
applied
sciences

Article

Locating Core Modules through the Association between
Software Source Structure and Execution

Sang Moo Huh 1 and Woo Je Kim 2,*

����������
�������

Citation: Huh, S.M.; Kim, W.J.

Locating Core Modules through the

Association between Software Source

Structure and Execution. Appl. Sci.

2021, 11, 1685. https://doi.org/

10.3390/app11041685

Academic Editor: Kwan-Hee Yoo

Received: 21 January 2021

Accepted: 9 February 2021

Published: 13 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of Public Policy and Information Technology, Seoul National University of Science and
Technology, Gongneung-ro 232, Nowon-gu, Seoul 01811, Korea; norhuh@naver.com

2 Department of Industrial Engineering, Seoul National University of Science and Technology,
Gongneung-ro 232, Nowon-gu, Seoul 01811, Korea

* Correspondence: wjkim@seoultech.ac.kr; Tel.: +82-2-970-6449

Abstract: To improve software quality, the source code that composes software has to be improved,
and improving the important code that largely affects the software quality should be a cost-effective
method. Static analysis defines important codes as those that occupy important positions in the
source network, while dynamic analysis defines important codes as those with high execution
frequency. However, neither method analyzes the association between network structure and
execution frequency, and both have their disadvantages. Thus, this study analyzed the association
between source network structure and execution frequency to solve their disadvantages. The source
function of Notepad++ was analyzed, and the function ranking was derived using the association
between network structure and execution frequency. For verification, the Spearman correlation
between the newly derived function ranking and the function ranking of the network and execution
frequency obtained with the conventional method was measured. By measuring the Spearman
correlation, the newly derived function ranking had strong correlations with execution frequency
and included the network structure’s characteristics. Moreover, similar to the Pareto principle, the
analysis showed that 20% of Notepad++’s functions could be categorized as important functions,
largely affecting the software’s quality.

Keywords: data envelopment analysis (DEA); social network analysis (SNA); software profiling;
execution frequency; Pareto principle; Notepad++; software quality

1. Introduction

Many companies use software to provide useful services to their customers. If defects
occur in the software, companies may suffer immense damage. Therefore, removing
software defects has become an essential activity for companies, and because software
continues to become more extensive and complex, companies want to remove defects cost
effectively. A cost-effective method for removing defects involves managing the important
sources that largely affect the software service. The Pareto principle of software testing
suggests that 80% of defects occur in 20% of the source code [1]. Subsequently, managing
important source codes has been presented as a cost-effective method [2]. If developers
can determine the important source codes that largely affect software quality, they can
improve software quality cost effectively [3]. A conventional method of deriving important
source codes is static analysis, which derives code that occupies an important position
in the source code’s network structure [2]. The method is bound to an approximate
solution, leading to overapproximation and numerous false positives [3,4]. The second
method is dynamic analysis, which derives frequently executed modules by running
software similar to the actual core module because it uses software execution [2]. However,
underapproximation is disadvantageous when important modules occupying an important
network position cannot be derived and return as false negatives [3,4]. Neither method
analyzes the association between network structure and execution frequency, which leads

Appl. Sci. 2021, 11, 1685. https://doi.org/10.3390/app11041685 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1405-0626
https://orcid.org/0000-0002-1638-645X
https://doi.org/10.3390/app11041685
https://doi.org/10.3390/app11041685
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11041685
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/4/1685?type=check_update&version=2

Appl. Sci. 2021, 11, 1685 2 of 14

to problems from which important functions are inaccurately derived. This study identifies
important source codes by linking network structure and execution frequency to solve
the problem. Section 1 considers the necessity of this study and previous literature, and
Section 2 explains the applied methodology and research materials. Section 3 derives the
results of the study, Section 4 evaluates the differences from previous literature and the
paper, and Section 5 reviews the significance of the paper and future research.

Feature location technology utilizes static, dynamic, and hybrid analysis techniques
to track codes that implement feature sets [3–19]. The static analysis of feature location
identifies the relevant code using the source’s call structure without executing the software.
Chen and Rajlich [5] proposed using absolute system dependence graphs (ASDGs) to
identify static function locations, where the user looks for the relevant code based on the
system dependencies. Robillard [6] introduced a more automated static analysis approach
that examines the topology of system dependencies. Meanwhile, Saul et al. [7] applied
a hypertext-induced topic selection (HITS) algorithm to subsets of static call graphs. For
dynamic analysis, methods such as a software profiling technique, software reconnais-
sance [4,8–10], and execution slice [11] track the execution unit. Two sets of scenarios
(those with and without functions) are executed, and the relevant code is identified through
differences between the set of executed units [4,8,10–14]. Hybrid techniques such as single
trace and information retrieval (SITIR) [15] and probabilistic ranking of methods based
on execution scenarios and information retrieval (PROMESIR) [16] combine text analysis
and dynamic analysis. Eisenbarth, Koschke, and Simon [12] applied a formal, concep-
tual analysis to the execution trace and combined the results with an approach similar
to ASDG [17]. On the other hand, Hill, Pollock, and Vijay-Shanker [18], as well as Zhao
et al. [19], conducted studies that incorporate text and static analysis information, which are
useful when finding relevant codes for specific functions. However, these were inconsistent
with this study’s aim of locating important functions in the overall software.

Some studies analyzed the software’s network structure using social network analysis
(SNA), which calculates the weight of nodes and links using various indicators of complex
networks [20,21]. SNA could detect the dependency of defects in dynamic-link libraries,
leading to predicting defects with 60% accuracy [6,22,23]. Li and Yi [24] derived the class
of the unified modeling language’s weight using the PageRank social network technique,
and Sarkani [25] prioritized components by graphically analyzing component connections
for testing in component-based systems. Hu [26] applied social network techniques to
Eclipse, Netbeans, and Gnome’s Java packages, Java Archive files, and Ubuntu packages
to derive claims for the data set and is strongly associated with defect prediction. Using
SNA, Nguyen, Adams, and Hassan [27] predicted class and package defects. He et al. [28]
measured the defect tendencies and the severity of modified defects at the class level
for Apache Tomcat, arguing that the importance of classes can frequently predict defects.
Furthermore, Rahman [1] utilized SNA technology to derive JFreeChart and JHotDraw’s
network class prestige and the Eclipse tool’s program to measure their execution frequen-
cies, and also used four SNA indicators to analyze the Spearman correlation between each
class’s prestige and execution frequencies. Huh and Kim [29] derived eight types of core
functions using eight SNA indicators for the CUBRID open database source, deriving the
weighted priority of the integrated functions by integrating these into data envelopment
analysis (DEA) technique.

The software profiling technique allows the measurement of the execution frequency
of software functions [30,31]. Renieres and Reiss [30] helped localize errors by using
the execution frequency of multiple lines of code in a program spectrum form. Harrold
et al. [31] studied empirical methods of comparing program behaviors by analyzing the
program spectrum and the related branch-count spectra, which are the conditional branches
of the program’s execution frequency.

