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Featured Application: The dimensionless nonlinear model can be modified to the qualitative
dynamic analysis of the heated systems with different supercritical fluids under external vertical
accelerations.

Abstract: Employing the external force method to regard seismic impact and the three-region method-
ology to analyze the supercritical heated channel, a non-linear dynamic model was developed to
investigate the transient characteristics of single channel or parallel channels under the impacts of
vertical sinusoidal and seismic accelerations. The present model was validated against the experimen-
tal data, which could suitably estimate the additional pressure drop caused by the vertical vibrations.
The influences of parameters on the seismic-induced oscillation conducted in a supercritical heated
channel indicated that a longer heated length, uprating operation power and a larger outlet loss
coefficient all exhibit unstable effects, while the increase of inlet loss coefficient, a larger tube diameter
and a lower inlet fluid temperature would tend to stabilize the system. Moreover, the supercritical
fluid would present a high natural frequency in the very small NP-SUB region. The parametric effects
on the parallel channel system are related to the inherent stability nature of initial state and the
interactions among channels. The more uneven heat flux distribution among channels would cause a
larger vibration-induced oscillation. In particular, when it is combined with the resonance effect, the
system may exhibit much larger oscillations than in the case of non-resonance.

Keywords: supercritical water; seismic acceleration; stability; nonlinear analysis; resonance

1. Introduction

The applications of supercritical fluids with their peculiar characteristics have been
considered in many technical fields, such as renewable energy system [1], refrigeration
system [2], next generation nuclear technology [3] and commercial ultra-supercritical coal
power plant. In addition, a supercritical water nuclear reactor (SCWR) with the merits
of comparatively high thermal performance, compact and inherent safety design, and
economic competitiveness is listed as a promising type in the international development
program of the Generation-IV advanced nuclear reactor [4]. At a supercritical pressure, the
heating fluids exhibit dramatic changes in fluid properties near their critical or pseudocriti-
cal points. These features can substantially affect the thermal characteristics and stabilities
of the systems with supercritical fluids, which should be addressed in the development
and applications of such systems.

At supercritical pressures, flow boiling phenomenon will not appear during the
heating process. For a supercritical heated channel, the fluid behaves in a liquid-like manner
below the corresponding pseudocritical point; however, it presents gas-like behavior when
the fluid temperature is beyond the pseudocritical value [5]. Therefore, some researchers
suggested three-region methodology to separate the supercritical flow into heavy fluid
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region, heavy and light fluid mixture region, and light fluid region, while considering the
investigations in the supercritical heating systems [6,7].

Upon the drastic variation of flow properties in the pseudocritical region, the super-
critical fluid systems could be subject to various kinds of instability, particularly the typical
type of density-wave instability [8,9]. Since the instability problems may lead to the fluctu-
ations of working fluids and system components, and thus affect the operation safety of a
supercritical heated system, much more attentions need to be paid on the stability issues.
In the literature, a linear model in the frequency domain and a non-linear model in the time
domain are two major categories for carrying out theoretical studies of stability. Linear
analysis methodology is a familiar tool to explore the stability threshold of a supercritical
heated system due to its simplicity [8,9]. However, such systems are inherently non-linear,
which cannot be explored by the linear methodology. This suggests the need of a proper
non-linear model to clarify the instability phenomena of supercritical heated systems.

Several researchers had predicted non-linear characteristics of supercritical heated
systems by the tools of computational fluid dynamics (CFD) [10] or the modifications of
the existing large system codes from two-phase flows [11,12]. However, because their
complexity and time-consumption, these tools are, in general, not favorable for the detailed
investigation of non-linear phenomena. Thus, our recent studies developed simple non-
linear dynamic models to analyze the stability problems of supercritical water uniformly
heated in a single channel [13] and parallel channels [14], respectively, particularly for
that after the occurrence of instability. The results indicated that complex and abundant
non-linear phenomena, such as supercritical Hopf and period-doubled bifurcations, and
their evolutions to chaotic oscillations, could appear in a uniformly-heated channel with
supercritical water [13]. On the other hand, parallel supercritical heated channels essen-
tially presented out-of-phase mode of oscillations if total flow rates were kept constant.
Channel-to-channel interactions due to the more difference among radial power distribu-
tions would have unstable effects on these systems [14]. Such out-of-phase instabilities
have also been identified by experimental studies in parallel two channel systems with
supercritical water [15,16]. Moreover, the parallel supercritical heated channel systems
could be stabilized by the increases in inlet flow resistance or channel diameter, while the
unstable influences on the system stability could be attributed to the increases in the outlet
flow resistance or channel length [14].

