
applied  
sciences

Article

Data-Efficient Neural Network for Track Profile Modelling in
Cold Spray Additive Manufacturing

Daiki Ikeuchi 1,2,*,† , Alejandro Vargas-Uscategui 2 , Xiaofeng Wu 1 and Peter C. King 2

����������
�������

Citation: Ikeuchi, D.;

Vargas-Uscategui, A.; Wu, X.; King,

P.C. Data-Efficient Neural Network

for Track Profile Modelling in Cold

Spray Additive Manufacturing. Appl.

Sci. 2021, 11, 1654. https://doi.org/

10.3390/app11041654

Academic Editor: Marco Mandolini

Received: 25 January 2021

Accepted: 9 February 2021

Published: 12 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney,
Sydney, NSW 2006, Australia; xiaofeng.wu@sydney.edu.au

2 Commonwealth Scientific and Industrial Research Organisation Manufacturing, Private Bag 10,
Clayton, VIC 3169, Australia; alejandro.vargas@csiro.au (A.V.-U.); peter.king@csiro.au (P.C.K.)

* Correspondence: di261@cam.ac.uk; Tel.: +44-012-2376-4772
† Now at: Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK.

Featured Application: This study presents a data-efficient modelling approach for a single-track
profile in Cold Spray Additive Manufacturing using an artificial neural network. The approach
presented in this study can be extended to modelling cases of other deposition-based additive
manufacturing technologies with a high deposition rate, such as Wire and Arc Additive Manu-
facturing and Laser Cladding. The developed model can serve as a tool in simulation software by
defining a realisable feature size at product design phases and predicting an as-fabricated prod-
uct in these near-net-shaped manufacturing technologies. Hence, it allows designers to form a
better idea of product design limitation and potential material waste after post-machining, as
well as assessing and minimising economic and environmental impact with the aid of an appro-
priate toolpath planning algorithm.

Abstract: Cold spray is emerging as an additive manufacturing technique, particularly advantageous
when high production rate and large build sizes are in demand. To further accelerate technology’s
industrial maturity, the problem of geometric control must be improved, and a neural network
model has emerged to predict additively manufactured geometry. However, limited data on the
effect of deposition conditions on geometry growth is often problematic. Therefore, this study
presents data-efficient neural network modelling of a single-track profile in cold spray additive
manufacturing. Two modelling techniques harnessing prior knowledge or existing model were
proposed, and both were found to be effective in achieving the data-efficient development of a neural
network model. We also showed that the proposed data-efficient neural network model provided
better predictive performance than the previously proposed Gaussian function model and purely
data-driven neural network. The results indicate that a neural network model can outperform a
widely used mathematical model with data-efficient modelling techniques and be better suited to
improving geometric control in cold spray additive manufacturing.

Keywords: cold spray; neural network; additive manufacturing; data-efficient; model; profile;
geometry; spray angle; limited data; machine learning

1. Introduction

Cold spray is a solid-state materials deposition technology that employs a supersonic
gas jet to accelerate powder particles to 500–1000 m/s. Due to the particles’ kinetic energy,
local metallurgical bonding and mechanical interlocking are achieved without in-flight
melting. This characteristic provides unique advantages that are difficult to achieve other-
wise, including deposition free of melting-induced microstructure changes, the ability to
handle oxygen-sensitive materials without a protective atmosphere and a high deposition
rate with a narrow nozzle diameter [1–4].
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Cold spray has recently been recognised to possess great potential as an alternative
additive manufacturing technology and in this context is referred to as Cold Spray Ad-
ditive Manufacturing (CSAM) [5–8]. This potential is particularly important when high
production rates, large build sizes and repair or building on an existing structure are in
demand, e.g., in aerospace industries [8,9]. The protective atmosphere-free environment
allows for the fabrication of large components that are not possible with other additive
manufacturing technologies, e.g., powder bed fusion, while providing a flexible selection
of oxygen-sensitive powder materials [8,10,11]. These benefits have resulted in several
successful demonstrations of the technology at different levels of fabrication complexity,
ranging from a simple tubular structure [12], pyramidal fin array [13], to more complex
parts such as topologically optimised components [14].

However, several fundamental and practical challenges need to be addressed to
fully adopt the CSAM technology in commercial applications. One of these is geometric
control, which is a common problem for other high production rate additive manufacturing
(HPRAM) processes, including Wire and Arc Additive Manufacturing (WAAM) [15,16] and
Laser Cladding (LC) [17,18]. Poor geometric control places many limitations on applying
HPRAM technologies; examples include varying geometric quality, difficulty producing
complex geometries, and geometry-induced property variations [7,8,19]. Hence, geometric
control must be addressed to facilitate further development and commercial integration of
CSAM and other HPRAM technologies.

