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Abstract: In current Proof-of-Work (PoW) blockchain systems, miners usually form mining pools to
compete with other pools/miners in the mining competition. Forming pools can give miners steady
revenues but will introduce two critical issues. One is mining pool selection, where miners select the
pools to join in order to maximize their revenues. The other is a Block WithHolding (BWH) attack,
where pools can inject part of their hash/mining power into other pools to obtain additional revenues
without contributing to the mining process of the attacked pools. Reasoning that the BWH attack
will have significant impacts on the pool selection, we therefore investigate the mining pool selection
issue in the presence of a BWH attack in this paper. In particular, we model the pool selection process
of miners as an evolutionary game and find the Evolutionarily Stable States (ESSs) of the game (i.e.,
stable pool population states) as the solutions. Previous studies investigated this problem from the
perspective of pool managers and neglected the revenues from attacked pools (attacking revenues),
leading to less accurate and insightful findings. This paper, however, focuses on the payoffs of miners
and carefully takes the attacking revenues into consideration. To demonstrate how the problem is
solved, we consider the scenario with two mining pools and further investigate the case where one
pool attacks the other and the case where the two pools attack each other. The results in this paper
show that pools can attract more miners to join by launching a BWH attack and the attack power
significantly affects the stable pool populations.

Keywords: blockchain; mining pool selection; Block WithHolding attack; evolutionary game theory

1. Introduction

Blockchain, at its core, is a distributed ledger based on the technologies of encryp-
tion and Peer-to-Peer networking. Different from traditional centralized ledgers that
reliably manage transactions in a central server, all participants in blockchain systems are
synchronized to maintain the same copies of the transactions in order to guarantee the
tamper-proof feature. Such a feature renders blockchain a highly promising technology for
cryptocurrency platforms, such as Bitcoin [1] and Ethereum [2], as well as other applica-
tions like cyber–physical systems [3], access control [4–8], supply chain management [9],
data sharing [10] and storage [11], healthcare [12–14], real estate [15] and media digital
right [16].

Blockchain uses a data structure called block to store transactions. Each block has
a hash value, which uniquely identifies the block. A block contains a timestamp, which
records the time when the block was created, a difficulty, which is the system-wide difficulty
requirement of generating the block (i.e., the leading n bits of the hash must be zeros), a
nonce, which is some random number used to calculate the hash value of the block, and
the hash of its previous block. Blocks are limited in size [17]. For example, in the current
Bitcoin, the block size is limited to about 1 MB [18]. Blockchain, usually Proof-of-Work
(PoW) blockchain, relies on a process called mining to create blocks and ensure the tamper-
proof feature of the transactions inside. Mining is a competition among the participants of
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the blockchain system, whose goal is to find the latest valid block (called full PoW). Valid
blocks have hash values satisfying the system-wide difficulty requirement. In a mining
competition, only the first participant that finds the latest valid block is the winner and
will be rewarded. For example, in Bitcoin, the winner will be given some bitcoins as the
reward, which includes a fixed Coinbase reward about 12.5 bitcoins [19] and a varying
reward coming from the residual transaction fees.

Mining requires a huge amount of hash calculations, because the only way to find the
valid hash is guessing and trying. The system-wide difficulty requirement is difficult to meet,
which means that miners have to try a huge amount of different hash values until they find
a valid one. This is why blockchain is considered tamper-proof, because an extremely huge
amount of calculations are needed to alter the blocks, which is computationally impossible.

Since mining is computationally expensive, it is difficult for solo miners, especially
those with low computation powers, to win the mining competition. Therefore, in practical
blockchain systems, like Bitcoin, miners prefer to form groups called mining pools to
compete with other miners or pools in the mining competition. In a mining pool, each
miner contributes his/her computation power to the pool in exchange for rewards. A
pool has a manger, who sets another pool-wide difficulty, which is easier to satisfy than the
system-wide difficulty. All miners in the pool are required to find the blocks that meet the
pool-wide difficulty (called partial PoW) and report them to the manager. The number of
partial PoWs (PPoWs) will be used to measure the contributions of the miners. There are
several functions to distribute rewards according to miners’ contributions, like proportional
reward function, Pay-Per-Share (PPS) reward function and Pay-Per-Last-N-Share (PPLNS)
reward function [20]. This paper focuses on the proportional reward function, where the
rewards of miners are proportional to their contributions.