The seismic issues are very crucial for the safe operations of various power generation
systems. However, the relevant studies of seismic impacts on the flow stabilities were
very limited in the literatures, which majorly conducted in nuclear boiling systems [17–21].
Among these studies, two major approaches, i.e., external force method [17–21] and moving
grid method [21], were employed to evaluate the seismic impact on two phase flows. The
external force method is usually considered in the rigid systems, where no deformation
occurs in the system structure during the seismic motions; otherwise, it would require
the moving grid method instead. The previous study indicated that the impact of seismic
vibration on two-phase boiling flows may depend on its intensity and the inherent stability
natures of operating states. The resonance oscillation can be triggered by the seismic wave
if its oscillation frequency is equivalent to the natural frequency of working flow [17].
In a parallel nuclear-coupled boiling channel system, the external vibration acceleration
could result in the resonance phenomena with either regional or core-wide instabilities.
The impact of vertical acceleration would generate a much stronger effect on the core
power oscillations with respect to those in the other directions [18]. Our recent studies also
illustrated that complicated seismic-induced oscillations could exist in a nuclear-coupled
boiling channel system [19]. For a natural circulation loop involving parallel nuclear-
coupled boiling channels, the resonance effects in different natural circulation stable states
would dominate seismic-induced flow oscillations. Under the impact of vertical seismic
motion, the parallel channels tended to exhibit in-phase mode of oscillations. A more
significant resonance effect could be triggered by the natural circulation state with a higher
core inlet subcooling [20].
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To the authors’ best knowledge, at present, the research regarding the influence of
external vibration, such as seismic acceleration, on either single channel or parallel channels
of the supercritical heated system is very sparse. The unique nature of parallel supercritical
heated channels exhibits the complex interactions distributing among them, in which the
unstable phenomenon is commonly the compound type of density-wave instability merged
with parallel channel instability. The seismic impact interacting with the distinctive stability
characteristics of such systems should need to be explored. Thus, the major objective of
the present study is aimed at developing a non-linear dynamic model to deal with the
effects of external vertical acceleration and seismic acceleration on the transient behaviors
of parallel uniformly-heated channels with supercritical water. The non-linear model can
also be applied to examine the seismic effects on the single supercritical heated channel
after the proper simplifications.

2. The Model and Solution Method

Based on our preliminary work [22] employing the external force method to evaluate
seismic impact, the non-linear dynamic model of parallel supercritical water uniformly-
heated channels in the static system developed previously by the authors [14] is extended
to the vertical vibration system. The modelling structure involving M parallel uniformly-
heated channels subject to vertical seismic acceleration at a supercritical pressure is dis-
played in Figure 1. Adopting the three-region methodology suggested by Zhang et al. [7],
each supercritical water-heated channel is separated into region 1 of heavy fluid, region
2 of heavy and light fluid mixture and region 3 of light fluid, as shown in Figure 1. At a
supercritical pressure of 25 MPa, the dividing point “A” between region 1 and 2 is about
349 ◦C and “B” between region 2 and 3 is nearly 449 ◦C, respectively.
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Figure 1. Modelling structure of parallel supercritical water uniformly-heated channels analyzed by three-region methodol-
ogy [7] under vertical seismic acceleration. (“A” and “B” indicate the separation points between regions).

Considering the j-th channel in the parallel supercritical heated channel system in
Figure 1, the analytical problem can be simplified on the basis of following assumptions:

• The whole system is assumed as a rigid body;
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• The system is retained at a supercritical pressure of 25 MPa under both static and
external vibration conditions, while the pressure drop through each channel is usually
far less than the system pressure;

• Each channel is supposed to have a uniform heat flux distribution along the axial
direction;

• The same constant inlet enthalpy is distributed over all channels under both static and
external vibration conditions;

• The parallel channels possess the same pressure drop under both static and external
vibration conditions, as they are connected by the common upper plenum and lower
plenum.

For future applications to different supercritical fluids besides supercritical water, the
state variables for each channel are non-dimensionalized based on the fluid properties
corresponding to the pseudocritical point at a supercritical pressure, as defined in the
nomenclature. When considering the effect of seismic motion on the present system, the
entire system is supposed as a rigid body, which infers no deformation occurring in system
components during seismic motions. This demonstrates that all the parts are subject to the
same but variant vibration acceleration, inferring they face the external force induced by
the seismic motions. Thus, based on the assumptions and the external force method, with
the non-dimensional methodology [8], the one-dimensional dimensionless conservation
equations for the j-th supercritical uniformly-heated channel subject to vertical seismic
acceleration can be written as:

∂ρ+j

∂t+
+

∂ρ+j u+
j

∂z+
= 0 (1)

∂ρ+j h+j
∂t+

+
∂ρ+j h+j u+

j

∂z+
= NP−PCH,j (2)

∂ρ+j u+
j

∂t+
+

∂ρ+j u+
j

2

∂z+
= −Λjρ

+
j u+

j
2−

N

∑
m=1

km,jδ
(

z+j − z+m,j

)ρ+j u+
j

2

2
−

ρ+j a+V
Fr

−
∂P+

j

∂z+
(3)

where NP-PCH,j is pseudo phase-change number for the j-th channel that was originally
suggested by Ambrosini and Sharabi [8], as defined in the nomenclature. The parameter a+V
represents the dimensionless vertical acceleration including both the gravity and vertical
seismic (a+ses) accelerations. Thus,

a+V =

{
1 + a+ses, under vertical vibrations

1, under static conditions
(4)

The parallel heated channels shown in Figure 1 exhibit the same dynamic pressure
drop under seismic conditions as they are linked with the common upper plenum and
lower plenum.

