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Abstract: The evaluation of cyclic crack propagation due to missions with varying mixed-mode
conditions is an important topic in industrial applications. This paper focuses on the determination
of the resulting propagation direction. Two criteria are analyzed, the dominant step criterion and the
averaged angle criterion, and compared with experimental data from tension-torsion tests with and
without phase shift. The comparison shows that the dominant step criterion yields better results for
small to moderate values of the phase shift. For a large phase shift of 90◦, the experimental results
are not very consistent, and therefore, no decisive conclusions can be drawn.

Keywords: crack propagation; mixed-mode; specimens; tension-torsion; mission

1. Introduction

In aircraft engine components, the accurate prediction of the propagation of potential
cracks has gained much importance in recent decades. Indeed, due to challenging require-
ments related to fuel consumption and (consequently) weight, traditional crack initiation
criteria have been replaced by damage tolerance concepts [1]. Not only life prediction
in terms of the number of cycles is crucial, but also the accurate prediction of the crack
propagation direction is a target. This applies for instance to blisks, in which a crack
initiated in the blade due to vibrations may (depending on the crack propagation direction)
grow into the disk and lead to a catastrophic failure due to the centrifugal loading [2].
Therefore, both the crack propagation rate and direction are essential information.

Due to the different time constants involved in mechanical and thermal processes, the
stress and temperature evolution during flight are quite different, and up to a few hundred
loading steps may be needed to accurately simulate all conditions. At any location along
a potential crack, this leads to exactly the same amount of different mixed-mode states.
Due to small-scale plasticity at the crack tip, a linear elastic stress intensity approach can
be taken. For each of the stress states separately, one can determine the crack propagation
speed and direction [3,4]. The question is, however, how to determine the speed and
direction due to the complete mission. For the speed, a cycle extraction through a rainflow
algorithm [5] is the usual way to go. Still, the rainflow algorithm is usually applied to
a one-dimensional function, and in mixed-mode transient temperature conditions, it is
not necessarily clear what function should be taken. For the crack propagation direction,
the fundamental question is how to arrive at the propagation direction for the complete
mission. This paper concentrates on the latter aspect.

For monotonic plane mixed-mode loading, different stress or energy based fracture
criteria have been developed and adapted since the 1960s in the scope of linear elastic
fracture mechanics (LEFM). In this context, the maximum tangential stress criterion (MTS)
of Erdogan and Sih [6], the maximum shear stress criterion (MSS) [7,8], and, for example,
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the equivalent stress intensity factor Kv of Richard et al. [3,9] should be mentioned. For the
case of a general three-dimensional mixed-mode loading, Schöllmann et al. [10] developed
the so-called σ′1-criterion based on the MTS criterion. Furthermore, the empirical criterion
according to Richard et al. [9] represents an extension from the 2D to the 3D state and stands
out especially because of its easy adaptability to experimental results. Finally, a general
approach based on the principal planes of the asymptotic stress tensor at the crack tip was
developed by Dhondt [11] and applied in several subsequent publications [2,12].

As proven by Yokobori et al. [13], Tong et al. [14], and Magill and Zwerneman [15],
among others, all criteria for monotonic loading can in principle also be applied to fatigue
crack growth under proportional loading. However, in the case of non-proportional mixed-
mode loading, the fracture criteria developed for monotic and cyclic proportional loading
are no longer applicable. This circumstance essentially results from the fact that the time-
varying stress path can no longer be described by only one parameter. A non-proportional
loading occurs, for example, by the superposition of a static load component with a cyclic
load component and has been studied by [2,16–22], among others. Mode II or mixed-mode
overloads interspersed in a Mode I basic stress can be considered as a special case of a non-
proportional mixed-mode loading, as studied for example by Sander and Richard [23,24],
as well as by Eberlein and Richard [25]. The general case of non-proportional loading is
represented by phase-shifted mixed-mode loading, which was the focus of investigations
in [26–29].

Based on the experimental investigations of Brüning [30], Yang [31] carried out ex-
tensive finite element analyses, as well as crack propagation analyses in the context of
LEFM. However, no unified criterion for determining the crack propagation direction could
be found here, since the mixed-mode relationship also changes continuously with the
crack growth.

In particular, with regard to the superposition of all three crack modes, very few
investigations exist for phase-shifted mixed-mode loading [32,33]. Furthermore, a special
problem in the case of three-dimensional mixed-mode loading is the geometry-dependent
coupling of Mode II and Mode III at the surface, which was demonstrated, for example, in
[34–36]. However, this is currently not generally taken into account in the crack propagation
concepts developed or in the determination of the crack growth curves.

One way of arriving at a propagation deflection angle for the complete mission is
to start from the deflection angles calculated for each loading step separately, assuming
each step to be the extremal value of a zero-max cycle by simply adding zero as the
second entry in the cycle (a zero-max cycle is a cycle in which one of both K-values is
zero). The problem is how to combine the individual step angles. One obvious way is
to proceed as in BEASY [37] and to calculate the mission deflection angle as a weighted
average of the deflection angles in the individual steps. For the weight, the equivalent
K-factor in each individual step is used. Alternatively, one could use a dominant step
criterion. Such a criterion postulates that the deflection angle of the mission is the same as
the deflection angle of the dominant step. In [2], the dominant step was defined as the step
with the highest crack propagation rate obtained by substituting the equivalent K-factor in
a Paris-type crack propagation law.