Forming pools shortens the average waiting time of miners for upcoming rewards,
leading to steady mining revenues for miners. When multiple mining pools exist, miners
face the problem of selecting which pool to join in order to maximize its revenues. We call
this problem the mining pool selection of miners.

In addition, the existence of multiple mining pools causes another problem, i.e., the
Block WithHolding (BWH) attack [21,22], where pools can inject part of their hash/mining
power to other pools to obtain additional revenues while not contributing to the mining
process of the attacked pools. Figure 1 illustrates the details of the BWH attack in the case
of two pools, where one pool (say Pool 1) attacks the other (say Pool 2). Suppose Pool 1,
i.e., the attacking pool, dispatches some of its miners as spies to Pool 2, i.e., the attacked
pool. When the spies find full PoWs (FPoWs), they discard them, while they still report
PPoWs to the manager of Pool 2. In this way, the spies can obtain revenues/rewards from
Pool 2 by reporting PPoWs, while they actually contribute nothing to the mining of Pool 2.
The revenues of the spies can be sent back to Pool 1, which will be re-distributed to the
miners in Pool 1 including the spies. The study in [23] shows that a pool can obtain more
revenues by launching the BWH attack to other pools.
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Pool1 Pool2

Revenue
Block
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Figure 1. Illustration of a Block WithHolding (BWH) attack.
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Reasoning that the BWH attack will have significant impacts on the pool selection, we
therefore aim to investigate the mining pool selection issue in the presence of BWH attack
in this paper. The mining pool selection problem without considering the BWH attack was
investigated in [24] based on the evolutionary game theory. The mining pool selection
issue in the presence of BWH attack has also been addressed in [25] from the perspective
of evolutionary game as well. The authors solved the problem from the viewpoint of pool
managers and investigated how pool managers can change strategies to attract miners,
which differs from the objective of this paper. In addition, the authors neglected the
revenues from attacked pools, which may lead to less accurate and insightful findings.
Motivated by these observations, our research objective is to investigate the mining pool
selection issue under the BWH attack from the perspective of miners. Like [24,25], this
paper also applies the evolutionary game theory to model the mining pool selection process
and find the Evolutionarily Stable States (ESSs) (i.e., stable population states) of the game
as the solutions. To achieve this goal, we first derive the expected revenue densities of
all pools to determine the expected payoffs of miners in the pools. Based on the expected
payoffs, we formulate replicator dynamics to represent the growth rates of the populations
in all pools. With the help of the replicator dynamics, we obtain the Nash Equilibria (NE)
of the game, i.e., rest points where the population growth rates are zeros, and discuss their
stability to identify the ESSs of the game. To demonstrate the process of solving the game,
we consider the scenario with two mining pools (Note that the two-pool scenario has been
widely adopted in the analysis of mining pool selection [24,25], because this scenario is
easy to analyze yet powerful enough to reveal the fundamental findings. In addition, the
analysis and results obtained from this scenario can serve as the building blocks for those
of more general scenarios with more mining pools.) and further investigate the case where
one pool attacks the other and the case where the two pools attack each other. Simulation
and numerical results are also provided to corroborate our analysis and to illustrate the
theoretical findings. The results in this paper show that pools can attract more miners
to join by launching the BWH attack and the attack power significantly affects the stable
pool populations.

The conference version of this paper was published in [26], which focused only on the
case where one pool attacks the other. This paper extends [26] by including the analysis
and numerical results for the case where the two pools attack each other. Compared with
the previous work in [25], this paper has the following two main contributions. First, the
previous work studied the problem from the viewpoint of pool managers and focused
on the payoffs of mining pools, while this paper investigates the mining pool selection
problem from the viewpoint of miners and formulates the payoffs of individual miners.
To do this, we propose a new concept called revenue density to characterize the revenue per
unit hash power of a pool. Second, this paper carefully takes the revenues from attacked
pools (i.e., attacking revenue) into consideration, while the previous work neglected the
attacking revenue to simplify the analysis. The results in this paper show that neglecting
the attacking power may give us inaccurate results and less insightful findings.

The rest of the paper is organized as follows. Section 2 introduces the related work.
In Section 3, we model the mining pool selection problem in the presence of BWH attack as
an evolutionary game and conduct analysis to solve the game. The case study with two
mining pools is presented in Section 4. We provide simulations and numerical results in
Section 5 and finally conclude this paper in Section 6.