Given the track-by-track and layer-by-layer nature of HPRAM, a high-accuracy process
model based on the shape of a characteristic processing unit (e.g., single-track profile)
provides a promising solution to the problem and often forms a basis for the modelling
of higher geometric processing units, such as overlapping and overlayer models [20,21].
The single-track profile modelling in HPRAM was previously attempted using two distinct
approaches: mathematical and data-driven modelling.

In WAAM, the symmetric single-track bead profile has been approximated using
various basic mathematical function models ranging from parabolic, cosine and arcs [22,23].
These mathematical function models are often combined with another regression model
to provide predictive capabilities. For example, Suryakumar et al. developed a quadratic
regression model based on experimental data, computing the coefficients of the parabolic
function model to describe a single-track bead profile [22]. In CSAM, a mathematical
Gaussian function model is often chosen due to the mass distribution of jetted powder
being assumed to be of Gaussian function profile [24,25]. Some other studies have utilised
different mathematical function models, such as triangular [26,27] and trapezoidal [28].
Due to the complex processes underlying each HPRAM, there is no agreement on the
choice of a single mathematical function model with simplifying assumptions, and the
suitable model often depends on process conditions and their combination [23], leading to
limited prediction accuracy over a wide range of process conditions using only a single
mathematical functional model.

Data-driven modelling has emerged as an alternative approach due to its excellent non-
linear mapping capability and increased accessibility of available software options [18,29].
Xiong et al. developed an Artificial Neural Network (ANN) model to predict the height and
width of a single-track bead profile in WAAM [30]. The results were compared with those
of a quadratic regression model and showed that the ANN model outperformed in the
prediction of key geometric features. However, data-driven modelling has previously been
limited to only predicting the height and width in HPRAM, and unlike the mathematical
modelling approach, it has not been adopted to describe an entire track profile. Thus,
there has been no exploration of the technique beyond symmetric single-track profiles or
predicting details in track profiles. Our previous study attempted to address this issue in
CSAM, focusing on the ANN modelling of a single-track profile with high morphology
at normal and off-normal spray angles [31]. Our results demonstrated the potential of
a data-driven modelling approach for better prediction accuracy than a mathematical
counterpart, i.e., the Gaussian function model.
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However, the limitation of a data-driven modelling approach was also observed in
our previous study [31], namely, the necessity of a large amount of process training data
to achieve a high prediction accuracy, which has also been identified recently in relevant
manufacturing studies [32,33]. This data scarcity issue is associated with high experimental
costs and the lack of an automated measurement system in HPRAM. Liu et al. applied
a grey modelling technique for the first time in a thermal spray process in an attempt
to overcome the issue, harnessing both mathematical (or white box) and data-driven (or
black-box) modelling approaches [32]. Despite the reasonable prediction accuracy achieved
in this study, the authors concluded that more complex and nonlinear phenomena existed
and suggested further exploration of data-efficient modelling approaches to improve
prediction accuracy.

Therefore, this study focuses on the prediction of a single-track profile in CSAM, at
both normal and off-normal spray angles, using a data-efficient ANN (DANN) approach
to demonstrate that data-driven modelling can achieve better prediction accuracy than its
mathematical counterpart that has already been adopted in CSAM. Inspired by the study
by Liu et al. [32], we leverage a mathematical function model as domain knowledge or the
existing model at hand into the development of a DANN model. Specifically, a Gaussian
function model, the model adopted elsewhere in CSAM studies, is selected with its coeffi-
cients computed by a quadratic regression model as applied in [22]. The significance of
this study is four-fold: (1) the application of a data-driven modelling approach with a data-
efficient focus in the prediction of a single-track profile in CSAM; (2) the comparative study
among purely mathematical function, purely data-driven and data-efficient data-driven
modelling approaches, in the context of HPRAM; (3) the demonstration that data-driven
modelling can outperform more widely used mathematical modelling with appropriate
data-efficient techniques in HPRAM; and (4) that existing models at hand can contribute
to the development of a new data-driven model with better prediction accuracy without
further experimentation.