This study aims to find important modules by analyzing the association between
the software’s network structure and the execution frequency. In a feature location field,
techniques combining static and dynamic analysis were investigated, and similar studies

Appl. Sci. 2021, 11, 1685 3 of 14

were examined. However, research combining static and dynamic analysis information
that satisfies the purpose of this study was insufficient.

DEA, a nonparametric method of measuring efficiency, can analyze the relationship
between the software network structure derived by SNA and the execution frequency
derived by profiling technique, which uses mathematical programming rather than regres-
sion [32–35]. This method can handle multiple inputs and outputs for each operational
unit without assuming functional relationships. As it measures the relative efficiency
of decision-making units (DMUs) using multiple input and output elements, DEA can
calculate the functions’ integrated weights, and those with high weighted values are more
likely to be actual core functions [32–35]. This study derives the software function ranking
through a combination of SNA, software profiling, and DEA techniques to verify whether
the shortcomings of existing studies have improved and derives the core functions that
affect software quality. This study discusses the different hypotheses for checking the
correlation between the static and dynamic analyses’ results.

2. Materials and Methods
2.1. Social Network Analysis (SNA)

A social network consists of connected nodes and links, and these connections are the
fan-in and fan-out of nodes forming a network in a software system. The structure and
characteristics of the software network are analyzed with a graph to model the relationships
between modules. If nodes occupying important network positions are located, the entire
network’s effectiveness increases through intensive node management [20,21]. As the
source modules of software call each other and form a network, social network indicators
can locate core modules occupying important network positions.

Degree centrality is the first SNA indicator, which indicates how many connections
a node has. Simply put, the connectedness of a node is expressed as the number of
connections made to the node; the more connections a node has, the higher the degree of
centrality. Connectedness considers several components: in-degree, out-degree, and total
degree [20,21]. In-degree is when a node is called (fan-in), while out-degree is when a node
calls another node (fan-out). The connectedness of a node (Vi) is expressed as:

Cd(Vi)
= di (1)

Cd(Vi)
= di

(in) (2)

Cd(Vi)
= di

(out) (3)

Cd(Vi)
= di

(in) + di
(out) (4)

di = the number of connections made to the node vi.
Eigencentrality, the second SNA indicator, measures the importance of a node relative

to its neighboring nodes’ importance. In special cases, eigencentrality values may be zero.
To avoid obtaining a zero value, the PageRank algorithm—a variant of eigencentrality
used by Google—estimates the importance of a node by counting the number of links and
measuring the linked nodes’ quality. Accordingly, the importance of a node propagates to
all nodes connected to it [24]. PageRank is expressed as:

Cp(Vi)
=

(1− d)
n

+ d
n

∑
i=1

PR(Ti)

C(Ti)
(5)

Cp (V) = PageRank score of node;
ViTi = node that points to the Vi node;
PR (Ti) = PageRank score of node Ti;
C (Ti) = the number of outgoing links from node Ti;
d = damping factor (0.5 was applied in this study).

Appl. Sci. 2021, 11, 1685 4 of 14

The third SNA indicator, HITS, assigns an authority and hub weight to a node. A node
has a higher authority weight if nodes with high hub weights are linked to it. Similarly, a
higher hub weight occurs if one node is linked to multiple nodes with higher authority
weights. HITS can analyze referral relationships among nodes to identify which occupy
important positions in the network structure. Equations (6) and (7) calculate the authority
and hub weights of the third indicator [35].

Hub[n] = ∑
∀n′ ,n−po int−n′

Auth
[
n′
]

(6)

Auth[n] = ∑
∀n′ ,n−po int−n′

Hub
[
n′
]

(7)

Because measuring a node’s influence in an entire network by solely deriving its
importance using direct connections is insufficient, the derived important nodes will utilize
direct and indirect connections [2,21,36]. The closeness centrality measures the sum of
the entire network’s path distances to derive the most central node, which was selected
as the fourth indicator for analysis as this was most likely to be frequently executed. The
betweenness indicator, which is the study’s fifth indicator, derives functions that passes
through to reach another function, which is likely to be frequently called.

2.2. Software Profiling

Each code’s execution frequency is an internal software attribute that can measure the
actual value at runtime, and software profiling can measure the execution frequency at
different granularity levels [37]. Execution frequency measures for statements, branches,
and functions [30,38], and the information provided by this technique is widely used to
evaluate test case quality, optimize program performance, or detect memory leaks. In
this study, software profiling was used to measure the execution frequencies of software
source modules.

2.3. Data Envelopment Analysis (DEA)

Despite its unconventional application, previous studies used DEA to evaluate soft-
ware quality, performance, productivity, and efficiency [32–35,39–46]. In this study, DEA
was used to analyze the association between SNA and software profiling results. Modules
occupying important positions in the network, and the execution frequencies of modules
identified through software profiling, were derived using DEA by measuring the efficiency
of the DMUs. When there are several DMUs (n), inputs (i) and outputs (j) utilizing the
Charnes, Cooper, and Rhodes (CCR) model with Equations (8)–(10) can obtain the DMUs’
relative efficiencies [32].

Efficiency =
The weighted sum of outputs
The weighted sum of inputs

(8)

Max Ek =
∑s

r=1 urykr
∑m

i=1 vixki
(9)

Subject to Ek =
∑s

r=1 yjrukr

∑m
i=1 xjivki

≤ 1, j = 1, 2, . . . , n (10)

µkr ≥ ε, r = 1, 2 . . . , s
vki ≥ ε, i = 1, 2 . . . , m

Ek = DMUk efficiency;
ukr = weights given to DMUk output r (r = 1, 2, . . . , s);
ykr = DMUk output r (r = 1, 2, . . . , s);
vki = weights given to DMUk input i (i = 1, 2, . . . , m);
xki = DMUk input i (i = 1, 2, . . . , m);

Appl. Sci. 2021, 11, 1685 5 of 14

ε: a very small value, 0 ≤ Ek ≤ 1;
n: the number of DMUs;
m: the number of inputs;
s: the number of outputs.
DEA models are classified into either the CCR or the Banker, Charnes, and Cooper

(BCC) models depending on the returns to scale (RTS). The CCR model estimates variable
returns, wherein the relationship between inputs and outputs varies depending on the
scale [32]. In 1984, Banker, Charnes, and Cooper [33] developed the BCC model, wherein
the relationship between inputs and outputs can be estimated at certain rates, regardless of
the scale [34,35].

2.4. Demonstration of Node Ranking Combining Network Structure and Execution Frequency
by DEA

DEA explains how nodes are ranked by combining the network structure and execu-
tion frequency information expressed in the network structure (Figure 1). SNA indicators
examined the network structure, and the node’s weight was presented differently for each
indicator (Table 1). The software profiling technique presumably measured the execution
frequency as a numerical value indicated above the node in Figure 1, as shown in Table 1.