2. Related Work

Game theory is a widely used method for analyzing the interactions (i.e., compe-
tition and cooperation) among rational decision makers, which choose their strategies
to maximize their payoffs inside a game. Game models include non-cooperative game,
extensive-form game, stochastic game, coalition formation game and evolutionary game,
which have found various applications in blockchain to address the security issues and
mining management. For example, the non-cooperative game model was applied to inves-
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tigate the BWH attack [23,27–31]. The stochastic game model was adopted to study the
selection between honest mining and selfish mining [32]. The coalition formation game
model was chosen to solve the mining pool formation problem [33,34]. The evolutionary
game model was used for modeling the mining pool selection behaviors of miners [24,25].
In this section, we focus on the studies of applying the evolutionary game to solve the
mining pool selection problem. For a detailed survey on the application of game theory in
blockchain, please refer to [35].

2.1. Mining Pool Selection without BWH Attack

The authors in [24] formulated the process of mining pool selection as an evolutionary
game, while they focused on the case without the BWH attack. Each pool adopts different
strategies, which are the size of blocks to be mined by the pool and the minimum hash
power required for joining the pool. Miners select pools based on these parameters.
To obtain the ESSs (i.e., stable population states), where the population of each pool remains
unchanged, they investigated the time variation of population fractions for the special
case with two pools. This work was later extended to various scenarios. For instance, the
authors in [36] extended [24] by considering different reward sharing strategies (i.e., PPS
strategy and PPLNS strategy) rather than the proportional reward sharing strategy in [24].
The authors in [37] extended [24] by additionally considering the impact of temporary fork
on the revenues of miners and pools.

2.2. Mining Pool Selection under BWH Attack

The authors in [25] investigated the process of mining pool selection under BWH
attack. In this study, they also used the evolutionary game theory to model the mining pool
selection process of miners. However, they focused on this problem from the perspective
of mining pool managers and formulated the rewards of mining pools instead of miners,
which is quite different from this paper. In addition, the authors did not consider the
revenues from attacked pools in the formulation, which may result in less accurate and
convincing insights into the problem and make the incentive of launching the BWH
arguable. In addition to the minimum required hash power and the size of blocks to be
mined, the authors also considered the population of attackers as an additional strategy
parameter. They investigated the properties of the population states and described how
pool managers can change the mining strategies to drive the population of miners to
stable states. The authors in [38] considered a scenario where miners can select to join
an attacking pool to perform honest mining or the BWH attack to another pool, and
modeled the selections between miners and attacking pools by indicator variables. A novel
anti-attack mining revenue optimization algorithm was proposed to determine the pool
selection so as to improve the group revenue of the attacking pools. In [39], the BWH game
among multiple mining pools was modeled as a stochastic game and the reinforcement
learning techniques were applied to analyzed the game. During the game analysis, the
pool selection of miners was also considered, where each miner randomly chooses the pool
to join based on the attractiveness of the pools. In [40], the authors investigated the power
splitting problem of a miner under the BWH attack from the game-theoretic perspective,
where a miner can choose to devote its mining power to one pool or split its mining power
among multiple pools to maximize its payoff. The power splitting game can be regarded
as one variant of the mining pool selection problem.

3. Evolutionary Game for Mining Pool Selection

Similar to [24], we also applied the evolutionary game theory to model the mining
pool selection process of miners in the presence of BWH attack. Our goal was to obtain
the ESSs and investigate the impact of the BWH attack on the ESSs. The analysis flow to
solve the game is as follows. First, we define the game and parameters. We then determine
the expected payoffs of miners in all the pools, which will be further used to obtain the
replicator dynamics, i.e., the growth rates of population fractions of all pools. Based on the
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replicator dynamics, we obtain the NEs of the population fractions, where the replicator
dynamics of all pools are zeros, i.e., the populations of all pools remain unchanged. Finally,
we analyze the stability of the NEs to identify the ESSs.

3.1. Game Definition

We consider a blockchain network consisting of N miners and M pools. The game
can be defined as G =< N ,M, x, yi(x, ω, si, a) >. The details of the game parameters are
shown in Table 1.

Table 1. Game parameters.

Parameters Meaning

N The set of miners with |N | = N, where N is the number of miners.
M The set of mining pools.M = {1, 2, . . . , M}, where M is the number of mining pools.
xi The population fraction of miners in pool i.
x The population state, x = [x1, x2, . . . , xM].