2. Materials and Methods

An ANN is a feed-forward network model for supervised machine learning that
performs the mapping of an input–output relationship based on appropriate training
data. The development of an ANN with sufficient prediction accuracy depends on several
pre-processing factors, including selecting appropriate input variables, quality of data
and network architecture [34,35]. In this study, three experimental process variables were
selected as inputs to an ANN model: spray angle, traverse speed and standoff distance,
together with other input variables subsequently introduced in Section 2.2. This selection
was made based on previous studies, demonstrating their influence on the geometry of a
track profile in CSAM [24,36] and precise control with a robotic system [37].

A full factorial method was employed to define the experimental process variables’
values in the ANN training dataset and design the set of experimental conditions. This
approach was selected due to the nonlinear nature of CSAM and the affordable number
of the process variables in this study. Here, three levels were considered for traverse
speed and standoff distance, while four levels were adopted to effectively capture the
effects of spray angle on track profiles in CSAM. The values of these process variables at
each level are listed in Table 1. The minimum and maximum level values of each process
variable corresponded to their operating limits to ensure the sufficient quality of track
profiles. The intermediate level values were then equally placed between the values at each
extreme level to maximise possible interactions between the process variables [38]. The
resulting experimental design matrix in the full factorial method required 36 experimental
single-track profiles for the proposed ANN modelling as a training dataset. The detailed
experimental conditions of each single-track profile are summarised in Tables S1 and S2 in
the Supplementary Materials.
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Table 1. The levels of process variables in the experimental design matrix for the preparation of
single-track profiles used for the training of the proposed data-efficient neural network model.

Level Spray Angle (◦) Traverse Speed (mm/s) Standoff Distance (mm)

1 45 25 30
2 60 100 40
3 75 200 50
4 90 - -

2.1. Sample Preparation

All experimental single-track profiles were prepared using a commercial Impact
Innovations (Haun, Germany) 5/11 cold spray gun guided by an ABB (Zurich, Switzerland)
4600 robot with 6 degrees of freedom, as can be seen in [39]. The gun was equipped with
a long pre-chamber and an OUT1 tungsten carbide de Laval nozzle with a 6.2 mm exit
diameter from Impact Innovations. The powder feedstock in this study was commercial
purity grade −2 titanium from AP&C (Boisbriand, Canada) which was prepared by gas
atomisation and distributed within the size of 15 to 45 µm (i.e., D10 = 19 µm, D50 = 34 µm
and D90 = 45 µm). The working gas was Nitrogen, preheated to 600 ◦C at a pressure of
5 MPa, accelerating the powder particles injected into the nozzle upstream at a feed rate of
1.9 kg/h. All spray variables and conditions were held constant during all experiments,
except those listed in Table 1. A strip of commercial purity grade −2 titanium was used
as a substrate with a dimension of 6 × 30 × 200 mm, having its surface processed with
a milling machine from Avemax Machinery (Taichung City, Taiwan) and subsequently
ground with a P120-SiC emery paper from LECO (Moenchengladbach, Germany). This
surface processing was followed by cleaning with ethanol before the experiments. The
fabrication of experimental single-track profiles was randomised to ensure statistically
unbiased results with minimal effects of potential extraneous factors [40]. RobotStudio®

software version 6.08 (ABB Robotics, Zurich, Switzerland) was used to confirm that there
was sufficient distance beyond the substrate’s edge to ensure that the robot’s trajectory and
traverse speed were stabilised before fabricating the profiles.

The geometry of each single-track profile was measured at five randomly selected
locations using a LEXT OLS4000 confocal laser scanning microscope (Tokyo, Japan) and
scanControl 2950–100 laser scanner from Micro-Epsilon (Ortenburg, Germany) with a
z-axis measuring precision of at least 12 µm. These measurements were processed with
the in-built filtering methods: flat Surface filtering in LEXT OLS4000 and average filtering
with a filter size of 7 in scanControl Configuration Tool version 6.0. Additional filtering
was applied with a local regression method using weighted linear least square and second-
order polynomial model in MATLAB version R2018a. The five filtered track profiles were
averaged to form each sample profile, as depicted in Figures S1–S3 in the Supplementary
Materials, which was then considered for all modelling approaches in this study.