∆P+
ch,1 = ∆P+

ch,j = · · · = ∆P+
ch,M (5)

The dynamic pressure drop for each channel subject to vertical seismic acceleration
could be estimated by the summation of the dynamic pressure drop in the static condition
plus the additional pressure drop induced by the seismic vibration:

∆P+
ch,j = ∆P+

A,j + ∆P+
B,j + ∆P+

C,j + ∆P+
ses,j = Coe f j

du+
i,j

dt+
+ ∆P+

ch0,j + ∆P+
ses,j, j = 1, 2, · · · , M (6)

Coe f j = CA,jλ
+
A,j + CB,j(λ

+
B,j − λ+

A,j) + CC,j(1 − λ+
B,j) (7)

where ∆P+
A,j, ∆P+

B,j and ∆P+
C,j indicate the dynamic pressure drop for region 1, region 2 and

region 3 in the static condition, respectively. All these terms, including ∆P+
ch0,j, CA,j, CB,j
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and CC,j, are defined in Lee et al. [14]. Moreover, ∆P+
ses,j is seismic-induced pressure drop

under vertical vibration condition, as given below:

∆P+
ses,j =

[
CA,jλ

+
A,j + CB,j(λ

+
B,j − λ+

A,j) + CC,j(1 − λ+
B,j)
]

a+ses/Fr (8)

Through Equations (5) and (6), it can be deduced that the dynamic equations of inlet
flow velocity, u+

i,j, among parallel supercritical heated channels under vertical seismic
acceleration are:

du+
i,j

dt+
= Coe1j

du+
i,1

dt+
+ Coe2j, j = 2, 3, · · · , M (9)

Coe1j = Coe f1/Coe f j (10)

Coe2j = (∆P+
ch0,1 + ∆P+

ses,1 − ∆P+
ch0,j − ∆P+

ses,j)/Coe f j (11)

In addition, for this parallel channel system, the total flow rate is the summation of
every channel flow rate. The variation in total flow rate (W+

tot) subject to seismic motion
can be considered by the time-derivative term:

dW+
tot

dt+
= ∑

j
ρ+i,j

du+
i,j

dt+
(12)

Substituting Equation (9) into Equation (12) can lead to the dynamic equation of inlet
flow velocity,u+

i,1, for the first channel under vertical seismic acceleration:

du+
i,1

dt+
=

(
dW+

tot
dt+

− ∑
j

ρ+i,jCoe2j

)
/∑

j
ρ+i,jCoe1j (13)

Through Equation (13) together with Equation (9) and adopting all the other dimen-
sionless dynamic equations given in Lee et al. [14], the present non-linear dynamic model
can be employed to explore the influences of vertical seismic accelerations on the system
with parallel supercritical water uniformly-heated channels. If the analytical system has a
constant total flow rate during seismic motion, the term of dW+

tot/dt+ is set to zero.
On the other hand, if the system only comprises single supercritical heated channel,

the boundary condition can be simplified as: the dynamic pressure drop of the supercrit-
ical uniformly-heated channel under vertical seismic accelerations (∆P+

ch) is equal to the
summation of pressure drop for the static system and that additionally contributed by the
external vertical acceleration (∆P+

ses). Thus,

∆P+
ch = ∆P+

A + ∆P+
B + ∆P+

C + ∆P+
ses = Coe f

du+
i

dt+
+ ∆P+

ch,0 + ∆P+
ses (14)

where ∆P+
A , ∆P+

B and ∆P+
C represent the dynamic pressure drop for region 1, region 2 and

region 3, respectively, inside single supercritical heated channel in the static condition. The
corresponding formulas in a parallel channel system [14] can be applied to a single channel
case.

Through Equation (14), the dynamic equation of inlet flow velocity, u+
i , for the single

supercritical heated channel under vertical seismic acceleration can be acquired:

du+
i

dt+
= (∆P+

ch − ∆P+
ch,0 − ∆P+

ses)/Coe f (15)

The procedure of the solution method is described as following. In the static condition,
by eliminating the time-derivative terms in all the dynamic equations, it can result in a
set of nonlinear algebraic equations. The subroutine SNSQE of Kahaner et al. [23] that
takes the Powell hybrid scheme is applied to solve the steady states of parallel channel
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system or single channel system. By imposing the vertical seismic acceleration on the
initial steady state of the system, the corresponding transient responses of parallel heated
channels or single heated channel are solved by the set of non-linear, ordinary differential
equations. The subroutine SDRIV2 of Kahaner et al. [23] employing the gear multi-value
method is applied to obtain the numerical solutions. The dimensionless time step is set to
∆t+ = 10−4 through numerical calculations. The requested relative accuracy of 10−10 is set
in all solution components.

3. Validation of the Model

Our previous study [14] has validated the present nonlinear dynamic model with
supercritical water in the static condition (a+ses = 0), i.e., without seismic motion, against
the experimental data of a supercritical water two uniformly-heated channel system [15].
The results indicated that the present non-linear model can predict the stability thresholds
well against the experimental data, within a relative error of 10% [14].

To evaluate the applicability of the external force method in estimating the vibration
impact that was not well validated in the past studies [17–21], the authors established a
vertical vibration experimental system in Figure 2a to investigate the thermal-hydraulic
characteristics of boiling two-phase flow under vertical vibrations [24]. The test section
comprises a single-phase stand pipe (DSP = 0.012 m, LSP = 0.17 m), a heated section
(DH = 0.012 m, LH =1.27 m) and an adiabatic riser (DR = 0.012 m, LR = 0.38 m). The
additional pressure drop caused by the vertical vibration (∆PVIB) can be estimated by
the measured pressure drop (∆P(Exp.) ) under vertical vibration subtracting the average
pressure drop (∆Pave). Thus, the non-dimensional form is:

∆P+
VIB(Exp.) = [∆P(Exp.)− ∆Pave]/ρ f u2
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In terms of external force method, the calculated value of ∆P+
VIB can be determined by

Equation (17):

∆P+
VIB
(

Predict.) = [(ρ+i + ρ+e )/2 + ρ+e L+
R + ρ+i L+

SP]× amax sin(2π f+t+)/Fr (17)

For a single heated channel vertical vibration system at atmosphere pressure, Figure 2b
compares the peak magnitude of the calculated ∆P+

VIB(Predict.) against the peak magni-
tude of the experimental ∆P+

VIB(Exp.) among nine test cases with heat fluxes of q” = 8444,
11,029 and 13,959 W/m2 and vibration frequencies of f = 0.5, 1.0 and 1.5 Hz, respectively.