In the present publication, the weighted deflection angle criterion is compared with
the dominant step criterion. To this end, the former criterion, as defined in [37], is slightly
modified. Indeed, to take the temperature effect into account, the weight in each loading
step is taken to be the crack propagation rate obtained by substituting the equivalent K-
factor into a simple Paris-type law (this is similar to the way the dominant step is identified
in the dominant step approach). In this way, the temperature enters the calculation through
the temperature-dependent constants in the Paris law. The dominant step criterion is kept
in the form already used to analyze cruciform specimens in [2]. Both criteria are validated
using tension-torsion test results with and without phase shift [38]. It must be emphasized
that since the tension-torsion tests are isothermal, only the way both criteria handle the
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change of mode-mixity in a mission is validated and not the way the temperature is taken
into account.

The next section describes the experimental setup. Then, a detailed description of the
crack propagation procedure for mixed-mode missions in CRACKTRACER3D is given.
Finally, the validation of the crack propagation criteria using the tension-torsion results is
described, and the most appropriate criterion is identified. A list of the nomenclature used
throughout the article is given in Table 1.

Table 1. Nomenclature.

Symbol Meaning

Ai area of triangle i
asur f crack length measured on the specimen free surface
dax distance in the axial direction

da/dN crack propagation rate
(da/dN)re f Paris law constant

fC critical correction
fth threshold correction
fR R-value correction
F axial force

KC critical value
Keq equivalent stress intensity factor
KI Mode I stress intensity factor
KI I Mode II stress intensity factor
KI I I Mode III stress intensity factor
m Paris law exponent
Mt torsional moment

Nstep number of steps in the mission
r radial polar coordinate at the crack tip
R Kmin/Kmax

Raxial Fmin,axial/Fmax,axial
Rp0.2 yield strength

Rtorsion Mt,min/Mt,max
T temperature
Vi volume of the triangular prism built on Ai
x Cartesian coordinate at the crack tip in the propagation direction
y normal Cartesian coordinate at the crack tip
z tangential Cartesian coordinate at the crack tip

∆a crack increment
∆Keq equivalent stress intensity factor range
∆Kre f Paris law constant
∆Kth threshold value
∆ϕ error in the deflection angle
σN max nominal axial stress
σ∗ self-similar stress tensor
τN max nominal torsional stress
ϕ angular polar coordinate at the crack tip

deflection angle
ϕo polar angle made by the highest self-similar principal stress plane
ψ twist angle

2. Crack Propagation in Tension-Torsion Tests: Experimental Setup

The experiments under superimposed cyclic tension-compression and torsional load-
ing were carried out with specimens made of the high-strength steel 34CrNiMo6 in
quenched and tempered conditions. To avoid additional influences due to the rolling
direction, the corresponding flat specimens were made from a forged ingot with the chemi-
cal composition shown in Table 2 and the mechanical properties given in Table 3.
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Table 2. Chemical composition (in % of weight) of the tested material 34CrNiMo6 [39].

Element C Mn Si P S Cr Mo Ni Al

Composition 0.36 0.73 0.26 0.006 0.001 1.57 0.22 1.57 0.022

Table 3. Mechanical properties of the tested material 34CrNiMo6 [39].

Rp0.2 (MPa) Rm (MPa) A5 (%) Hardness (HB) E (MPa) ν

819 963 15 326 210,000 0.3

Single-edge notched-tension-compression specimens (SEN-TC) with a length of 230 mm,
a width of 50 mm, and a thickness of 10 mm were used (Figure 1a). Under the superimposed
loading condition, these specimens’ shape guarantees the presence of all three crack modes
along the crack front. Furthermore, the SEN specimen also allows for a good observation
of the crack propagation on the surfaces.

(a) (b)

Figure 1. Experimental setup: (a) geometry of the SEN-TC-specimen; (b) servo-hydraulic ten-
sion/torsion testing machine [38,40].

To create comparable and reproducible conditions, the specimens were provided with
a sharp V-shaped starter notch by wire erosion (see the detail in Figure 1a). In addition,
initiation of a Mode I controlled fatigue crack was performed at a tension-compression
load of ±25 kN with Raxial = −1 until a crack increment of ∆a = 0.3 mm was reached.
For this purpose, the potential drop technique with the appropriate measuring device
(MATELECT [41]) was used, whereby the crack increment to be achieved corresponded to a
2% change in the electrical potential. Both the initiation of the cracks and the experimental
tests were performed on a servo-hydraulic tension/torsion testing machine (Figure 1b),
with which axial loads up to±250 kN and torsional moments up to±2 kNm can be realized.