2.2. Data-Efficent Artificial Neural Network Model Design and Training

To demonstrate the effectiveness of leveraging a previous modelling attempt or ex-
isting model, a mathematical Gaussian function model, previously proposed in [24] and
expressed in Equation 1, was selected and built with its free coefficients, A and σ, being
predicted using a quadratic regression model as applied in [22].

y =
A

σ
√

2π
e−

1
2 (

x
σ )

2
, (1)

This selection was due to the mathematical model framework being capable of pre-
dicting an asymmetric single-track profile at off-normal angles and being often used in
cold spray and CSAM [24,25,36]. For preparing the training dataset of outputs for the
quadratic regression model, appropriate free coefficients were found through a Gaussian
function equation curve fitting to each single-track profile shown in Figures S1–S3 of the
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Supplementary Materials. The Curve Fitting Tool in MATLAB version R2018a was used
with the trust-region-reflective algorithm and nonlinear least square method. The resulting
free coefficients are summarised in Table S3 of the Supplementary Materials. With the
experimental process parameters listed in Table 1 as inputs, the quadratic model was de-
veloped with the QR decomposition algorithm using the iterative reweighted least square
method in Statistics and Machine Learning Toolbox, MATLAB version R2018a.

The proposed DANN modelling framework is shown in Figure 1, using a static ANN
model for the geometric prediction of a single-track profile in CSAM. The DANN was
developed to predict a polar length at a polar angle from the Tool Centre Point (TCP).
A data-driven model for predicting a complete single-track profile can be developed by
sampling a sufficient number of geometric points from the fabricated single-track profiles,
as demonstrated by the area validation method in our previous work [31]. The polar
length was sampled at 2.72◦ intervals around the TCP, resulting in 67 points from each
single-track profile.

Figure 1. The proposed data-efficient artificial neural network modelling framework for the prediction of a single-track
profile in cold spray additive manufacturing. The CSAM process part represents a digital version of the experimental
equipment and setup described in Section 2.1.

Two data-efficient techniques were adopted in the proposed modelling framework,
leveraging the Gaussian function model as an existing model, discussed above, to de-
velop an ANN model. In Technique 1, the polar length approximated from the Gaussian
function model was used as another input variable in addition to spray angle, traverse
speed, standoff distance and polar angle. This technique explicitly leverages the partial
domain knowledge of cold spray deposition, represented by the previously proposed
Gaussian function model. At the same time, the DANN model learnt to compensate for
the discrepancies between this knowledge and the true CSAM process, as successfully
observed in other physical science fields [41,42]. Technique 2 was the augmentation of
training data with a virtual input–output subset generated by the Gaussian function model.
Therefore, the overall training dataset consisted of an empirical dataset prepared using
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the DOE method in Section 2.1 and a virtual dataset created using the Gaussian function
model. The virtual dataset was generated from Gaussian function profiles using identical
CSAM process parameters to those employed to make the physical test tracks and com-
prised of 804 training data points (i.e., 67 geometric sampling points from 12 simulated
Gaussian function profiles). Both Technique 1 and 2 were independently employed in the
preparation of training data and then simultaneously utilised in the development of the
proposed DANN model.

For the development of the DANN model, this study iteratively changed the hidden
layer architecture with the different number of hidden neurons (i.e., 1–15 neurons) per
hidden layer and of hidden layers (i.e., 1–2 layers) to determine the optimal architecture
using Mean Squared Error (MSE) as a performance evaluation function on an independent
testing dataset. This range of hidden structures and evaluation function were selected
given the limited data availability and frequent use in relevant studies respectively [29,30].
Following the 75–25 division method for the training-testing dataset, 12 single-track pro-
files were fabricated using the experimental methods described in Section 2.1 to form
the testing dataset. The experimental process parameters for these testing profiles were
randomly determined within the boundary of each parameter in Table 1 with the aid of
the default random number generator in MATLAB version R2018a, summarised in Table
S2 of the Supplementary Materials. Due to the limited training data, Bayesian regularised
back-propagation was selected as the training method, eliminating the need for a vali-
dation dataset [43]. With this training method, hyperbolic tangent sigmoid and linear
activation functions were selected for hidden and output layers, respectively, and all input
and output variables were scaled to [−1 1] for improving a training process [44]. The
training of a DANN model was performed using the Deep Learning Toolbox in MATLAB
version R2018a. Each architecture candidate was retrained 100 times to avoid local optima
convergence due to initially allocated weights and biases. A purely data-driven ANN
model was also developed for comparison in predictive performance, using the same
methods presented above for the DANN model. The difference was two-fold: (1) the num-
ber of input variables was four without the approximated polar length by the Gaussian
function model, and (2) only the original training dataset prepared from the experimental
single-track profiles was used.

3. Results

The quality of the fabricated single-track profiles was validated against the cold spray
and CSAM studies in our previous study [31], confirming that each process parameter’s
effects were consistent with previous relevant studies for the geometry of a single-track
profile. Therefore, relevant and meaningful datasets could be generated from these single-
track profiles that contained true representation of the CSAM process.