The results exhibit that the vibration-induced pressure drop increases as the increase
in the vibration frequency, i.e., vibration acceleration. The theoretical predictions using
Equation (17) can predict the experimental values based on Equation (16) within a relative
error of about 20% among all the cases. It can demonstrate that external force method
is appropriate to explore the impact of external vertical vibration on the rigid system. It
should note that the discrepancy between the experimental data and the predicted value is
smaller in the relatively small vibrations with f = 0.5 and 1.0 Hz than that in the relatively
large vibration with f = 1.5 Hz. This may suggest that the external force method is more
applicable for the relatively small vibration acceleration, non-resonance and insignificant
resonance conditions under the vibration impacts, as in most of the cases in the present
study, in which the probability of the deformation occurring in the structure parts is very
limited during such vertical vibrations. In addition, at present, the experiment data of
the supercritical fluid system under external vibrations is deficient in the literature. The
external force method may need a further validation against the vibration experimental
data of supercritical fluid system if it is available in the future. On the other hand, the
actual seismic impact on a power plant is very complicated, which could be coupled with
the fluctuations of coolant flow and system structures. If either two of their vibration
frequencies are approaching, it may trigger the resonance oscillations to deteriorate the
system operation and cause the deformation of structure parts. The assumption of a rigid
body would be an oversimplification under such conditions. If we consider the possible
deformation of structure components facing the extreme large intensity of seismic wave
or very strong resonance oscillations, the other methodologies, such as the moving grid
method, need to be developed in evaluating the seismic impact. However, under such
extreme conditions, the power plants with the auto scram function will shut down the
system immediately to prevent it from the progressive event. Therefore, much more
attention should be paid to the seismic wave below the scram limit of the power plant,
which the external force method could be suitably applied to.

4. Results and Discussion
4.1. Stability Map of the Static System

In SCWR, the reactor core involves parallel supercritical heated channels. Table 1 lists
the reference condition for three representative supercritical heating channels, which are
extracted from the design data for U.S. reference SCWR [25]. In the present model, the
fluid properties of supercritical water are obtained from the database of Nation Institute of
Standards and Technology (NIST) [26], which have been widely used in the literature [5–16].
Based on the parameter values given in Table 1, this non-linear model can explore the
stability maps of the static system by setting a+ses = 0 through time domain evolutions.
With a perturbation in the inlet velocity of the highest heating channel (Ch.1) at a constant
pseudo-subcooling number of NP-SUB = 1.55, Figure 3a illustrates the examples of transient
responses corresponding to a stable state, a boundary state and an unstable state of a three
supercritical water-heated channel system with a radial power distribution of 1.2:1.0:0.8.
Under the constraint by constant total flow rate, all the results in Figure 3a show that the
highest amplitude oscillation in the highest heating channel (Ch.1) is out-of-phase with
those of the other less-heated channels (Ch.2 and Ch.3). The stability boundary could
be judged by the transient responses among three asymmetric heating channels. For a
stable state of NP-SUB = 1.55 and NTPC = 5.645, the perturbation would decay to its original
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steady state, while for an unstable state of NP-SUB = 1.55 and NTPC = 5.704, the time domain
oscillations among channels are growing and eventually trigger the reversed flow. In
addition, the results in Figure 3a display the fact that transient responses among channels
finally evolve to stable limit cycle oscillations at a boundary state of NP-SUB = 1.55 and
NTPC = 5.669.

Table 1. The reference case of three supercritical heated channels [25].

Parameter Channel 1 Channel 2 Channel 3

Heat flux ratio above 1.2 0.9 to 1.19 below 0.9
Length (LH) 4.2672 m 4.2672 m 4.2672 m

Diameter (DH) 3.4 mm 3.4 mm 3.4 mm
Outlet loss coefficient (ke) 1.0 1.0 1.0
Inlet loss coefficient (ki) 22.7 93.0 241.1
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Through non-linear analyses as the examples illustrated in Figure 3a, the results
in Figure 3b reveal the comparison of stability boundary between parallel three heated
channels and single heated channel with supercritical water under the system pressure
of 25 MPa. These stability maps are presented based on the pseudo-subcooling number
(NP-SUB) and the average true trans-pseudo-critical number (NTPC), which were originally
introduced by Ambrosini and Sharabi [8].