Regarding the determination of the superimposed tension-compression and torsional
loading, at first, a fixed load level for the axial loading was defined. In detail, this level is
described by the quotient of the maximum nominal axial stress σN to the yield strength
Rp0.2 for 0.2% plastic strain of the material (Table 3) and amounts to σN/Rp0.2 = 0.07. This
results in a maximum load amplitude of the axial force of F = 27.5 kN. In addition, three
different loading type ratios were selected, which result from the quotient of the maximum
nominal torsional stress τN to the maximum nominal axial stress σN in the undisturbed
cross-section: τN/σN = 0.76, 1, and 1.31. Since the axial load level remained constant at the
start of all tests, the maximum torsional moments Mt = 60.5 Nm, 80 Nm, and 104.75 Nm
were applied to realize the three τN/σN ratios.
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Furthermore, the influence of the stress ratio of the axial load on the crack propagation
behavior under mixed-mode conditions was investigated. For this purpose, tests were
carried out both at Raxial = 0 and Raxial = −1. The stress ratio of cyclic alternating torsion
was Rtorsion = −1 in all experiments.

In order to investigate the influence of a non-proportional mixed-mode load on
the fatigue crack propagation, the torsional moment was set in-phase to the tension-
compression load, as well as phase shifted by 40◦ and 90◦ to the axial loading. In total,
there were eighteen different load cases, which result from the superposition of an axial
load with a torsional moment from the schematic diagram for one load cycle in Figure 2.

Figure 2. Load-time curves used for the experimental investigation [38].

All experiments were performed load controlled at room temperature. A change
of the twisting angle of the torsion cylinder by more than 1◦ was considered to be the
termination criterion.

3. Crack Propagation Procedure in CRACKTRACER3D

For the validation, the test results were simulated by performing cyclic crack propa-
gation calculations using the MTU in-house software CRACKTRACER3D. This is a fully
automatic cyclic crack propagation tool using the finite element method. A calculation
based on CRACKTRACER3D consists of several increments. Each increment is made up of
a pre-processing part, a finite element call, and a post-processing part (Figure 3). Let us for
the sake of clarity at first assume that there is only one loading step.

The input for the pre-processor consists of a finite element input file for the uncracked
structure (including the mesh, the boundary conditions, the loading, etc.) and a file
containing the actual crack geometry. The pre-processor inserts this crack into the mesh
and generates a finite element deck for the cracked structure. It does so by remeshing
a part of the mesh in which crack propagation is supposed to take place (the so-called
domain). This domain is remeshed using quadratic hexahedral elements with reduced
integration in a flexible cylinder with a hexagonal cross-section surrounding the crack
front (the so-called tube) and quadratic tetrahedral elements elsewhere. All meshes were
connected using linear multiple point constraints. Figure 4 shows a typical mesh during
crack propagation in the tension-torsion specimen. In Part (a) of the figure, one notices
the original mesh (quadratic hexahedral elements in this case) on the top and bottom.
The middle part is the domain, which is primarily meshed with tetrahedral elements.
At the crack front, in a hexagonal cylinder, twenty-node brick elements with reduced
integration were used (Figure 5). Barlow [42] proved that the integration points of these
elements are superconvergent, i.e., the stresses in these integration points have also a
quadratic accuracy.
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Figure 3. Scheme of CRACKTRACER3D.

(a) (b)

Figure 4. (a) Mesh of the cracked tension-torsion specimen. (b) Detail of the domain.

The innermost layer of hexahedral elements adjacent to the crack front are so-called
collapsed quarter-point elements [43,44]. These are regular 20-node brick elements, one
face of which is collapsed to a line. The 8 nodes in this face are reduced to 3, i.e., one and
the same node may occur more than once in the element topology. Furthermore, mid-nodes
on edges having one node in common with the crack front are moved into a quarter-point
position. It has been proven that these elements exhibit the 1/

√
r singularity typical for the

stress and strain field at the crack tip in linear elastic calculations.
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Figure 5. Detailed view of the tube.

After the creation of the new mesh, any boundary conditions applied to the domain
were appropriately modified. Subsequently, a linear elastic finite element calculation
was performed with the free software finite element tool CalculiX [45]. As a result of
the calculation, the stresses at the reduced integration points in the 20-node collapsed
hexahedral elements were stored in a file.

The post-processor uses these stresses to obtain the K-factors (stress intensity factors)
along the crack front. To this end, the stress obtained by the finite element method was
compared to the asymptotic stress field at the crack front. For isotropic materials, this latter
field is analytically available [46] and takes the form:

σxx =
1√
r

fxx(ϕ, KI , KI I , KI I I), (1)

and similar for the other stress components. Here, the x-y-z coordinate system is a
local coordinate system at the crack front: the y-axis is locally orthogonal to the crack plane;
the x-axis is in the local crack plane and locally orthogonal to the crack front in the direction
of the propagation; the z-axis forms a positive coordinate system with the x and y-axis; see
Figure 6. The left part of the figure gives a view of the crack plane. It shows the elements
immediately adjacent to the crack front and the closest integration points ahead of the
crack front (in the direction of the positive x-axis). Since the reduced integration point
scheme in a 20-node brick element is a 2 × 2 × 2 scheme, there are two integration points
along and ahead of the crack front at locations ± 1√

3
in a local coordinate range extending

from −1 to 1. The right part is a cut parallel to the x-y plane. It shows the 6 collapsed
quarter point elements containing the crack and the closest integration points to the front.
Each integration point is characterized by specific values for r and ϕ, where r and ϕ are
cylindrical coordinates in the x-y plane.