Appl. Sci. 2021, 11, 1685 5 of 15

ukr = weights given to DMUk output r (r = 1, 2,..., s);
ykr = DMUk output r (r = 1, 2,..s);
vki = weights given to DMUk input i (i = 1, 2,.., m);
xki = DMUk input i (i = 1, 2,.., m);
ε: a very small value, 0 ≤ Ek ≤ 1;
n: the number of DMUs;
m: the number of inputs;
s: the number of outputs.

DEA models are classified into either the CCR or the Banker, Charnes, and Cooper
(BCC) models depending on the returns to scale (RTS). The CCR model estimates variable
returns, wherein the relationship between inputs and outputs varies depending on the
scale [32]. In 1984, Banker, Charnes, and Cooper [33] developed the BCC model, wherein
the relationship between inputs and outputs can be estimated at certain rates, regardless
of the scale [34,35].

2.4. Demonstration of Node Ranking Combining Network Structure and Execution Frequency
by DEA

DEA explains how nodes are ranked by combining the network structure and execu-
tion frequency information expressed in the network structure (Figure 1). SNA indicators
examined the network structure, and the node’s weight was presented differently for each
indicator (Table 1). The profiling technique presumably measured the execution fre-
quency as a numerical value indicated above the node in Figure 1, as shown in Table 1.

Figure 1. Sample network and execution frequency of nodes.

Table 1. The analytical value of the SNA and execution frequencies of nodes in Figure 1.

Node

Static Analysis
(Social Network Analysis (SNA))

Dynamic
Analysis

In-
Degree

Out-
Degree

Page
Rank Authority Hub

In-Close-
ness

Out-Close-
ness Betweenness

Execution
Frequency

A 0.1429 0.1257 0.0703 0.3193 0.4867 0.1429 0.4286 0 17
B 0.2857 0.2857 0.0879 0.5195 0.3501 0.2857 0.4464 0.0833 13
C 0 0.5714 0.0625 0 0.7762 0 0.6364 0 11
D 0.4286 0.1429 0.1099 0.6635 0.1581 0.4286 0.2857 0.0595 10
E 0.2857 0.2857 0.1252 0.3843 0.1056 0.3810 0.3214 0.1310 11
F 0.2857 0.2857 0.1158 0.1875 0.0343 0.4464 0.2857 0.1548 14
G 0.1429 0.1429 0.0914 0.0141 0.0285 0.3673 0.1429 0 15
H 0.4286 0 0.1685 0.0693 0 0.5833 0 0 9

The DEA Equations (8)–(10) were applied to associate the network structure and ex-
ecution frequency. For the network location’s importance of node to satisfy the execution

Figure 1. Sample network and execution frequency of nodes.

Table 1. The analytical value of the SNA and execution frequencies of nodes in Figure 1.

Node

Static Analysis
(Social Network Analysis (SNA))

Dynamic
Analysis

In-
degree

Out-
degree

Page
Rank Authority Hub In-

closeness
Out-

closeness Betweenness Execution
Frequency

A 0.1429 0.1257 0.0703 0.3193 0.4867 0.1429 0.4286 0 17
B 0.2857 0.2857 0.0879 0.5195 0.3501 0.2857 0.4464 0.0833 13
C 0 0.5714 0.0625 0 0.7762 0 0.6364 0 11
D 0.4286 0.1429 0.1099 0.6635 0.1581 0.4286 0.2857 0.0595 10
E 0.2857 0.2857 0.1252 0.3843 0.1056 0.3810 0.3214 0.1310 11
F 0.2857 0.2857 0.1158 0.1875 0.0343 0.4464 0.2857 0.1548 14
G 0.1429 0.1429 0.0914 0.0141 0.0285 0.3673 0.1429 0 15
H 0.4286 0 0.1685 0.0693 0 0.5833 0 0 9

The DEA Equations (8)–(10) were applied to associate the network structure and
execution frequency. For the network location’s importance of node to satisfy the execution
frequency, the node efficiency was calculated as the maximum. The network structure and
execution frequency were associated using this method, and the derived node rankings are
shown in Table 2.

Appl. Sci. 2021, 11, 1685 6 of 14

Table 2. The efficiency and rank of nodes by data envelopment analysis (DEA).

Nodes Efficiency Rank

A 73.7% 6
D 70.% 7
C 540.0% 2
D 67.8% 8
E 84.9% 4
F 1000.0% 1
G 84.6% 5
H 96.4% 3

2.5. Research Procedure

Software is developed in various languages, such as C, C++, Java, Pascal, and Python,
and there are various types of software modules, such as methods, functions, procedures,
classes, and objects. In this study, C++ functions that are often used to create solutions
were studied. Figure 2 shows the overall research procedure. Phase (1) derives the function
ranking by associating network structure and execution frequency. Meanwhile, phase
(2) verifies whether the newly derived function ranking has both network and execution
frequency characteristics through the hypothesis.

1

Figure 2. Overall research procedure.

2.6. Derivation Phase (1): Function Ranking by Network Structure and Execution Frequency

This phase is consistent with the study’s purpose, and new source function rankings
are derived through the association between software network structure and execution
frequency.

2.6.1. Step (1.1): Research Source Code Selection

Research software requires an adequately sized source code that can perform all of its
menu functions. In this study, operating systems and databases too large to run all menu
functions and small-scale software were deemed unsuitable. However, Notepad++ version
10.0.0.136, a well-known open-source software that can execute all menu functions, was
selected for the study. Analysis of the selected Notepad++ source revealed about 120 C++
source files, 1754 functions, and 243 paths. However, some functions were not called, while
other functions were called solely from external systems. If these functions are included
and analyzed, incorrect results would be analyzed [2]. Therefore, these functions were
excluded, and the remaining 378 functions formed a network (Figure 3).

Appl. Sci. 2021, 11, 1685 7 of 14

Appl. Sci. 2021, 11, 1685 7 of 15

about 120 C++ source files, 1754 functions, and 243 paths. However, some functions were
not called, while other functions were called solely from external systems. If these func-
tions are included and analyzed, incorrect results would be analyzed [2]. Therefore, these
functions were excluded, and the remaining 378 functions formed a network (Figure 3).

Figure 3. C++ source function network of Notepad++.

2.6.2. Step (1.2) (Static Analysis): The Function Network Information by 8 SNA Indica-
tors

A total of 8 SNA indicators were used to analyze a network of 378 functions, and the
network weights of the functions were derived for each SNA indicator. Here, functions
with higher weights are considered important functions, and the source functions’ net-
work weights differ for each social network indicator (Table 3).

Table 3. Part of the network weight of 378 functions analyzed by 8 SNA indicators.