ωi The minimum hash power required to join pool i.
ω The hash power requirement profile, ω = [ω1, ω2, . . . , ωM].
si The size of blocks to be mined by pool i.
aij Attack size, i.e., the fraction of hash power used by pool i to attack/infiltrate pool j.
ai The attack profile of pool i, ai = [ai1, ai2, . . . , aiM].
a The total attack profile of all pools, a = [a1, a2, . . . , aM ].

yi(x, ω, si, a) The expected payoff of miners in pool i.

Each pool i uses ωi, si and ai as its parameters in the game. As in [24], we assume
that all miners in pool i adopt the same hash power ωi for mining. Thus, the total hash
power of pool i is Nxiωi. We assume that pools can not detect the existence of infiltrated
hash power. All the parameters are pre-fixed before the game and will remain unchanged
during the playing of the game.

3.2. Expected Payoff

We first derive the expected payoff of a miner in pool i, which is the revenue of the
miner minus the cost for mining. The revenue can be given by the product of the miner’s
hash power and the revenue density of pool i (i.e., the revenue obtained per unit hash
power). The cost comes from the power consumption (e.g., electricity fee) for mining.
We use p to denote the power charge required for unit hash power and use ri to denote
the revenue density of pool i, which is a function of x, ω, si and a as will be shown in
Section 3.2.1. The expected payoff of miners in pool i can be expressed as

yi(x, ω, si, a) = (ri(x, ω, si, a)− p)ωi. (1)

3.2.1. Revenue Density

Next, we consider the revenue density ri, which is calculated as the total revenue of
pool i divided by the total hash power seen by pool i. As pools can not detect the existence
of infiltrated hash power, the total hash power seen by pool i includes the hash power of
pool i and those from other pools that attack pool i. Letting Ri be the total revenue of pool i
and Hi be the total hash power of pool i, we can formulate the revenue density of pool i as

ri(x, ω, si, a) =
Ri(x, ω, si, a)

Hi(x, ω, a)
. (2)

The total revenue of pool i consists of the revenue obtained from honest mining (i.e.,
winning the mining competition) and that obtained by attacking other pools. We call the
former mining revenue and the latter attacking revenue. The mining revenue consists of
the residual transaction fees and a fixed amount of revenue from the coinbase of the new
block. Let C denote the fixed revenue from the coinbase and ρ denote the transaction fee
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per unit block size. The mining revenue is thus given by C + ρsi. Since pool i can obtain
the mining revenue only when it wins the mining competition, we need to consider the
winning probability. Defining the winning probability by Pwin

i , we obtain the expected
mining revenue of pool i as (C + ρsi)Pwin

i .
Attacking revenues are the revenues obtained from attacking other pools. Suppose

pool i attacks pool j with an attack size aij, i.e., pool i injects a fraction aij of its own hash
power into pool j for launching the BWH attack. The attacking revenue from pool j is
the product of attacking hash power and the revenue density of pool j, which is given by
Nxiωiaijrj, where Nxiωi is the hash power of pool i and rj is the revenue density of pool j.
Summing up the attacking revenues from all the attacked pools gives the total attacking
revenue of pool i, which is Nxiωi ∑M

j=1,j 6=i aijrj. Finally, combining the expected mining
revenue and the total attacking revenue yields the following expression of the total revenue
of pool i:

Ri(x, ω, si, a) = (C + ρsi)Pwin
i + Nxiωi

M

∑
j=1,j 6=i

aijrj. (3)

For the case without considering the attacking revenue as in [25], we can simplify the
total revenue of pool i to

Ri(x, ω, si, a) = (C + ρsi)Pwin
i , (4)

by simply ignoring the second term in the right-hand side of (3).
The total hash power seen by Pool i can easily be given by

Hi(x, ω, a) = Nxiωi +
M

∑
j=1,j 6=i

Nxjωjaji. (5)

Substituting (3) and (5) into (2) yields the expression of the revenue density ri(x, ω, si, a)
of pool i.