At any location of the integration points along the crack front (symbolized by dia-
monds in Figure 6), e.g., at the location of the local axes in the left of Figure 6, any of the
integration points on the right of the figure can be used to obtain the K-values at that
location. Indeed, in each integration point, the finite element calculation yields 6 stress
components, leading to 6 equations of the type in Equation (1) in the 3 unknown K-factors
(r and ϕ are known for the integration point). However, a detailed analysis showed that
not all integration points were equally accurate. More precisely, the integration points
immediately ahead of the crack front and labeled by a + sign on the right of Figure 6 were
most accurate. Furthermore, it proved advantageous to discard the use of the equation
for σzz, to avoid the problem of whether plane stress or plane strain applies at the actual
crack location (the asymptotic expression for σzz is different for plane stress and plane
strain). Therefore, we ended up with 5 equations in 3 unknowns for each of the locations
marked with a +. Using the least squares method, this yielded a triple of K-values for the
integration point at positive y and a triple for the integration point at negative y. Taking
the mean yielded the final values for KI , KI I , KI I I at that crack front location. Acting in
a similar way, the K-values can be obtained for all integration point locations along the
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crack front. To obtain the values at the nodes, linear interpolation along the crack front was
applied. At the free surface, however, extrapolation was used. For a comparison for simple
examples of the present method with other methods to determine the K-values, the reader
is referred to [47].

Figure 6. Local coordinate system at the crack front.

Now, the K-values KI , KI I , KI I I were determined at any nodal location along the crack
front. The aim was to obtain a crack propagation increment. To this end, the K-triple
was transformed into an equivalent K-factor Keq, which can be used in an appropriate
crack propagation law. Furthermore, the crack propagation direction had to be determined,
characterized by a deflection angle ϕ and a twist angle ψ. These values can be found by
postulating that the crack propagation will take place in a plane orthogonal to the largest
principal self-similar stress such that the crack tip is contained in this plane. The self-similar
stress is defined as the asymptotic stress multiplied by

√
r. To explain this in more detail,

let us have a look again at Equation (1). Now, KI , KI I and KI I I are known. The resulting
asymptotic stress field is clearly a function of r and ϕ. The dependency on r, however, is
common to all stress components, so we can discard it. This leads to the self-similar stress
σ∗ with components:

σ∗xx = fxx(ϕ, KI , KI I , KI I I), (2)

and similar for the other terms. The only variable left here is ϕ. For a fixed value of ϕ,
the principal values and directions for this tensor can be determined. Let us assume that
the cross-section of the principal plane (symbolized by the light gray triangle in Figure 7a)
corresponding to the largest self-similar principal stress with the local x-y plane makes
an angle with the x-axis of ϕo. If ϕ 6= ϕo, this line does not go through the crack tip and
cannot be a crack propagation direction. By varying ϕ between −90◦ and 90◦ until a value
is found for which ϕ = ϕo, the crack propagation direction is found (symbolized by the
black triangle in the figure). If more than one such value is found, the one corresponding
to the largest self-similar stress value is taken. Once the correct value for ϕ is determined,
the equivalent K-value Keq corresponds to the eigenvalue and the twist angle ψ to the
angle that the cross-section of the principal plane with the y-z plane makes with the z-axis
(cf. Figure 7b). The deflection angle corresponds to ϕ. The criterion discussed here is
straightforward and clearly relies on physical principles. The results were very similar to
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other criteria such as the criterion by Richard [3], and a comparison with that criterion can
be found in [11].

(a) (b)

Figure 7. (a) Determining the correct deflection angle. (b) Deflection and twist angle of the crack
propagation plane.

By the use of Keq, ϕ, and ψ, the crack propagation increment can be determined.
The size of the increment is obtained by substituting ∆K = Keq into a crack propagation
law (since right now, there was only one loading step, a 0-max cycle was assumed; the
extension to several loading steps follows later in the article). Here, the crack propagation
law discussed in [48] was used. It is a multiplicative law separating the Paris, threshold,
and critical range in the form:

da
dN

=

[(
da
dN

)
re f

(
∆K

∆Kre f

)m]
fR · fth

fc
, (3)

where the Paris range is in square brackets. One of the parameters
(

da
dN

)
re f

and ∆Kre f can

be freely chosen, e.g.,
(

da
dN

)
re f

. Then, ∆Kre f and m are fixed and can be derived from the

Paris parameters C and m one usually finds in the literature. The present form has the
advantage that the parameters have simple units and a clear physical meaning: ∆Kre f is

the value of ∆K for which da
dN =

(
da
dN

)
re f

. The traditional parameter C of the Paris law can

be identified as:

C =

(
da
dN

)
re f

(
1

∆Kre f

)m

(4)

The Paris range is now corrected for the R-influence (R = Kmin/Kmax) by a function
fR(R); the threshold correction is described by fth(∆K, ∆Kth) and the crack propagation
modification near the critical value Kc by fC(Kmax, KC). For details on the form of these
functions, the reader is referred to [48].

The value of ϕ gives the propagation direction: it is the deflection angle in the local
x-y plane. Finally, ψ yields the warping or twist angle. In experiments with significant
contributions of Mode III, warping was observed in the form of factory roofing: many
small cracks were locally formed along the crack front growing together to yield a stair-like
crack surface. This effect led to discontinuous crack surfaces and was not considered here.