Function
8 Social Network Analysis (SNA) Indicators

In-
Degree

Out-
Degree

Page-
Rank

Author-
ity Hub In-

Closeness
Out-Close-

ness Betweenness

DisplayColumn 2653 13,263 1342 164,373 130,571 2653 13,642 4
DisplayEditString 7958 2653 1895 196,486 30,884 8488 3537 35

DisplayTitle 2653 0 1342 164,373 0 2653 0 0
doCheck 2653 0 3968 0 0 2653 0 0

DockingCont::isInRect 0 2653 1323 0 0 0 2653 0
DockingCont::run_dlgProc 0 2653 1323 0 0 0 2653 0

DockingCont::runProcCaption 0 2653 1323 0 0 0 2653 0
DocTabView:: findBufferByName 0 2653 1323 0 0 0 3537 0

DocTabView::reSizeTo 0 2653 1323 0 0 0 2653 0
doException 2653 2653 1383 0 0 2653 2653 7
DrawCursor 2653 2653 1342 164,373 30,884 2653 3537 0

Figure 3. C++ source function network of Notepad++.

2.6.2. Step (1.2) (Static Analysis): Derivation of Function Network Information by
8 SNA Indicators

A total of 8 SNA indicators were used to analyze a network of 378 functions, and the
network weights of the functions were derived for each SNA indicator. Here, functions
with higher weights are considered important functions, and the source functions’ network
weights differ for each social network indicator (Table 3).

Table 3. Part of the network weight of 378 functions analyzed by 8 SNA indicators.

Function
8 Social Network Analysis (SNA) Indicators

In-
degree

Out-
degree

Page-
Rank Authority Hub In-

closeness
Out-

closeness Betweenness

DisplayColumn 2653 13,263 1342 164,373 130,571 2653 13,642 4
DisplayEditString 7958 2653 1895 196,486 30,884 8488 3537 35

DisplayTitle 2653 0 1342 164,373 0 2653 0 0
doCheck 2653 0 3968 0 0 2653 0 0

DockingCont::isInRect 0 2653 1323 0 0 0 2653 0
DockingCont::run_dlgProc 0 2653 1323 0 0 0 2653 0

DockingCont::runProcCaption 0 2653 1323 0 0 0 2653 0
DocTabView::

findBufferByName 0 2653 1323 0 0 0 3537 0

DocTabView::reSizeTo 0 2653 1323 0 0 0 2653 0
doException 2653 2653 1383 0 0 2653 2653 7
DrawCursor 2653 2653 1342 164,373 30,884 2653 3537 0

2.6.3. Step (1.3) (Dynamic Analysis): Derivation of Execution Frequency of Function by
Executing the Menu Only Once

The Notepad++ functions’ source codes were modified to measure the execution
frequency of the C++ function. When measuring the execution frequency, if the same menu
is executed multiple times, the source functions related to the menu may be deemed as
more important. In this case, measurements may not accurately analyze the association
between the network structure and the execution frequency. Therefore, every menu in
Notepad++ was executed only once before measuring the source functions’ execution
frequencies (Table 4).

Appl. Sci. 2021, 11, 1685 8 of 14

Table 4. Part of the execution frequency of 378 functions measured by running every menu once.

Functions Execution Frequency

Notepad_plus::process 188,207
nsBig5Prober::Reset 20,865

StyleArray::addStyler 15,276
Notepad_plus::command 12,113
getKwClassFromName 9176
Shortcut::run_dlgProc 8962
getNameStrFromCmd 8769

FindReplaceDlg::run_dlgProc 6340
LexerStylerArray::addLexerStyler 6100

FindGrid 5266
GridProc 5238

commafyInt 3626

2.6.4. Step (1.4): Derivation of New Function Ranking by the Association of Network
Structure and Execution Frequency

Function importance was calculated using Equations (8)–(10) of the DEA, which
satisfied its execution frequency by maximizing the function’s efficiency with 8 network
weights’ information. The network information and execution frequency can be associated
using this method, and the new function ranking was derived (Table 5).

Table 5. The part of 378 functions ranking calculated by the DEA technique.

New Functions Ranking Functions

1 Notepad_plus::process
2 GetWinVersionStr
3 CalcVisibleCellBoundaries
4 Notepad_plus::str2Cliboard
5 Notepad_plus::replaceInFiles
6 GetCharset
7 CreateToolTip
8 nsSBCSGroupProber::Reset
9 checkSingleFile

10 FunctionCallTip::getCursorFunction
11 ScintillaKeyMap::run_dlgProc
12 CommentStyleDialog::run_dlgProc
13 ClientRectToScreenRect
14 Searching::convertExtendedToString
15 NppParameters::feedUserLang

2.7. Verification Phase (2): Newly Derived Function Ranking versus Conventional Methods

It is ideal that the newly derived function ranking is compared with the actual function
ranking, but the actual function ranking is unknown. Therefore, the study determined if
the derived result was correlated with the execution frequency and the network’s function
rankings. Following this step, the top 20% of all functions selected as core functions
were analyzed.

2.7.1. Step (2.1): Derivation of Network Function Ranking with Integrating the Results of
8 SNA Indicators

The network weights of the functions analyzed by the SNA indicators are shown in
Table 3, but the representative network weight was unknown. In previous studies, several
indicators were integrated into one using the DEA technique [29]. By applying this method,
the functions’ network weights were integrated into 1, and the ranking distribution of its
weight was shown in Figure 4a. By sorting them in the highest weight order, the integrated
network ranking of the function was derived.

Appl. Sci. 2021, 11, 1685 9 of 14

2.7.2. Step (2.2): Derivation of Function Ranking of Execution Frequency after
Actual Usage

Notepad++, which can measure the execution frequency, was distributed to several
users, and several execution frequencies of the source function were collected after usage.
Then, the function ranking was derived using the collected execution frequencies. After
analyzing the correlation between the function ranking of the execution frequency and the
newly derived function rankings in this study, most were similar. Because the correlations
are similar, the three-frequency function ranking types (highest, medium, and lowest
correlation) are described, as shown in Figure 4b–d.

Appl. Sci. 2021, 11, 1685 9 of 15

if the derived result was correlated with the execution frequency and the network’s func-
tion rankings. Following this step, the top 20% of all functions selected as core functions
were analyzed.

2.7.1. Step (2.1): Derivation of Network Function Ranking Integrating the Results of 8
SNA indicators

The network weights of the functions analyzed by the SNA indicators are shown in
Table 3, but the representative network weight was unknown. In previous studies, several
indicators were integrated into one using the DEA technique [29]. By applying this
method, the functions’ network weights were integrated into 1, and the ranking distribu-
tion of its weight was shown in Figure 4a. By sorting them in the highest weight order,
the integrated network ranking of the function was derived.