NTPC =
Qtot

Wtot

βPC
CP,PC

, NP−SUB =
βPC

CP,PC
(hPC − hi) (18)

The three-region methodology for the supercritical water-heated system at 25 MPa can
be applied when the inlet flow temperature is between 0 ◦C and 349 ◦C while two-region
model, excluding region 1, is employed instead when inlet flow temperature is beyond
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349 ◦C (NP-SUB < 0.904). Moreover, the case with the inlet fluid temperature below 0 ◦C
(NP-SUB > 3.59) implies a restricted area that prohibits the supercritical water flow. The
results in Figure 3b suggest that the system of parallel three channels with a heat flux ratio
of 1.2:1.0:0.8 is more stable than the single channel system in this study. Our previous
study [27] demonstrated that the stable effect due to system mass and the unstable effect
by channel-to-channel interaction could prevail in a multi-channel system. In this case, it
seems that the stable effect would dominate over the unstable effect. However, when a
more asymmetric heat flux distribution of 1.4:1.0:0.6 is set, the parallel three channel system
would become more unstable than the single channel one. This resulted from the more
dramatic unstable channel-to-channel interaction being triggered by the more difference
among channels. In addition, the normal operating state of NP-SUB = 1.55 and NTPC = 3.232,
as denoted as S1 in Figure 3b, is substantially distant from the stability boundaries of all
systems. This infers that it is a very stable operating point.

4.2. Non-Linear Seismic-Induced Oscillations
4.2.1. Seismic-Induced Oscillation of Single Channel System

An actual vertical seismic acceleration wave in Figure 4a is considered in the present
study, which is extracted from the data recorded by the Linkou Station during the Chi-
Chi earthquake in Taiwan that took place on 21 September 1999 [28]. The data were
collected in a time step of 0.005 s during a time interval of 88 s upon this earthquake, which
corresponds to a dimensionless time interval of nearly t+ = 35 and a dimensionless time
step of almost ∆t+ = 0.002. Supposing this actual vertical seismic acceleration wave is
directly imposed on the S1 state, i.e., normal operating state as denoted in Figure 3b, of
the single channel system, the inlet flow velocity oscillation in Figure 4b shows that the
seismic wave dominates the channel oscillation. The flow oscillates chaotically following
the vibration of seismic acceleration with the same frequency; however, the oscillation
amplitudes remain bound in a certain range, inferring that seismic-induced oscillation of
this supercritical uniformly-heated channel at S1 state is still small. The seismic-induced
oscillation could result from the compound results of the inherent stability characteristics
interacting with the effect of vertical seismic acceleration. The S1 state is very stable, as
revealed in Figure 3b, such that the seismic acceleration just triggers a small oscillation.
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On the other hand, at the same inlet fluid temperature with NP-SUB = 1.55, the operating
power is increased to another S2 stable state with NTPC = 5.645, which is rather near the
stability boundary of a single channel system, as revealed in Figure 3b. Assuming the
same vertical seismic acceleration in Figure 4a is imposed on the S2 stable state, the results
in Figure 5a illustrate that the seismic-induced oscillation in the S2 state is much larger
than that in S1 state. This demonstrates that the strength of seismic-induced oscillation is
related to the inherent stability characteristics of the initial state. For the S1 stable state,
Figure 5b explores the effect of inlet fluid temperature on the seismic-induced oscillation of
the single heated channel system. Under the same heating power (NTPC = 3.232), the inlet
fluid temperature is step decreased from NP-SUB = 1.2, NP-SUB = 1.55 (S1) to NP-SUB = 2.02.
The results in Figure 5b indicate that the reduction in inlet fluid temperature tends to
stabilize the seismic-induced oscillation. It will increase the inlet fluid density to extend
the heavy fluid region (region 1) inside the channel, thereby increasing the pressure drop
contributed by the heavy fluid area; in addition, it will also drive the system to have a
heavier inertial mass. Our previous study [14] showed that increasing the pressure drop of
the heavy fluid region in the channel would have a stable effect on the supercritical forced
convection heating channel system. Therefore, Figure 5b shows that due to the effects of
both heavy fluid region and inertial mass, lowering the inlet fluid temperature will have a
stable effect on the transient oscillation of the system caused by the seismic acceleration
wave.
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In a supercritical water-heated channel system, such as the SCWR, the geometrical
parameters may affect the transient oscillations of the system induced by the seismic
acceleration wave. Under the same vertical seismic acceleration wave shown in Figure 4a
and based on the S1 stable state, Figure 6a investigates the effect of inlet flow resistance
(ki) on the seismic-induced oscillation of a single supercritical heated channel. The results
illustrate that the increase of inlet loss coefficient will drive the system to show a smaller
non-linear oscillation. Increasing the flow resistance at channel inlet will increase the
pressure drop of heavy fluid region. Moreover, the increase of inlet flow resistance will
also attenuate the seismic-induced oscillation of the system. Thus, the increase of the inlet
loss coefficient would generate a stable effect on the seismic-induced oscillation.
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Figure 6b further evaluates the influence of the outlet loss coefficient (ke) on the seismic-
induced oscillation of a single supercritical heated channel. The analytical results show that
a larger outlet loss coefficient will result in a more prominent seismic-induced oscillation.
The increase of outlet loss coefficient will increase the pressure drop of light fluid region
inside the channel. Our previous study [14] indicated that increasing the pressure drop
in the light fluid area could destabilize the system. On the other hand, the increase of
outlet flow resistance would also produce an attenuated influence on the seismic-induced
oscillation. It seems that the unstable effect is dominant such that increasing the outlet
loss coefficient (ke) tends to destabilize the seismic-induced oscillation of this single heated
channel system.