The crack propagation law leads to the propagation due to just one cycle. Fracture
mechanics calculations usually involve several thousand cycles and more. Furthermore,
the propagation due to just one cycle is usually so small that the K-factors do not change
significantly due to this cycle. Therefore, the same K-distribution is used for a cycle set
consisting of several cycles. In order to guarantee that the K-factors do not change during
this cycle set, an inverse approach is taken: the user specifies a maximum allowed crack
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propagation increment, and CRACKTRACER3D calculates the number of cycles needed
to reach this increment somewhere along the front. The propagation at all other locations
will be smaller. The maximum crack increment should be related to the actual crack size.
In CRACKTRACER3D, a/10 ≤ ∆a ≤ a/4 is advised. After determining the number of
cycles, the loop is reiterated for the new crack shape.

4. Calculation of the Propagation Direction Due to a Mission

The previous section considered just one loading step and assumed a zero-max cycle.
A mission, however, consists of many loading steps. For instance, in order to simulate one
flight of an airplane (take-off, climb, cruise, descent, landing, trust reverse, shut down),
several hundred loading steps may be necessary to accurately model the temperature
and stress history during the flight. In addition, high frequency vibration steps may be
interspersed in between the mission steps [49]. Each loading step is characterized by
its own KI , KI I , KI I I mixture, leading to its own equivalent K-factor and deflection angle.
Several questions arise. Since we are interested in cyclic crack propagation, we have to
know how to obtain the cycles. What is the quantity on which we want to perform the
cycle extraction? Since each loading step leads to its own deflection angle, how do we
define the deflection angle for the complete mission?

Let us detail the approach taken by CRACKTRACER3D to cope with these questions.
In a first phase, the mission is read as a composition of zero-max cycles, obtaining the
equivalent stress intensity factor range ∆Keq = Keq for each loading step. Then, a simplified
form of the crack propagation law, taking only the Paris range into account, is applied:

da
dN

= sgn(Keq)

(
da
dN

)
re f

(
|∆Keq|
∆Kre f

)m

(5)

where m and ∆Kre f are temperature-dependent material properties. Since for single loading
steps, Keq may be negative (which happens in rare cases), the absolute value is taken
under the exponentiation, and the sign is moved ahead of the brackets. Consequently,
a fictitious negative da/dN is assigned to a purely compressive load step. A hypothetical
time distribution of the resulting values for da

dN at a given crack front location is shown in
Figure 8 (continuous black lines). Notice that this curve not only contains information on
the loading, but also on the way the material reacts to this loading at the given temperature
(through the Paris law). Subsequently, the dominant step is identified, defined as the step at
which da

dN based on Equation (5) is maximal (time tmax in Figure 8). Now, the assumption is
made that the crack propagation direction due to the mission corresponds to the deflection
angle calculated based on the dominant step. Therefore, the step, which leads to the
maximum crack propagation rate according to Equation (5), dictates the growth direction.

Once the crack propagation direction is determined, the next step consists of re-
evaluating the crack growth rate contributions for each zero-max cycle. During a mission,
the principal plane corresponding to the largest principal value of the self-similar stress at
each loading point can largely deviate from the previously defined dominant direction, and
therefore, its contribution to the crack growth rate may be incorrect. To avoid this issue,
CRACKTRACER3D assumes that for all other mission instants, the crack propagates on
the principal self-similar plane, which is as close as possible to the dominant direction [50],
and it is the corresponding Keq that is used to calculate da/dN through Equation (5) for the
subsequent cycle extraction. This means that, except for the dominant loading step, Keq
used for cycle extraction is not necessarily equal to the maximum principal self-similar
stress; its value may be lower, generating a lower crack growth rate, as shown by the red
dashed lines in Figure 8. For a concrete application of this procedure, the reader is referred
to [2].
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Figure 8. Crack growth rate evolution over time. The continuous black lines represent the crack
growth rate for the given mission. The red dashed lines represent the crack growth rate after the
mission reevaluation.

After mission reevaluation, cycle extraction is applied to the new crack propagation
rate distribution (the red dashed line in Figure 8) with the rainflow counting algorithm
described in [5]. The reasoning behind this is that cycle extraction should be performed
on a quantity that is as close as possible to what the outcome of the process is: the crack
propagation rate (due to the mission). Therefore, it is reasonable not to base the extraction
on a stress intensity factor history, but rather the crack rate history, which includes the effect
of the stress intensity factors on crack propagation through the temperature-dependent
crack propagation parameters.

Each extracted cycle has a maximum and a minimum value of Keq, leading to ∆Keq =

Kmax
eq − Kmin

eq . These two extremes are characterized by the temperatures TKmax
eq and TKmin

eq
,

respectively. The propagation rate due to this cycle is now taken to be the maximum of
da
dN (TKmax

eq ) and da
dN (TKmin

eq
), i.e., da/dN for ∆Keq is once calculated at TKmax

eq and once at TKmin
eq

,
and the maximum is taken. This approach allows remaining on the conservative side
since there are some materials that show a decrease of the crack growth rate for increasing
temperature in certain temperature ranges. In the end, the crack growth rate due to the
mission is given by the sum of the crack growth rate for each extracted cycle.