2.7.2. Step (2.2): Derivation of Function Ranking of Execution Frequency after Actual
Usage

Notepad++, which can measure the execution frequency, was distributed to several
users, and several execution frequencies of the source function were collected after usage.
Then, the function ranking was derived using the collected execution frequencies. After
analyzing the correlation between the function ranking of the execution frequency and
the newly derived function rankings in this study, most were similar. Because the corre-
lations are similar, the three-frequency function ranking types (highest, medium, and low-
est correlation) are described, as shown in Figure 4b–d.

(a) (b)

(c) (d)

Figure 4. The function ranking distribution of integrated network weight and three execution fre-
quencies; (a) Ranking distribution of integrated network weight; (b) Ranking distribution of the
execution frequency with the highest correlation (H); (c) Ranking distribution of the execution
frequency with the medium correlation (M); (d) Ranking distribution of the execution frequency
with the lowest correlation (L).

0

0.5

1

1.5

2

2.5

0 100 200 300 400

N
et

w
or

k
w

ei
gh

t

Number of functions

 -
 5,000

 10,000
 15,000
 20,000
 25,000
 30,000
 35,000
 40,000
 45,000
 50,000

0 100 200 300 400

Ex
ec

ut
io

n
fre

qu
en

ci
es

Number of functions

 -

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

0 100 200 300 400

Ex
ec

ut
io

n
fre

qu
en

ci
es

Number of functions

 -
 20,000
 40,000
 60,000
 80,000

 100,000
 120,000
 140,000
 160,000

0 100 200 300 400

Ex
ec

ut
io

n
fre

qu
en

ci
es

Number of functions

Figure 4. The function ranking distribution of integrated network weight and three execution
frequencies; (a) Ranking distribution of integrated network weight; (b) Ranking distribution of
the execution frequency with the highest correlation (H); (c) Ranking distribution of the execution
frequency with the medium correlation (M); (d) Ranking distribution of the execution frequency with
the lowest correlation (L).

2.7.3. Step (2.3): Hypothesis Verification through Spearman Correlation

Because the integrated network and execution frequency function rankings were
derived, the study’s hypothesis was tested using the Spearman correlation, which com-
pared the correlation of function rankings. The following hypotheses were established to
determine whether the conventional technique’s disadvantages were resolved, and 20% of
the core functions could be adopted similar to the Pareto principle.

Hypothesis 0. When the conventional technique was used, there is a correlation between the
network function ranking using static analysis and the function ranking of execution frequency
using dynamic analysis.

Hypothesis 1. The new function ranking derived in this study has no correlation with the network
function ranking.

Appl. Sci. 2021, 11, 1685 10 of 14

Hypothesis 2. The new function ranking derived in this study has no correlation with the execution
frequency function ranking.

Hypothesis 3. The top 20% of all functions derived from this study can be adopted as core functions.

The correlation between the static analysis and dynamic analysis results was analyzed
before verifying this study’s results. Based on Hypothesis 0, if the network function ranking
and the execution frequency function ranking are correlated, the other hypotheses may
be meaningless. Hypothesis 1 verifies the correlation between the new function rankings
derived in this study and the network function rankings, and Hypothesis 2 verifies the
correlation with the execution frequency’s function ranking. Moreover, Hypothesis 3
analyzes whether the top 20% of all functions can be selected as core functions.

3. Results
3.1. Hypothesis 0 Test

The Spearman correlation between the network and execution frequency function
rankings was analyzed, as shown in Table 6. The Spearman correlation was different for
each of the eight SNA indicators, and there was a weak correlation between the integrated
network function ranking and the execution frequency of medium (M) and lowest data
(L) in Figure 4. However, the execution frequency of highest data (H) was analyzed
with a p-value > 0.05, which was not related to the integrated network function ranking.
Therefore, Hypothesis 0 was rejected because there was no correlation between the network
and execution frequency function rankings.

Table 6. Spearman correlation between the function ranking of network and execution frequency.

Spearman Correlation Comparison Figure 4b Highest
Correlation Data

Figure 4c Medium
Correlation Data

Figure 4d Lowest
Correlation Data

Table 3

Degree Centrality In-degree 8.9% 10.6% 13.5%
Out-degree −0.5% −1.7% −1.9%

HITS Centrality Authority 6.5% 16.0% 16.3%
Hub 5.0% 10.3% 10.%

Closeness Centrality In-closeness 9.7% 11.2% 13.9%
Out-closeness 2.0% 0.6% 0.2%

Page Rank centrality 9.5% 10% 12.4%
Node betweenness 7.4% 7.2% 9.7%

Figure 4a Integrated 8 SNA indicators 0.94% 12.1% 13%

3.2. Hypothesis 1 Test

The Spearman correlation between the newly derived function ranking and the net-
work function ranking was analyzed, as shown in Table 7, and the correlation of eight
SNA indicators was analyzed differently. The integrated eight SNAs, including all of the
indicators’ characteristics, can be selected as a representative indicator [29]. The p-value of
the integrated SNA index was greater than 0.05 and had a 25.58% Spearman correlation.
Therefore, Hypothesis 1 was rejected.

Table 7. The correlation between the derived function ranking and the network function ranking.

Spearman Correlation Comparison Spearman Correlation p-Value Hypothesis 1

Table 3

Degree Centrality In-degree 24.596% 1.293 × 10−6 Rejected
Out-degree −9.413% 0.6754 Not Rejected

HITS Centrality Authority 16.708% 0.001112 Rejected
Hub 13.074% 0.01095 Rejected

Closeness Centrality In-closeness 24.549% 1.362 × 10−6 Rejected
Out-closeness −7.775% 0.1313 Not Rejected

PageRank centrality 23.239% 4.97 × 10−6 Rejected
Node betweenness 15.125% 0.0032 Rejected

Figure 4a Integrated 8 SNA indicators 25.58% 4.63 × 10−7 Rejected

Appl. Sci. 2021, 11, 1685 11 of 14

3.3. Hypothesis 2 Test

The Spearman correlation between the newly derived function ranking and the execu-
tion frequency’s function rankings after actual usage was analyzed, as shown in Table 8,
and the p-values of the execution frequency were greater than 0.05. Hypothesis 2 was
rejected because the Spearman correlation between the newly derived function ranking
and the execution frequency’s function ranking ranged from 79.6–83.12%.

Table 8. The correlation between the function ranking of execution frequency after actual usage.