3.1. Data-Efficient Artificial Neural Network Model Validation

The Gaussian function model was built and evaluated on the coefficients taken from
the testing single-track profiles (listed in Table S4 of the Supplementary Materials), showing
the mean absolute error of 6.407%.

The iterative investigation of different hidden layer architectures found that the pro-
posed DANN model, having two hidden layers with 11 and 4 hidden neurons respectively,
provided the best predictive performance (i.e., [5 11 4 1]). During the training process, an
MSE of 1.032 × 10−4 was achieved on the normalised independent testing dataset. The
normalised predictive results are shown in Figure 2a with the resulting Mean Absolute
Percent Error (MAPE) of 1.230% and Maximum Absolute Percent Error (MXAPE) of 5.748%.
These predictive performances were comparable to another study of data-efficient ma-
chine learning modelling in manufacturing, e.g., MAPE of 5.483% [32]. Figure 2b shows
the developed DANN model’s training process, confirming that the model was free of
overfitting and underfitting and achieved the best performance at 445 epochs (or train-
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ing iterations). Consequently, these results demonstrate the successful application of a
data-efficient data-driven modelling approach to predict a single-track profile in CSAM.

Figure 2. The results of the developed data-efficient neural network model with [5 11 4 1] architecture: (a) normalised
data-efficient ANN predictions vs. target outputs (or polar lengths) with a Mean Squared Error (MSE) of 1.032 × 10−4; (b)
the training process of the developed data-efficient ANN model, showing no overfitting and underfitting.

3.2. Data-Efficient Artificial Neural Network Model Evaluation and Comparison

The proposed DANN model, incorporating Techniques 1 and 2, was evaluated and
compared with other modelling approaches, including a mathematical Gaussian function
model [24] and a purely data-driven ANN model [31]. Here, the mathematical Gaussian
function model was not the Gaussian function model used for the data-efficient ANN
model as the existing model, but one with the optimal coefficients, listed in Table S4 of the
Supplementary Materials, that were found through the curve-fitting method described
in Section 2.2. The resulting model was referred to as the curve-fitted Gaussian function
model and prepared to allow for the comparison of the proposed data-efficient ANN
model against the best predictive performance that could be achieved using the previously
proposed framework for mathematical Gaussian function modelling [24]. For the purely
data-driven ANN model, the best performance was achieved with the architecture [4 5 7 1],
resulting in an MSE of 3.852 × 10−3. Furthermore, to investigate the effectiveness of
each data-efficient technique, the data-efficient ANN models built using Technique 1 or
Technique 2 solely were evaluated and compared. The prediction results of each model are
summarised in Table 2 in absolute percent error and visually presented in Figure 3.

Compared with the purely data-driven ANN model, the data-efficient ANN model
with Technique 1 or 2 alone showed better predictive performance with lower MAPEs
and MXAPEs. This result indicates that both Technique 1 and 2 effectively achieved data-
efficient learning and development of a data-driven ANN model. Furthermore, Technique
1 was more effective than Technique 2, with a MAPE half that of Technique 2. This result
might be attributed to Technique 1 being more direct in guiding the learning process
of weights and biases through the approximated target output (or polar length) than
augmentation of the training dataset.
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Table 2. Summary of the prediction results in absolute percent error for the testing single-track profiles in CSAM. The
results are presented for: data-efficient ANN with the two techniques applied individually (Tech. 1 and Tech. 2), both
applied (Tech. 1 + 2) also presented in Figure 2, curve-fitted Gaussian function model and purely data-driven ANN model.
R2 values are also listed.

Absolute
Error %

Data-efficient ANN Curve-Fitted
Gaussian

Purely Data-Driven
ANNTech. 1 Tech. 2 Tech. 1 + 2

Mean 2.060 4.040 1.230 1.873 7.174
Minimum 0.003 0.003 0.006 0.001 0.060
Lower Q 0.8147 1.113 0.3724 0.2682 2.510
Median 1.719 2.795 0.9081 0.8204 5.306
Upper Q 3.004 5.173 1.753 2.619 9.831

Maximum 9.685 20.78 5.748 11.83 33.26

R2 0.9984 0.9964 0.9988 0.9931 0.9925

Figure 3. Graphical summary of the prediction results in absolute percent error for the testing single-track profiles in Cold
Spray Additive Manufacturing (CSAM). The proposed data-efficient Artificial Neural Network (ANN) model is shown as
Tech. 1 + 2 data-efficient model.