3.2.2. Probability of Wining Mining Competition

We can see from Section 3.2.1 that the probability Pwin
i of pool i wining the mining

competition is essential to determine the expected mining revenue of pool i. In the mining
competition, each pool aims to mine a block with a valid hash (i.e., an FPoW). Finding
such a block is a random event, because the only way is just to try different hash values
relentlessly. Since all pools and solo miners join the competition, the probability that pool
i mines a valid block is proportional to the ratio between its effective hash power to the
network total effective hash power [34]. By effective, we mean the hash power used for
mining (excluding those for BWH attack). We use Pmine

i (x, ω, a) to denote the probability
of pool i mining a valid block, which is given by

Pmine
i (x, ω, a) =

Nxiωi(1−∑M
j=1 aij)

∑M
j=1 Nxjωj(1−∑M

k=1,k 6=j ajk)
. (6)

After finding a new block, pool i broadcasts the block to its adjacent mining pools and
solo miners, which will verify the block, append it to their local blockchains and further
broadcast it inside the network until the block is received by the majority of the network.
This is the situation when other pools and solo miners did not find valid blocks. In this
situation, pool i is the winner of the competition. However, when some other pool or
miner also finds valid a block, the block mined by pool i may be discarded or orphaned by
most pools and miners, since the other block may arrive at these pools and miners earlier.
In this situation, pool i will lose the competition. The main cause of orphaning blocks
is the propagation time of blocks, which is dependent on the average block propagation
delay of network links and average verification time of blocks [24]. According to [24], the
propagation delay of a block of size s can be modeled as τp(s) = s/(γc), where γ is a
parameter related to the scale of the network and c is the average effective channel capacity
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of each link. The verification time of a block of size s can be modeled as a linear function
τv(s) = bs, where b is a parameter determined by the scale of the network and average
verification time of each node [41,42]. Thus, the average propagation time of a block of size
s is given by

τ(s) = τp(s) + τv(s) =
s

γc
+ bs. (7)

Suppose that the average block generation interval is a constant T. The occurrence
of block orphaning due to the propagation time of blocks can be modeled as a Poisson
process with mean rate 1/T [43]. Thus, the probability that the block found by pool i (i.e.,
of size si) is not orphaned is

Pnot orphan
i (si) = e−τ(si)/T = e−(

si
γc +bsi)/T . (8)

Pool i wins the competition if and only if it finds a valid block and the block is not
orphaned. Thus, the probability of wining the competition for pool i is

Pwin
i (x, ω, si, a) = Pmine

i (x, ω, a)Pnot orphan
i (si). (9)

3.3. Game-Theoretic Analysis

In this section, using the results of the previous section, we analyze the game to
obtain the ESSs. First, we formulate the replicator dynamics, i.e., the growth rates of the
population fractions of all pools. We then find the NEs where the population fractions
remain unchanged, i.e, the replicator dynamics are all zeros. Finally, we analyze the stability
of the obtained NEs to identify the ESSs.

3.3.1. Replicator Dynamics

The growth rate of the miner population in a pool can be described by the replicator
dynamics [44]. Based on the pairwise proportional imitation protocol [45], the replicator
dynamics of pool i is given by the following Ordinary Differential Equation (ODE):

ẋi(t) =
dxi
dt

= fi(x(t), ω, si, a)

= xi(t)(yi(x(t), ω, si, a)−y(x(t), ω, s, a)), (10)

where xi(t) is the population fraction of pool i at time t, yi(x(t), ω, si, a) is the expected
payoff of miners in pool i at time t and y(x(t), ω, s, a) = ∑M

i=1 yi(x, ω, si, a)xi is the average
expected payoff of all the miners at time t, i.e., network average payoff. We can see that
the replicator dynamics ẋi(t) represents the growth rate of the population of pool i at time
t, which is related to the difference between the miner payoff of pool i and the network
average payoff. If the payoff of pool i is larger than the network payoff, its population will
increase. Otherwise, its population will decrease.

3.3.2. Nash Equilibria (NE)

The population states x = [x1, . . . , xM]> ∈ X can be interpreted as mixed strategies
that each miner may choose, where each xi denotes the probability of selecting pool i. An
NE is then a mixed strategy x∗ that is a best reply to itself. That means under the condition
that other miners choose x∗, a miner cannot gain more revenue by choosing any other
x ∈ X rather than x∗. Formally, an NE satisfies the following inequality [46]:

(x∗ − x)>Y(x∗) ≥ 0, ∀x ∈ X , (11)

where Y(x) = [y1(x), . . . , yM(x)]> with yi(x) given by (1). According to [47], an NE is
actually a rest point of the following equation system of the ODEs:

ẋi(t) = xi(t)(yi(x(t), ω, si, a)−y(x(t), ω, s, a)) = 0, (12)
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for i = 1, 2, · · · , M. This means that, in an NE, the temporal growth rate of the population
fraction of each pool i is zero. That is, ∀i ∈ M, ẋi(t) = 0 holds [48]. By solving the above
equation system, we can find the NEs of the game.

