Figure 4b).
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In the training set, the correlation between actual DMC and predicted DMC values
using the PLS model was r = 0.93 and r = 0.99 with RF (Figure 5a). In the validation set, the
correlation was r = 0.83 for PLS and r = 0.81 for RF (Figure 5b). The correlation between
PLS and RF models was 0.97.
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4. Discussion

This study is important in sustaining the ongoing effort in TCC improvement, es-
pecially in low-resource breeding programs and off-site breeding stations. While the
generation of the adequate calibration set from African germplasm that has trait values
derived from a standard reference method such as HPLC might not be visible in the near
future, the use of long-existing references from proxy alternatives for the calibration of the
newly adopted near-infrared spectrometers will benefit the ongoing effort in TCC evalua-
tion and genetic improvement. This study helps in developing strategies for the efficient
phenotyping transition to NIRS technology, particularly the adoption of the portable NIRS.
The early sampling approach needed for adequate sample homogeneity relies on the use
of an electric-based blender [14,15] or a special construction for field-based mashing of
roots [16].

The calibration results, especially the correlation between the predicted and actual
values using a validation set from both iCheck and Chroma Meter for TCC evaluation as
well as DMC, with r values ranging from 0.76 in iCheck to 0.97 in Chroma Meter using PLS
in both cases, are robust enough for the assessment of these traits based on the portable
NIRS [12,30,31]. The results are comparable to earlier calibration efforts in cassava roots for
these traits, although calibrations from fine-ground and homogenized samples provided
higher calibration performance [15,16,24]. The use of random forest, a non-linear model for
calibration, has been of benefit in some cases [20,21], but the benefit over the conventional
PLS model was not obvious in this study. The correlation between predicted values from
the two models was highly correlated (r > 0.92), especially the correlation between the
predicted DMC values in the validation set (r = 0.97).

The range of values for both TCC and DMC was similar to those of previous studies
and represents the range of values in most of the base germplasm collection of the African
Consultative Group on International Agricultural Research (CGIAR) and National Agricul-
tural Research Systems (NARS) centers [19,23,32]. For advanced populations with higher
trait values, updating the models is always recommendable. There was an adequate mix
of white- and yellow-fleshed roots in the calibration dataset, although iCheck provides
more quantitative values. Quantitative evaluation techniques for both total and individual
carotenoids are very important in the biofortification and genetic advancement efforts in
cassava [17,33,34].
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The negative correlation between TCC from the two evaluation methods and DMC
has been reported several times in the African cassava germplasm compared to what has
been reported in the South American germplasm [19,34,35]. There are ongoing efforts
to understand and design an appropriate breeding approach in reversing this trend, as
this has implications on cassava variety adoption [35,36]. An ideal variety needs to meet
both the target high carotenoids levels as well as the desired quality attributes sought by
cassava consumers. Meeting this goal will require extensive and well-designed crosses,
evaluation, and selection schemes which further highlight the importance of cheap but
rapid and standardized evaluation protocols.

The two proxy methods for TCC had high repeatability precision, with PRSD values
higher than the corresponding RSD (Figure 2) and HorRat values falling within the fully
acceptable 0.3 ≤ HorRat ≤ 1 region [25,27]. Therefore, these proxy methods, according to
AOAC standards, are acceptable and repeatable since repeatability precision is inversely
proportional to random errors [25]. Moreover, these methods have been shown to have
a high correlation with the standard HPLC method [13,18,36]. The use of the full range
portable spectroscopy (350–2500 nm) provides a rapid, flexible, field-based, and simulta-
neous evaluation of many traits. The sampling process used in the proxy TCC evaluation
methods depends on low-cost and available procedures; therefore, the calibration of the
portable NIRS from these proxy methods could be sustainable in generating adequate
calibration sets with wide application to support previous and future research efforts on
these traits.

5. Conclusions

Using a cheap and simple sampling approach, robust results were obtained from
the calibration of a portable NIRS device for TCC from iCheck and Chroma Meter, and
DMC from the oven-drying method. On average, higher calibration performance was
obtained using Chroma Meter than iCheck for TCC evaluation. By leveraging on the high
repeatability and the already established correlation with the standard HPLC method, the
development of calibration from the two TCC assessment methods as well as DMC from
low-cost sampling methods holds many benefits for the resource-constrained research insti-
tutes that cannot afford HPLC and other expensive reference methods for NIRS calibration.
This work supports the existing effort in the deployment of the portable NIRS device for
rapid, accurate, and flexible phenotyping alternatives in cassava.
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