Hence, the proposed DANN model that combined the two data-efficient techniques
achieved better predictive performance than the purely data-driven ANN model, showing
that all of the prediction errors fell below the MAPE of the purely data-driven ANN model.
The DANN model was also found to outperform the curved-fitted Gaussian function
model with a lower MAPE and MXAPE. Notably, there was a lower number of predictions
with large absolute percent errors (i.e., narrower upper quartile), as seen in Figure 3. This
predictive capability became more significant when the entire single-track profile was
predicted in the CSAM profiles, as presented in Figure 4.
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Figure 4. The experimental single-track profiles of the two selected profiles in the testing dataset as illustrative cases (black),
plotted with the corresponding prediction results of the curve-fitted Gaussian function model (blue), purely data-driven
ANN model (green) and the data-efficient ANN model (red): (a) Sample 48 (spray angle: 90◦, traverse speed: 39 mm/s,
standoff distance: 39 mm) and (b) Sample 39 (spray angle: 39◦, traverse speed: 34 mm/s, standoff distance: 41 mm).

Figure 4 shows the single-track profile of the two selected testing samples as an
illustration: (a) symmetric Sample 48 at a normal spray angle of 90◦ and (b) asymmetric
Sample 39 at an off-normal spray angle of 39◦. The prediction results of all other testing
profiles are shown in Figure S4 in the Supplementary Materials. It was observed that the
purely data-driven ANN model showed a higher track profile in Sample 48 and physically
inconsistent predictions around the peak region in Sample 39. In contrast, the proposed
DANN model outperformed in these regions. This result suggests that the lower prediction
accuracy caused by the data-scarcity around profile peak regions, as also identified in our
previous study [31], was overcome in this study by using the data-efficient techniques.

Compared with the curve-fitted Gaussian function model, the DANN model showed
better predictive performance in both illustrative cases in Figure 4. For the symmetric
Sample 48, the single-track profile was rather a triangular-shape, as previously observed
in other cold spray studies [26,27], resulting in the curve-fitted Gaussian function model
showing cyclic errors across the entire single-track profile. For the asymmetric Sample 39,
the curve-fitted Gaussian function model showed a larger deviation on the spray-tilted
side (i.e., the right end of the profile). In this particular region of single-track profiles,
the particles land on the deposit closer to the normal angle, which combined with a
shorter effective standoff distance results in an increased local accumulation in the deposit
with improved deposition efficiency [26]. In contrast, the proposed DANN model could
capture this physical phenomenon and predict significantly better at the profile end regions
in Figure 4.

4. Conclusions

This study presented the application of a data-driven modelling approach with two
techniques for leveraging the existing model at hand (i.e., the Gaussian function model
as a demonstration) to achieve data-efficient learning and development of a new ANN
model. The comparative study was performed for the prediction of the testing single-track
profiles in CSAM; both DANN models with Technique 1 or 2 alone outperformed the purely
data-driven ANN model with lower MAPE and MXAPE, demonstrating the effectiveness
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of the data-efficient techniques. Furthermore, the proposed DANN model, incorporating
both Techniques 1 and 2, was compared against the curve-fitted Gaussian function model
and found to provide better predictive performance. This result demonstrates that a data-
driven modelling approach can outperform a conventionally used mathematical function
model in CSAM, both at normal and off-normal spray angles, with appropriate data-
efficient modelling techniques. Moreover, these techniques harnessed the existing model
in developing a new data-driven ANN model without further experimentation. This result
may indicate that previously built models of HPRAM can be improved by following this
study’s modelling strategy. In future works, we plan to incorporate the developed data-
efficient ANN model into our toolpath planning algorithm to improve geometric control
and achieve more complex-shaped product designs in cold spray additive manufacturing.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/4/1654/s1, Figure S1: the experimental single-track profile S1–S12, Figure S2: the experimental
single-track profile S13–S24, Figure S3: the experimental single-track profile S25–S36, Figure S4: the
experimental single-track profile S37–S48 with the prediction of all models presented in this study,
Table S1: Process parameters for the single-track profiles S1–S36 in the training dataset, Table S2:
Process parameters for the single-track profiles S37–S48 in the testing dataset, Table S3: Curve-fitted
coefficients of mathematical Gaussian function model for the single-track profiles S1–S36, Table
S4: Curve-fitted coefficients of mathematical Gaussian function model for the single-track profiles
S37–S48.
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