Ranking of Execution Frequency Spearman Correlation p-Value Hypothesis 2

Highest correlation data 83.121% 2.2 × 10−16 Rejected
Medium correlation data 82.169% 2.2 × 10−16 Rejected
Lowest correlation data 79.699% 2.2 × 10−16 Rejected

3.4. Hypothesis 3 Test

The Spearman correlations of the newly derived function rankings relative to the
function rankings of the execution frequency and the integrated network were presented
in Figure 5. In the graph, the newly derived function ranking was set as the x-axis, the
Spearman correlation percent was set as the y-axis, and the Spearman correlations between
the execution frequency and the network were drawn as line graphs. There was no
Spearman correlation under 10% of the x-axis, whereas, above 10%, Spearman correlations
were present. When comparing the three types of execution frequencies with the newly
derived function rankings, they increased the correlation by 20%, decreased after 20%,
and later increased after 57%. All had similar correlations, as shown in the line graph.
Correlations with the network function ranking increased up to 57% of the x-axis, and there
were correlations of 25% at 59% or more above the x-axis. When analyzing the correlation at
20% of the Pareto principle’s function, it has strong correlations with the function ranking
of execution frequency. There was also a strong network correlation than the correlation of
the entire function. Therefore, 20% of the functions can be selected as the core function,
and Hypothesis 3 was chosen.

Appl. Sci. 2021, 11, 1685 12 of 15

Figure 5. Correlation graph between the function ranking and network and execution frequency.

4. Discussion
This study analyzed a new method that locates source codes that largely affect soft-

ware quality. Conventional methods include static analysis, which analyzes the source
network structure, and dynamic analysis, which locates frequently executed modules.
One static analysis study analyzed Java classes with four SNA indicators and analyzes
how much they match frequently executed classes [2]. The study concluded that there was
a correlation between network structure and execution frequency in some classes. How-
ever, among the four SNA indicators, representative indicators that can be used are not
presented. Huh and Kim [29] solved this problem by presenting a method that integrates
the results of 8 social network indicators through the DEA technique. However, because
the two studies do not analyze the association with execution, there is little association
with execution [3,4]. Meanwhile, the dynamic analysis method measures frequently exe-
cuted modules through execution to approximate the important modules. However, it is
impossible to derive modules that are important position in the source network [3,4]. In
this study, a new method of deriving function rankings by analyzing the association be-
tween the network structure and execution frequency was presented. The newly derived
function rankings by this study’s method had a correlation with the execution frequency’s
function ranking and the network function ranking. Therefore, the disadvantages of static
analysis and dynamic analysis were resolved. Moreover, 20% of the functions are deemed
important functions that can affect software quality, similar to the Pareto principle. These
findings suggest that Notepad++’s software quality can be improved cost effectively.
However, applying this research method to other software does not guarantee the same
results. For this method to become applicable to other software, additional research on
other software is required.

5. Conclusions
This study investigated a new method of deriving important source codes using the

association between software network structure and execution. The significance of this
study is as follows. First, source function rankings can be derived by analyzing the asso-
ciation between the network structure and execution frequency using the DEA technique.
Second, a new association method that can derive important software modules was pro-
posed. Third and last, a new method that derives the top 20% of functions that conform
to the Pareto principle was presented. This method is expected to be applicable when

Figure 5. Correlation graph between the function ranking and network and execution frequency.

4. Discussion

This study analyzed a new method that locates source codes that largely affect software
quality. Conventional methods include static analysis, which analyzes the source network

Appl. Sci. 2021, 11, 1685 12 of 14

structure, and dynamic analysis, which locates frequently executed modules. One static
analysis study analyzed Java classes with four SNA indicators and analyzes how much they
match frequently executed classes [2]. The study concluded that there was a correlation
between network structure and execution frequency in some classes. However, among the
four SNA indicators, representative indicators that can be used are not presented. Huh
and Kim [29] solved this problem by presenting a method that integrates the results of
8 social network indicators through the DEA technique. However, because the two studies
do not analyze the association with execution, there is little association with execution [3,4].
Meanwhile, the dynamic analysis method measures frequently executed modules through
execution to approximate the important modules. However, it is impossible to derive
modules that are important position in the source network [3,4]. In this study, a new
method of deriving function rankings by analyzing the association between the network
structure and execution frequency was presented. The newly derived function rankings by
this study’s method had a correlation with the execution frequency’s function ranking and
the network function ranking. Therefore, the disadvantages of static analysis and dynamic
analysis were resolved. Moreover, 20% of the functions are deemed important functions
that can affect software quality, similar to the Pareto principle. These findings suggest that
Notepad++’s software quality can be improved cost effectively. However, applying this
research method to other software does not guarantee the same results. For this method to
become applicable to other software, additional research on other software is required.

5. Conclusions

This study investigated a new method of deriving important source codes using
the association between software network structure and execution. The significance of
this study is as follows. First, source function rankings can be derived by analyzing
the association between the network structure and execution frequency using the DEA
technique. Second, a new association method that can derive important software modules
was proposed. Third and last, a new method that derives the top 20% of functions that
conform to the Pareto principle was presented. This method is expected to be applicable
when studying other software, deriving core modules, and improving overall software
quality cost effectively.

This study did not analyze McCabe’s complexity in the source code and the relation-
ships of functions such as inheritance, association, and dependencies. Future studies can
obtain more accurate results by analyzing the functions’ relationship and McCabe com-
plexity and examining how software quality increases after improving the newly derived
core functions.

Author Contributions: Conceptualization, S.M.H. and W.J.K.; methodology, S.M.H. and W.J.K.;
validation, W.J.K.; investigation, S.M.H.; resources, S.M.H. and W.J.K.; writing—original draft
preparation, S.M.H.; writing—review and editing, S.M.H. and W.J.K.; project administration, S.M.H.
and W.J.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Allied Signal Aerospace Company. Handbook of Software Quality Assurance; Schulmeyer, G.G., McManus, J.I., Eds.; Van Nostrand

Reinhold Co.: New York, NY, USA, 1992.
2. Rahman, M. Application of Social Networking Algorithms in Program Analysis: Understanding Execution Frequencies. Master’s

Thesis, Colorado State University Libraries, Fort Collins, CO, USA, 2007. Available online: http://hdl.handle.net/10217/46906
(accessed on 20 January 2021).

http://hdl.handle.net/10217/46906

Appl. Sci. 2021, 11, 1685 13 of 14

3. Rubin, J.; Chechik, M.A. Survey of feature location techniques. In Domain Engineering; Springer: Berlin/Heidelberg, Germany,
2013; pp. 29–58. [CrossRef]

4. Koschke, R.; Quante, J. On dynamic feature location. In Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, 7–11 November 2005; Association for Computer Machinery: New York, NY, USA; pp. 86–95.
[CrossRef]

5. Chen, K.; Rajlich, V. Case study of feature location using dependence graph. In Proceedings of the IWPC 2000, 8th International
Workshop on Program Comprehension, Limerick, Ireland, 10–11 June 2000; pp. 241–247. [CrossRef]

6. Robillard, M.P. Automatic generation of suggestions for program investigation. In Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
Lisbon, Portugal, 5–9 September 2005; Association for Computer Machinery: New York, NY, USA; pp. 11–20. [CrossRef]