Figure 7 explores the influence of the heated length (LH) and channel diameter (DH),
respectively, on the transient oscillations of a single supercritical heated channel caused
by vertical seismic acceleration wave in Figure 4a. At a fixed uniform heat flux, a longer
heating channel implies a higher input power, which will extend the length of the light
fluid region. Moreover, lengthening the channel will enlarge the seismic-induced pressure
drop estimated by Equation (8). Thus, the analytical results in Figure 7a show that a longer
channel tends to destabilize the seismic-induced oscillation of single supercritical heated
channel. On the other hand, at a fixed total flow rate, increasing the channel diameter
will reduce the flow velocity; thereby a smaller channel pressure drop would stabilize the
system. Therefore, Figure 7b illustrates that a larger channel diameter could generate a
stable effect on the seismic-induced oscillation of a single supercritical heated channel.

4.2.2. Seismic-Induced Oscillation of Parallel Three Channel System

The seismic impact on the parallel channel system is related to the inherent natures of
the initial operating state, particularly the resonance oscillation could be triggered while
the seismic frequency approaches the natural frequency of the working flow. Figure 8
illustrates the variation in the dimensionless natural frequency (f +) along with the stability
boundary of three supercritical water heated channels with a heat flux ratio of 1.2:1.0:0.8 at
a supercritical pressure of 25 MPa. This figure shows that the distribution of the dimen-
sionless natural frequency on the stability boundary is ranged between 0.93 and 4.16. The
parameter of NP-SUB indicates the effect of inlet fluid temperature. A larger value of NP-SUB
infers a lower inlet fluid temperature, and vice versa. In the region with NP-SUB ≥ 1.67,
where the heavy fluid region would contribute a substantial role, the dimensionless natural
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frequency on the stability boundary is mildly increased as NP-SUB is decreased. In addi-
tion, at a fixed value of NTPC = 6.15, the dimensionless natural frequencies at the stable
states with NP-SUB = 2.882, 2.811 and 2.727 are 0.98, 1.1 and 1.14, respectively, as labeled
in Figure 8. It also suggests the similar slight increasing trend in this region if the inlet
fluid temperature is increased. However, when NP-SUB is less than 1.67, the dimensionless
natural frequency on the stability boundary would drastically increase as NP-SUB is further
decreased due to the expansion of the light fluid region dominating the channels.
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On the other hand, the parameter of NTPC may include the effects of heat flux, heated
length and channel diameter, which is generally proportional to heat flux (q”) and heated
length (LH) but inversely proportional to channel diameter (DH). The increase of NTPC can
be reached by the increase of heating power (Q) or the reduction of total flow rate (Wtot),
and vice versa. At a fixed value of NP-SUB = 2.882, the dimensionless natural frequencies at
the stable states with NTPC = 6.15, 6.234 and 6.298 are 0.98, 1.05 and 1.09, respectively, as
labeled in Figure 8. This implies that the dimensionless natural frequency would increase
as the increase of NTPC due to the expansion of light fluid region.

For the supercritical water three-heated channels with an asymmetric radial power ra-
tio of 1.2:1.0:0.8 considered in this study, the seismic-induced effect on the system transients
is investigated in S1 stable state, i.e., normal operating state as denoted in Figure 3b. The
inherent natural frequency of S1 state is approximately f + = 1.1. Figure 9a assumes a set of
external vertical sinusoidal acceleration waves, including two vertical acceleration waves
with the same peak acceleration (apeak = 0.1 g) but with different oscillation frequencies of
f + = 0.5 (non-resonance condition) and 1.1 (resonance condition), respectively. This study
supposes that the total flow rate of parallel supercritical heated channels keeps constant
under the impact of the external vertical acceleration wave, as shown in Figure 9b. As
the vertical sinusoidal acceleration wave in Figure 9a is imposed on the system, Figure 9c
shows the vibration-induced amplitude oscillations of the inlet flow velocity (δu+