The essence of the present method is the concept of a dominant loading step enforcing
its crack propagation direction on the complete mission. Alternatively, one comes in
the literature across concepts using the propagation direction of all loading steps in the
mission [37]. The idea is to consider the deflection angle as a weighted average of the
crack deflection angles of each step. One approach is to take the equivalent K-factors as
weighting factors. However, here, the crack propagation rate in accordance to Equation (5)
is proposed as the weighting factor, in agreement with the philosophy to use quantities
related to the growth rate rather than the loading. Thus, the new deflection angle satisfies
the following equation:

ϕ =
∑

Nstep
i=1 ϕi

(
da
dN

)
i

∑
Nstep
i=1

(
da
dN

)
i

(6)

where i is the i-th static step and Nstep is the total number of static steps used to discretize
the mission. This alternative approach to calculate the crack propagation direction will be
compared with the dominant step approach in the following section.
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5. Validation Using the Tension-Torsion Tests

Experimental and numerical results for the tension-torsion tests were compared to
validate the accuracy of CRACKTRACER3D in predicting the crack propagation direction.
To this end, the outside surface of the broken specimens was measured by a GOM ATOS
machine using blue light scanning. The result was a very detailed triangulation of the
fracture surface. This surface was compared with the triangulation of the propagated
crack surface predicted by CRACKTRACER3D. In order to do that, a new software called
CT3D_Validator [51] was developed at MTU Aero Engines AG. The basic concept is to find
a parameter that measures the deviation between the numerical and experimental crack
propagation directions. The two crack surfaces to compare are both meshed with triangles.
The idea is to calculate the volume between these two triangulations and then divide it by
the CRACKTRACER3D crack surface area. Thereby, the final result is a length called d that
quantifies the global deviation between the two crack directions and satisfies:

dax =
∑N

i=1 Vi

∑N
i=1 Ai

=
∑N

i=1 di Ai

∑N
i=1 Ai

(7)

where the subscript ax indicates the direction along which d is measured. For this type
of specimen, ax represents the longitudinal axis (i.e., the tensile direction). The index
i identifies the i-th element of the CRACKTRACER3D crack surface, and N is its total
number of elements. The volume is approximated with a group of triangular prisms built
taking as a reference the numerical triangulation. For each triangle, a prism is extruded
along the axial direction as high as the distance di between the center of gravity of the i-th
reference triangle and the experimental surface. Ai is the triangle area of the i-th element.
A graphical representation can be observed in Figure 9.

Figure 9. Discretized volume between the CRACKTRACER3D crack surface (in green) and the
experimental one.

The deviation dax was calculated to compare the dominant step criterion (labeled
“current”) with the averaged angle criterion (labeled “new”) for the tension-torsion test
results. More specifically, the eighteen possible load combinations were simulated with
the two different criteria and compared with the same experimental result. In Table 4, the
first six columns show the load conditions, and in the next two columns, the results for dax
are summarized and compared for the two methods. Moreover, dax was also calculated
as a percentage of the crack propagation length asur f measured on the specimen free
surface. In this way, it was possible to compare all eighteen cases. The main goal was
to verify the crack propagation next to the notch tip, where it can easily be identified on
the experimental surface. Therefore, for each specimen, CRACKTRACER3D stopped the
propagation, trying to keep the crack progress within this region (before the final rupture).
To achieve a proper comparison, the numerical analyses were run trying to keep the same
asur f for both methods. For some load conditions, multiple test results were available.
In such cases, the result with the clearest crack propagation surface was chosen for the
comparison (the actual specimen number in that case is listed in Table 5.
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Table 4. Specimens load combinations and deviation results.

No. Label Raxial Rtorsion Phase (◦) τN
σN

dax (mm)
(Current)

dax (mm)
(New)

asur f
(mm)

dax (%)
(Current)

dax (%)
(New)

1 0_1_00_1 0 −1 0 1.31 0.2881 0.3663 4.6695 6.17 7.84
2 0_1_00_2 0 −1 0 1 0.3332 0.4129 5.0724 6.57 8.14
3 0_1_00_3 0 −1 0 0.76 0.4120 0.4920 5.8457 7.05 8.42

4 0_1_40_1 0 −1 40 1.31 0.3876 0.4979 3.9610 9.79 12.57
5 0_1_40_2 0 −1 40 1 0.4894 0.6183 3.9556 12.37 15.63
6 0_1_40_3 0 −1 40 0.76 0.5275 0.6212 3.0564 17.26 20.32

7 0_1_90_1 0 −1 90 1.31 - - - - -
8 0_1_90_2 0 −1 90 1 0.0827 0.0694 0.5843 14.15 11.87
9 0_1_90_3 0 −1 90 0.76 0.0932 0.0908 0.7967 11.70 11.40

10 1_1_00_1 −1 −1 0 1.31 0.0973 0.0971 4.9594 1.96 1.96
11 1_1_00_2 −1 −1 0 1 0.2289 0.2307 5.0346 4.55 4.58
12 1_1_00_3 −1 −1 0 0.76 0.0998 0.1010 5.8481 1.71 1.73

13 1_1_40_1 −1 −1 40 1.31 0.3133 0.3460 3.9614 7.91 8.73
14 1_1_40_2 −1 −1 40 1 0.1326 0.1732 3.9414 3.36 4.39
15 1_1_40_3 −1 −1 40 0.76 0.0694 0.0577 3.8992 1.78 1.48