7. Saul, Z.M.; Filkov, V.; Devanbu, P.; Bird, C. Recommending random walks. In Proceedings of the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering,
Dubrovnik, Croatia, 3–7 September 2007; Association for Computer Machinery: New York, NY, USA; pp. 15–24. [CrossRef]

8. Wilde, N.; Scully, M.C. Software reconnaissance: Mapping program features to code. J. Softw. Maint. Res. Pract. 1995, 7, 49–62.
[CrossRef]

9. Wilde, N.; Casey, C. Early field experience with the software reconnaissance technique for program comprehension. In Proceedings
of the WCRE’96: 4th Working Conference on Reverse Engineering, Monterey, CA, USA, 10–11 November 1996; IEEE Computer
Society: Washington, DC, USA; pp. 270–276. [CrossRef]

10. Stevenson, S. Investigating software reconnaissance as a technique to support feature location and program analysis tasks
using sequence diagrams. Master’s Thesis, Department of Computer Science, University of Victoria, Victoria, BC, Canada, 2013.
Available online: http://hdl.handle.net/1828/5112 (accessed on 20 January 2021).

11. Wong, W.E.; Gokhale, S.S.; Horgan, J.R.; Trivedi, K.S. Locating program features using execution slices. In Proceedings of the 1999
IEEE Symposium on Application-Specific Systems and Software Engineering and Technology, Richardson, TX, USA, 24–27 March
1999; IEEE Computer Society: Washington, DC, USA; pp. 194–203. [CrossRef]

12. Eisenbarth, T.; Koschke, R.; Simon, D. Locating features in source code. IEEE Trans. Softw. Eng. 2003, 29, 210–224. [CrossRef]
13. Antoniol, G.; Guéhéneuc, Y.-G. Feature identification: An epidemiological metaphor. IEEE Trans. Softw. Eng. 2006, 32, 627–641.

[CrossRef]
14. Revelle, M.; Poshyvanyk, D. An exploratory study on assessing feature location techniques. In Proceedings of the 2009 IEEE

17th International Conference on Program Comprehension, Vancouver, BC, Canada, 17–19 May 2009; IEEE: New York, NY, USA;
pp. 218–222. [CrossRef]

15. Liu, D.; Marcus, A.; Poshyvanyk, D.; Rajlich, V. Feature location via information retrieval based filtering of a single scenario
execution trace. In Proceedings of the Twenty-second IEEE/ACM International Conference on Automated Software Engineering,
Atlanta, GA, USA, 5–9 November 2007; Association for Computing Machinery: New York, NY, USA; pp. 234–243. [CrossRef]

16. Poshyvanyk, D.; Marcus, A. Combining formal concept analysis with information retrieval for concept location in source code. In
Proceedings of the 15th IEEE International Conference on Program Comprehension (ICPC’07), Banff, AB, Canada, 9 July 2007;
IEEE: New York, NY, USA; pp. 37–48. [CrossRef]

17. Ganter, B.; Wille, R. Formal Concept Analysis: Mathematical Foundations; Springer Science & Business Media: Berlin, Germany, 2012.
18. Hill, E.; Pollock, L.; Vijay-Shanker, K. Exploring the neighborhood with Dora to expedite software maintenance. In Proceedings of

the twenty-second IEEE/ACM International Conference on Automated Software Engineering, Atlanta, GA, USA, 4–9 November
2007; Association for Computing Machinery: New York, NY, USA; pp. 14–23. [CrossRef]

19. Zhao, W.; Zhang, L.; Liu, Y.; Sun, J.; Yang, F. 2006. SNIAFL: Towards a static noninteractive approach to feature location.
ACM Trans. Softw. Eng. Methodol. 2006, 15, 195–226. [CrossRef]

20. Borgatti, S.P.; Everett, M.G.; Johnson, J.C. Analyzing Social Networks; Sage: Newbury Park, CA, USA, 2018.
21. Kim, Y.; Kim, Y. Social Network Analysis, 4th ed.; PAKYOUNGSA: Seoul, Korea, 2019. Available online: http://www.riss.kr/link?

id=M15388176 (accessed on 20 January 2021).
22. Nagappan, N.; Ball, T. Using software dependencies and churn metrics to predict field failures: An empirical case study. In

Proceedings of the First International Symposium on Empirical Software Engineering and Measurement, Madrid, Spain, 20–21
September 2007; IEEE Computer Society: Washington, DC, USA; pp. 364–373. [CrossRef]

23. Zimmerman, T.; Nagappan, N. Predicting defects using network analysis on dependency graphs. In Proceedings of the 30th
International Conference on Software Engineering, Leipzig, Germany, 10–18 May 2008; Association for Computing Machinery:
Washington, DC, USA; pp. 531–540. [CrossRef]

24. Li, F.; Yi, T. Apply PageRank algorithm to measuring relationship’s complexity. In Proceedings of the 2008 IEEE Workshop
Pacific-Asia Workshop on Computational Intelligence and Application, PACIIA, Wuhan, China, 19–20 December 2018; IEEE:
New York, NY, USA; pp. 914–917. [CrossRef]

25. Kafle, S. Prioritization of component-to-component links for testing in component based systems. Ph.D. Dissertation, George
Washington University, Washington, DC, USA, 2015. Available online: https://search.proquest.com/openview/44e0a634a287ca8
4b958f17a03d738df/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 20 January 2021).

26. Hu, W. Using citation influence and social network analysis to predict software defects. Master’s Thesis, Department of
Computing Science, University of Alberta, Edmonton, AB, Canada, 2013. [CrossRef]

http://doi.org/10.1007/978-3-642-36654-32
http://doi.org/10.1145/1101908.1101923
http://doi.org/10.1109/WPC.2000.852498
http://doi.org/10.1145/1081706.1081711
http://doi.org/10.1145/1287624.1287629
http://doi.org/10.1002/smr.4360070105
http://doi.org/10.1109/WCRE.1996.558934
http://hdl.handle.net/1828/5112
http://doi.org/10.1109/ASSET.1999.756769
http://doi.org/10.1109/TSE.2003.1183929
http://doi.org/10.1109/TSE.2006.88
http://doi.org/10.1109/ICPC.2009.5090045
http://doi.org/10.1145/1321631.1321667
http://doi.org/10.1109/ICPC.2007.13
http://doi.org/10.1145/1321631.1321637
http://doi.org/10.1145/1131421.1131424
http://www.riss.kr/link?id=M15388176
http://www.riss.kr/link?id=M15388176
http://doi.org/10.1109/ESEM.2007.13
http://doi.org/10.1145/1368088.1368161
http://doi.org/10.1109/PACIIA.2008.309
https://search.proquest.com/openview/44e0a634a287ca84b958f17a03d738df/1?pq-origsite=gscholar&cbl=18750&diss=y
https://search.proquest.com/openview/44e0a634a287ca84b958f17a03d738df/1?pq-origsite=gscholar&cbl=18750&diss=y
http://doi.org/10.7939/R3497V

Appl. Sci. 2021, 11, 1685 14 of 14

27. Nguyen, T.H.; Adams, B.; Hassan, A.E. Studying the impact of dependency network measures on software quality. In Proceedings
of the 2010 IEEE International Conference on Software Maintenance, Timioara, Romania, 12–18 September 2010; pp. 1–10.
[CrossRef]

28. He, P.; Li, B.; Ma, Y.; He, L. Using software dependency to bug prediction. Math. Probl. Eng. 2013, 6, 1–12. [CrossRef]
29. Huh, S.M.; Kim, W.J. Priority analysis for software functions using social network analysis and DEA (Data Envelopment Analysis).