i ) among
these three supercritical heated channels. The channel oscillations triggered by the vertical
acceleration wave can be regarded as the result of the inherent stability characteristics of
the initial state combined with the influence of external vertical acceleration wave. Since
the normal operating point (S1) is very stable, the channel-to-channel interaction among
parallel heated channels is fairly weak. In the case of non-resonance condition (f + = 0.5),
Figure 9c indicates that the oscillation of each channel caused by the external vertical
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acceleration wave appeared to be very small due to the inherent stability nature of S1 state.
In addition, under the external vertical acceleration, out-of-phase mode of inlet velocity
oscillations is presented among channels to maintain a fixed total flow arte. In the case
of resonance condition (f + = 1.1), the vibration-induced oscillation of each channel will
become larger due to the resonance effect. However, as the normal operating point (S1)
is very stable, the resonance effect seems to be not significant, which does not trigger the
uncontrollable oscillations under the impact of the external vertical acceleration wave in
Figure 9a.
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For a parallel supercritical heated channel system, such as SCWR, the inlet loss
coefficient in each channel is set, as listed in Table 1, such that the similar power-to-flow
ratio among channels is reached in the normal operating point (S1) of the forced circulation
system. In general, the most heated channel, i.e., channel 1, is with the smallest inlet
loss coefficient and thus the highest mass flow rate, while the least heated channel, i.e.,
channel 3, has the largest inlet loss coefficient that makes it have the lowest mass flow rate.
Based on the normal operating point (S1) in Figure 3b as a reference case and under the
same external vertical acceleration wave in Figure 9a, Figure 10a investigates the effect
of inlet loss coefficient at the most heated channel (channel 1) on the vibration-induced
oscillations among parallel supercritical heated channels. Assuming the group of inlet
loss coefficient in Table 1 is step set to channel 1 from ki,1 = 22.7 (S1), 50.0, 93.0 to 241.1,
the results in Figure 10a reveal that with the increase of inlet flow resistance set at the
highest heating channel, the vibration-induced oscillation of the most heated channel firstly
become smaller while the inlet loss coefficient is set to ki,1 = 50.0, due to both the stable
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effect and the attenuated effect of inlet flow resistance. However, if the inlet flow resistance
of the hottest channel is further increased to ki,1 = 93.0 and 241.1, the most heated channel
presents a larger vibration-induced oscillation, which infers an unstable influence on the
system dynamics. This is caused by the more uneven power-to-flow distribution among
channels resulted by the increase in the inlet loss coefficient of channel 1, particularly for
the case with ki,1 = 241.1. The more difference among channels will induce a stronger
channel-to-channel interaction to destabilize the vibration-induced oscillation when its
effect is greater than the stable and attenuated effects of inlet flow resistance.
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Under the same external vertical acceleration wave in Figure 9a, Figure 10b further
explores the influence of outlet flow resistance (ke) on the transient oscillations of the
parallel three supercritical heated channel system caused by external vertical sinusoidal
acceleration wave. Based on the case of normal operating state (S1), the results illustrate
that as the outlet loss coefficient is increased from ke = 0.5, 1.0 (S1), to 2.0, the most heated
channel will show a smaller transient oscillation, which implies that vibration-induced
oscillation is attenuated by the outlet flow resistance. However, if the outlet loss coefficient
is further increased to an extraordinary condition with ke = 20.0, the most heated channel
will exhibit a dramatically larger vibration-induced oscillation in the case of resonance
condition (f + = 1.1), while a very small one is presented in the non-resonance condition
(f + = 0.5). Our previous study [14] revealed that increasing the outlet loss coefficient
would destabilize the system of parallel supercritical heated channels in the static system,
which strengthen the instability degree of the system. Thus, the unstable effect of outlet
flow resistance combined with the resonance effect will cause the system to exhibit much
larger oscillation than in the case of non-resonance. Moreover, the resonance oscillation
with ke = 20.0 is much stronger than that with ke = 1.0 in Figure 9c. This suggests that
the strength of vibration-induced resonance oscillation is closely related to the inherent
stability characteristics of initial state.

The feature of a multi-channel system would exhibit an asymmetric radial heat flux
ratio distributed among channels, which may affect the seismic-induced oscillation. The
power range relative to the average channel for three channel groups in SCWR is above 1.2
for group 1, 0.9 to 1.19 for group 2 and below 0.9 for group 3, as displayed in Table 1 [25].
Therefore, supposing the same external vertical acceleration wave in Figure 9a is imposed
on the normal operation point S1 of the parallel three supercritical heated channel system, as
denoted in Figure 3b, the heat flux ratios of 1.1:1.0:0.9, 1.2:1.0:0.8 and 1.3:1.0:0.7 are selected
to explore their effects on the vibration-induced oscillations, as indicated in Figure 11. The
results suggest that the more difference in the heat flux among channels would drive a
stronger channel-to-channel interaction, and thus cause a much larger vibration-induced
oscillation as in the case of 1.3:1.0:0.7 shown in Figure 11.
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Figure 11. The effects of heat flux distribution among channels on vibration-induced oscillation of
the most heated channel.

Based on the normal operation point S1 of the parallel three supercritical-heated
channel system, as marked in Figure 3b, and assuming vertical seismic acceleration wave
in Figure 4a imposed on the system, Figure 12 reveals the seismic-induced inlet velocity
oscillations of parallel three supercritical heated channels with a heat flux ratio of 1.2:1.0:0.8
while a constant total flow rate is maintained at S1 state. It is found that since the nor-
mal operating point S1 is very stable, the interactions among parallel three channels are
rather weak, thereby a vertical seismic acceleration wave would dominate the non-linear
behaviors of the system oscillations. The inlet flow velocities among channels oscillate
chaotically following the motion of vertical seismic acceleration wave with the same oscil-
lation frequency. However, their oscillation amplitudes are still limited to a small range,
indicating that the normal operating point S1 is still safe subject to this seismic wave. In
addition, since the total flow rate is supposed to keep constant during the seismic motion,
the inlet velocity oscillations among parallel three channels are out-of-phase, as illustrated
in Figure 12.