16 1_1_90_1 −1 −1 90 1.31 - - - - -
17 1_1_90_2 −1 −1 90 1 0.0600 0.0578 0.4978 12.06 11.60
18 1_1_90_3 −1 −1 90 0.76 0.1545 0.1106 3.7642 4.11 2.94

For the dominant step criterion, the relative deviation (second, but last column in Table 4)
was converted into an approximate deflection angle by ∆ϕ = tan−1(dax[%] cos(ϕ)). It is
listed in Table 5 together with an estimate of the absolute deflection angle ϕ based on
the experimental results. This estimate was obtained by orienting the triangulation of
the fractured specimens in the thickness direction (Figure 10). The torsion applied to the
specimens led to a positive deflection angle on one face of the specimen and a negative
one on the other face. By looking in the thickness direction, both are superimposed. Then,
the propagation range of interest was identified (from the notch tip up to the dashed
vertical line in the figure). At half this distance, the angle 2ϕ was measured and divided by
two. This procedure worked well except for the specimens with a 90◦ phase shift, as will
be explained next.

Figure 10. Estimating the deflection angle from the triangulation of the fractured specimens.
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Table 5. Experimental deflection angle and numerical deviation (current).

No. Label Specimen
Number

Raxial Rtorsion Phase (◦) τN
σN

ϕ(◦) ∆ϕ(◦)

1 0_1_00_1 61 0 −1 0 1.31 44.5 2.5
2 0_1_00_2 63 0 −1 0 1 39.8 2.9
3 0_1_00_3 62 0 −1 0 0.76 31.6 3.4

4 0_1_40_1 85 0 −1 40 1.31 55.6 3.2
5 0_1_40_2 73 0 −1 40 1 48.3 4.7
6 0_1_40_3 75 0 −1 40 0.76 44.9 6.9

7 0_1_90_1 - 0 −1 90 1.31 - -
8 0_1_90_2 65 0 −1 90 1 0.0 8.1
9 0_1_90_3 60 0 −1 90 0.76 12.3 6.5

10 1_1_00_1 87 −1 −1 0 1.31 41.2 0.8
11 1_1_00_2 67 −1 −1 0 1 37.6 2.1
12 1_1_00_3 81 −1 −1 0 0.76 23.3 0.9

13 1_1_40_1 94 −1 −1 40 1.31 48.4 3.0
14 1_1_40_2 71 −1 −1 40 1 34.7 1.6
15 1_1_40_3 97 −1 −1 40 0.76 28.4 0.9

16 1_1_90_1 - −1 −1 90 1.31 - -
17 1_1_90_2 70 −1 −1 90 1 18.1 6.5
18 1_1_90_3 83 −1 −1 90 0.76 0.0 2.4

Before looking at the comparison between the experiment and numerical prediction,
it is worthwhile to have a more detailed look at the experimental results themselves in
the form of the deflection angle. For pure tension, the deflection angle was zero; for pure
torsion, one ends up with a deflection angle of ±62◦, taking the K-values published in [38]
and the deflection angle formula by Richard [3]. For the tension-torsion loading, the values
should be somewhere in between. Looking at the column for ϕ in Table 5, one can conclude
for phase shift 0◦ and 40◦ the following:

• For fixed Raxial and a fixed phase shift, the deflection angle increases with increasing
torque. This is to be expected since the torsion leads to the nonzero deflection.

• Changing Raxial from zero to −1 leads to a decrease of the deflection angle. This
also seems logical since the crack opening function by Newman [52] decreases for R
decreasing from zero to −1. This means that for decreasing R in that range, the effec-
tive stress intensity range due to the tensile force increases, leading to less deflection.
The increasing friction between the crack surfaces for R = −1 may also play a role.

• In nearly all cases, a switch from a 0◦ to a 40◦ phase shift leads to an increase of
the deflection angle. This indicates that the time at maximum tensile force, which
corresponds to a higher tension/torsion stress ratio compared to zero phase shift, is
not dictating the crack propagation direction. To the contrary, the time at which the
tensile to torsion stress has decreased must be dominant for a phase shift of 40◦.

For a phase shift of 90◦, the picture is much more difficult. For the specimens 0_1_90_1
and 1_1_90_1 ( τN

σN
=1.31), the experimental results are not consistent. This is illustrated in

Figures 11 and 12. The figures show three different results for three different specimens
with the same loading conditions. Therefore, a deflection angle could not be determined.
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Figure 11. Three different experimental crack surfaces for loading conditions 0_1_90_1.

Figure 12. Three different experimental crack surfaces for loading conditions 1_1_90_1.

Specimens 0_1_90_2 and 1_1_90_2, for which τN
σN

= 1, are shown in Figure 13. Specimen
0_1_90_2 in Figure 13a (the view angle for this specimen was chosen differently from the
other specimens, in order to have a better view on the crack surface) shows propagation
in the same direction at both free surfaces; only at crack front positions immediately
underneath the right free surface, a local area with propagation in the opposite direction
can be noticed. Specimen 1_1_90_2 (Figure 13b) shows a more or less flat crack surface
across the complete thickness of the specimen. Only very near the free surface, some wavy
deflection can be noticed. Therefore, determining a deflection angle is difficult and was
only done for Raxial = −1.