J. Inf. Technol. Serv. 2018, 17, 171–189. [CrossRef]
30. Renieres, M.; Reiss, S.P. Fault localization with nearest neighbor queries. In Proceedings of the 18th IEEE International Conference

on Automated Software Engineering (ASE), Montreal, QC, Canada, 6–10 October 2003; IEEE: New York, NY, USA; pp. 30–39.
[CrossRef]

31. Harrold, M.J.; Rothermel, G.; Wu, R.; Yi, L. An empirical investigation of program spectra. In Proceedings of the 1998 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, Montreal, QC, Canada, 26 June 1998;
Association for Computing Machinery: New York, NY, USA; pp. 83–90. [CrossRef]

32. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444.
[CrossRef]

33. Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment
analysis. Manag. Sci. 1984, 30, 1078–1092. [CrossRef]

34. Choi, M.S.; Kim, W.J.; Cho, H.-K.; Park, S.J. A study on an evaluation method for LCD TV products using axiomatic design based
hybrid AHP/DEA model. Korean Mana. Sci. Rev. 2012, 29, 33–56. [CrossRef]

35. Seo, K.-S.; Ahn, H.-M. Urban railway train operation efficiency studies using DEA. In Proceedings of the Autumn Conference &
Annual Meeting of The Korean Society for Railway, 20–22 October 2016; Korean Society for Railway. pp. 446–459. Available
online: http://www.riss.kr/link?id=A102260697 (accessed on 20 January 2021).

36. Kim, B.H.; Han, S.Y.; Kim, Y.C. Design of advanced HITS algorithm by suitability for importance-evaluation of web-documents.
J. Soc. e-Bus. Stud. 2003, 8, 23–31. Available online: http://www.riss.kr/link?id=A76195204 (accessed on 20 January 2021).

37. CodeCover—An Open-source Glass-box Testing Tool. 2011. CodeCover. Available online: http://www.codecover.org (accessed
on 20 January 2021).

38. Graham, S.L.; Kessler, P.B.; McKusick, M.K. Gprof: A call graph execution profiler. ACM SIGPLAN Not. 1982, 17, 120–126.
[CrossRef]

39. Emrouznejad, A.; Yang, G.-L. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ.
Plan. Sci. 2018, 61, 4–8. [CrossRef]

40. Sudhaman, P.; Thangavel, C. Efficiency analysis of ERP projects—Software quality perspective. Int. J. Proj. Manag. 2015, 33,
961–970. [CrossRef]

41. Paschalidou, G.; Stiakakis, E.; Chatzigeorgiou, A. An application of data envelopment analysis to software quality assessment. In
Proceedings of the 6th Balkan Conference in Informatics, Thessaloniki, Greece, 19–21 September 2013; Association for Computing
Machinery: New York, NY, USA; pp. 228–235. [CrossRef]

42. Kou, G.; Peng, Y.; Shi, Y.; Wu, W. Classifier evaluation for software defect prediction. Stud. Inform. Control. 2012, 21, 117–126.
[CrossRef]

43. Wray, B.; Mathieu, R. Evaluating the performance of open source software projects using data envelopment analysis. Inform.
Manag. Comput. Secur. 2008, 16, 449–462. [CrossRef]

44. Zhang, S.; Wang, Y.; Tong, J.; Zhou, J.; Ruan, L. Evaluation of project quality: A DEA-based approach. In Software Process Workshop;
Springer: New York, NY, USA, 2006; pp. 88–96. [CrossRef]

45. Cao, Q. Assessing productivity of UML-based systems analysis and design: A DEA approach. In Proceedings of the Americas
Conference on Information Systems, New York, NY, USA, 6–8 August 2004; Association for Information Systems: New York, NY,
USA; pp. 1652–001614847.

46. Yang, Z.; Paradi, J.C. DEA evaluation of a Y2K software retrofit program. IEEE Trans. Eng. Manag. 2004, 51, 279–287. [CrossRef]

http://doi.org/10.1109/ICSM.2010.5609560
http://doi.org/10.1155/2013/869356
http://doi.org/10.9716/KITS.2018.17.3.171
http://doi.org/10.1109/ASE.2003.1240292
http://doi.org/10.1145/277633.277647
http://doi.org/10.1016/0377-2217(78)90138-8
http://doi.org/10.1287/mnsc.30.9.1078
http://doi.org/10.7737/KMSR.2012.29.1.033
http://www.riss.kr/link?id=A102260697
http://www.riss.kr/link?id=A76195204
http://www.codecover.org
http://doi.org/10.1145/872726.806987
http://doi.org/10.1016/j.seps.2017.01.008
http://doi.org/10.1016/j.ijproman.2014.10.011
http://doi.org/10.1145/2490257.2490264
http://doi.org/10.24846/v21i2y201201
http://doi.org/10.1108/09685220810920530
http://doi.org/10.1007/11754305_10
http://doi.org/10.1109/TEM.2004.830843

	Introduction
	Materials and Methods
	Social Network Analysis (SNA)
	Software Profiling
	Data Envelopment Analysis (DEA)
	Demonstration of Node Ranking Combining Network Structure and Execution Frequency by DEA
	Research Procedure
	Derivation Phase (1): Function Ranking by Network Structure and Execution Frequency
	Step (1.1): Research Source Code Selection
	Step (1.2) (Static Analysis): Derivation of Function Network Information by 8 SNA Indicators
	Step (1.3) (Dynamic Analysis): Derivation of Execution Frequency of Function by Executing the Menu Only Once
	Step (1.4): Derivation of New Function Ranking by the Association of Network Structure and Execution Frequency

	Verification Phase (2): Newly Derived Function Ranking versus Conventional Methods
	Step (2.1): Derivation of Network Function Ranking with Integrating the Results of 8 SNA Indicators
	Step (2.2): Derivation of Function Ranking of Execution Frequency after Actual Usage
	Step (2.3): Hypothesis Verification through Spearman Correlation

	Results
	Hypothesis 0 Test
	Hypothesis 1 Test
	Hypothesis 2 Test
	Hypothesis 3 Test

	Discussion
	Conclusions
	References