With the same pseudo subcooling number (NP-SUB = 1.55), the seismic-induced effect
is explored in another stable state of S3 with a high operating power of NTPC = 5.505,
which is more approximate to the stability boundary of a parallel three supercritical heated
channel system with a heat flux ratio of 1.2:1.0:0.8, as denoted in Figure 3b. Supposing the
same seismic acceleration in Figure 4a is imposed on the S3 state, Figure 13 exhibits the
transient oscillations of parallel three supercritical heated channels caused by this vertical
seismic acceleration wave. The results show that the parallel three channels will present
larger oscillations at S3 stable state as compared to those at S1 state in Figure 12. This
has resulted from the inherent stability characteristics of the initial state. Because S3 state
rather than S1 state is closer to the stability boundary of the system with a heat flux ratio of
1.2:1.0:0.8, the instability degree and interaction among channels in the S3 state are stronger
than those in the S1 state. Thus, the seismic-induced oscillation is more significant in the S3
state versus those in the S1 state.
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Figure 12. Seismic-induced inlet velocity oscillations of parallel three channel system having a
constant total flow rate at S1 state subject to a real vertical seismic acceleration.
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5. Conclusions

Incorporating the external force method with the three-region methodology in analyz-
ing the supercritical heated channel, this study develops a non-linear dynamic model to
investigate the transient behaviors of single channel or parallel channels with supercritical
water under the impacts of vertical sinusoidal and seismic accelerations. The present model
is validated reasonably based on the experimental data of a single heated channel vertical
vibration system. Selecting an actual vertical seismic acceleration wave and the normal
operating state as a reference case, the conclusions in the present study can be summarized
as:

1. The strength of seismic-induced oscillation is relevant to the inherent stability natures
of the initial state.

2. The effects of parameters on the seismic-induced oscillation conducted in single
heated channel indicate that unstable influences could be caused by a longer heated
length, uprating operation power and the increase of outlet loss coefficient, while
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stable effects could be illustrated by the increase of inlet loss coefficient, a larger
channel diameter and a lower inlet fluid temperature.

3. For a three supercritical heated channel system with a heat flux ratio of 1.2:1.0:0.8,
in the region with NP-SUB greater than 1.67, the dimensionless natural frequency on
the stability boundary is mildly increased as NP-SUB is decreased, where the heavy
fluid region contributes a substantial role in the channels. However, in the area with
NP-SUB less than 1.67, it would significantly increase as NP-SUB is further decreased,
which is due to the effect of light fluid region dominating over the channels.

4. The seismic-induced effects on parallel heated channels are related to the inherent
stability characteristics of initial state and the interactions among channels. The effects
of inlet loss coefficient and outlet loss coefficient on the vibration-induced oscillations
among channels may depend on the operating conditions, which are affected by the
power-to-flow difference among channels and stability nature of the system. The more
uneven heat flux distribution among channels would cause a larger vibration-induced
oscillation.

5. The strength of vibration-induced resonance oscillation among parallel channels is
closely related to the inherent stability characteristics of initial state. It may trigger
much larger resonance oscillations than in the case of non-resonance.
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Nomenclature

a acceleration (ms−2)
NP-PCH,j

pseudo-phase change number for j-th channel,
=

Qj
ρPC AH us

βPC
CP,PC

apeak peak acceleration (ms−2)
amax non-dimensional peak magnitude

a+ses non-dimensional seismic acceleration, = ases/g NTPC,j
true trans-pseudo-critical number for j-th channel,
=

Qj
ρi,j AH us

βPC
CP,PCa+V non-dimensional vertical acceleration, = aV/g

A cross sectional area (m2)
NTPC Average true trans-pseudo-critical number, = Qtot

Wtot

βPC
CP,PC

AH cross sectional area of heated channel (m2)
Cp constant pressure specific heat (Jkg−1K−1)
D diameter (m)

NP-SUB,j pseudo-subcooling number for j-th channel, = βPC
CP,PC

(
hPC − hi,j

)
DH diameter of heated channel (m)
f friction factor or frequency (Hz)

f+ non-dimensional frequency, = f LH/us
P pressure (Pa)
Q heating power (W)

Fr Froude number, = u2
s /gLH

q” heat flux (Wm−2)
T temperature (K)

g gravity acceleration (ms−2)
TPC pseudo-critical temperature (K)
t time (s)

h enthalpy (Jkg−1) tref time scale, = LH/us
hPC fluid enthalpy at pseudo-critical point (Jkg−1) t+ non-dimensional time, = t/tref
hi inlet fluid enthalpy (Jkg−1) u velocity (ms−1)
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h+ non-dimensional fluid enthalpy,
= (h − hPC)βPC/CP,PC

ui0 steady state inlet velocity (ms−1)

us
average steady state inlet velocity (ms−1),
= Wtot/ρi Atot

u+ non-dimensional velocity, = u/us
k loss coefficient W mass flow rate (kgs−1)
L length (m) W+ non-dimensional mass flow rate, = W/ρPC AHus
LH channel length (m) z axial coordinate (m)
L+ non-dimensional length, = L/LH

z+ non-dimensional axial coordinate, = z/LHM mass (kg)
M+ non-dimensional mass, = M/ρPC AH LH

Greek Symbols Subscripts

β isobaric thermal expansion coefficient (K−1)
ave average
A region 1 or boundary point of region 1
B region 2 or boundary point of region 2

∆P pressure drop (Pa)
ch channel
C region 3

∆P+ non-dimensional pressure drop, = ∆P/ρPCu2
s

e exit of heated channel
f saturated liquid
H heated section

δx
(x-x0) for variable x, x0 represents the
steady-state value

i inlet of heated channel

j j-th channel
P constant pressure

ρ density (kgm−3) PC pseudo-critical

ρ+ non-dimensional density, = ρ/ρPC

R riser
ses seismic
SP stand pipe

ρPC fluid density at pseudo-critical point (kgm−3)
tot total
VIB vibration

0 steady state
Λ friction number, = f LH/2DH
λ the boundary of region (m)
λ+ non-dimensional boundary of region, = λ/LH
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