(a) (b)

Figure 13. Experimental result: (a) 0_1_90_2 specimen; (b) 1_1_90_2 specimen.
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Finally, for specimens 0_1_90_3 and 1_1_90_3, for which τN
σN

=0.76, the crack surface
was more or less flat, with some wavy behavior at the free surfaces. Here also, it was very
difficult to measure any deflection angle. Summarizing, the results for a phase shift of 90◦

are ambiguous for a high torsion/tension ratio and tend to very low deflection angles the
smaller this ratio is.

The last column in Table 5 shows the deviation of the deflection angle for the dominant
step criterion. The following observations can be made:

• The deviation is generally quite low, which means that the underlying physical
phenomena are well covered.

• The deviation increases for increasing phase shift. It is only for nonzero phase shift
that steps in the mission really start to compete. Therefore, more deviation is expected.

• The deviation for Raxial = −1 is less than for Raxial = 0. In the latter case, the tensile
loading is less dominant (higher value of the crack opening function, i.e., smaller
effective ∆K range; furthermore, there is less friction between the crack faces, leading
to a higher effect of the torsional loading), leading to a higher competition between
the loading steps.

• For the in-phase and 40◦ out-of-phase cases with axial traction (Raxial = 0), it is
evident that the higher the torsional moment, the more precise the numerical results
are. When the axial force is applied with tension and compression (Raxial = −1), this
is not so.

In order to judge the potential of the dominant step versus the averaged angle criterion,
the last two columns in Table 4 should be looked at. In the case of Raxial = 0 and a 0◦

phase shift, the current method generates a numerical prediction with a lower dax (%) than
the new one. Indeed, as shown in Figure 14, the crack surface computed with the current
criterion (in red) evolves nearer to the experimental surface (black triangulation) than the
numerical prediction by the new approach (in blue). In this and subsequent figures, the
right half of the broken specimen is shown. In the lower part of the figure, one notices
the V-shaped starter notch. The blue rectangle represents the initial crack introduced by
Mode I controlled fatigue. The (red and blue) numerically calculated crack propagation
surfaces are only visible if they lie in front of the experimental surface. Since both the
numerical, as well as the experimental surfaces are antisymmetric across the thickness due
to the torsional loading, this is the case for half of the crack front (in the actual case, for the
half that is closest to the observer).

Analogously, the same findings can be observed for Raxial = 0 and a 40◦ phase
shift. Figure 15 provides the reader with a graphical representation of specimen 0_1_40_2.
Although the numerical crack behavior replicates the real surface trend evolution, the devi-
ations are higher than for the in-phase cases.

Figure 14. Specimen 0_1_00_1 experimental crack surface with the numerical prediction by the
current method (in red) and the new one (in blue).
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Figure 15. Specimen 0_1_40_2 experimental crack surface with the numerical prediction by the
current method (in red) and the new one (in blue).

The difference between the dominant step and the averaged angle method becomes
less significant for Raxial equal to −1. For the specimen 1_1_00_1, dax (%) rounded to the
second decimal digit is totally the same, as also graphically visible in Figure 16, where the
two methods have almost identical predictions. For a 0◦ and a 40◦ phase shift, the current
method is slightly more precise.

Figure 16. Specimen 1_1_00_1 experimental crack surface with the numerical prediction by the
current method (in red) and the new one (in blue).

When the phase shift is equal to 90◦, the current method leads to a wavy behavior of
the crack propagation surface due to the dominant step identification procedure for the
crack deflection angle. For instance, the dominant step on the crack surface for specimen
0_1_90_3 is shown in Figure 17, whereas Figure 18 shows its load sequence versus step
number. The result in Figure 17 shows a continuous switch of the dominant step in the step
range 2–6. These are the steps in the neighborhood of the maximum F and increasing MT .
This phenomenon does not occur with the new method because of an intrinsic smoothing
due to the weighted average in the crack deflection angle definition. The values of dax from
Table 4 result in being more precise for the new method. Nevertheless, the experiments for
a 90◦ phase shift showed large variability and a tendency to grow in-plane, which seem to
match the idea of a steadily shifting dominant step.
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Figure 17. Dominant step distribution over the specimen 0_1_90_3 numerical crack surface.

Figure 18. Load sequence of specimen 0_1_90_3 discretized in static steps.

6. Conclusions

Through experimental results, the CRACKTRACER3D numerical prediction is com-
pared for crack propagation analyses in mixed-mode missions. To choose the crack propa-
gation direction, a new approach based on an average deflection angle criterion is imple-
mented in the post-processor. To identify the crack propagation accuracy of the numerical
solution with respect to the experimental one, a measure based on the average distance
between the experimental and numerical crack surface is defined. The results show a lower
accuracy for virtually all 0◦ and 40◦ phase shift tests analyzed by the average angle imple-
mentation, proving the validity of using the dominant step to choose the crack propagation
direction. The cases with 90◦ out-of-phase loads result in slightly lower deviations with
the average angle criterion. However, since in these tests, some doubt arose about the
reproducibility of the experimental crack surface, these findings have to be considered with
care. Either way, the results encourage further experimental investigations with different
loading missions.
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