3.3.3. Evolutionary Stability of NEs

Generally, ESSs are NEs, while NEs are not necessarily ESSs. Thus, we need to analyze
the stability of NEs to identify the ESSs of the game. Again, we interpret the population
states as mixed strategies. Suppose the entire population adopts the strategy x∗ and there
is another mutant strategy x′ that attempts to invade a fraction ε ∈ (0, ε) of the population.
If the following inequality holds, then x∗ is an ESS:

∑
i∈M

x∗i yi((1− ε)x∗ + εx′) ≥ ∑
i∈M

x′iyi((1− ε)x∗ + εx′). (13)

More precisely, x∗ is an ESS if the following two conditions are met [46]:

1. (x∗ − x)>Y(x∗) ≥ 0, ∀x ∈ X
2. If (x∗ − x)>Y(x∗) = 0, then (x∗ − x)>Y(x) > 0 holds.

The first condition means that an ESS must be an NE. The second condition indicates
that if a miner choosing strategy x can earn as much revenue as a miner who chooses the
NE strategy when other miners choose the NE, then a miner who chooses the NE must
earn more revenue than a miner who chooses x when other miners choose x.

4. Case Study with Two Mining Pools

In this section, we focus on the special case with two mining pools to show how the
game is analyzed.

4.1. One-Side Attack Case

We first consider the one-side attack case, where one pool attacks the other. Suppose
that pool 1 attacks pool 2, i.e., a12 > 0 and a21 = 0. According to (2), the revenue densities
of the two pools are given by

r1 =
α(1− a12) + Na12r2(x1ω1(1− a12) + x2ω2)

N(x1ω1(1− a12) + x2ω2)
, (14)

r2 =
βω2x2

N(x1ω1a12 + x2ω2)(x1ω1(1− a12) + x2ω2)
. (15)

Substituting (15) into (14), we have

r1 =
α(1−a12)(a12ω1x1+ω2x2)+a12βω2x2

N((1− a12)ω1x1+ω2x2)(a12ω1x1+ω2x2)
. (16)

Substituting (16) and (15) into (1), we can obtain the following expected payoffs of
miners in both pools:

y1 = ω1

(
α(1−a12)(a12ω1x1+ω2x2)+a12βω2x2

N((1− a12)ω1x1+ω2x2)(a12ω1x1+ω2x2)
−p
)

, (17)

y2 = ω2

(
βω2x2

N((1−a12)ω1x1+ω2x2)(a12ω1x1+ω2x2)
−p
)

. (18)

When pool 2 attacks pool 1, similar to (14) and (15), the revenue densities are expressed
as follows:

r1 =
αω1x1

N(x1ω1 + x2ω2a21)(x1ω1 + x2ω2(1− a21))
, (19)

r2 =
β(1− a21) + Na21r1(x1ω1 + x2ω2(1− a21))

N(x1ω1 + x2ω2(1− a21))
. (20)
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The expected payoffs are given by

y1 = ω1

(
αω1x1

N(x1ω1+x2ω2)(x1ω1+(1−a21)x2ω2)
−p
)

, (21)

y2 = ω2

(
β(1−a21)(x1ω1+x2ω2a21)+a21αω1x1

N(ω1x1+(1− a21)ω2x2)(ω1x1+a21ω2x2)
−p
)

. (22)

According to (10), the equation system of the ODEs for the replicator dynamics can be
expressed as follows:

ẋ1 = x1(y1 − y) = 0, (23)

ẋ2 = x2(y2 − y) = 0, (24)

where y is
y = x1y1 + x2y2. (25)

Since x2 = 1− x1, letting x1 = x and x2 = 1− x, we can simplify the system of ODEs
to the following equation:

ẋ1 = x(1− x)(y1 − y2) = 0. (26)

Thus, the population state can be expressed as (x, 1− x).
For the case where pool 1 attacks pool 2, substituting (17) and (18) into (26) and solving

the equation yields rest points in the form of (x∗1 , x∗2) = (x∗, 1− x∗), where x∗ is given by

x∗ ∈
{

0, 1,
−B±

√
B2 − 4AC

2A

}
, (27)

with

A = a2
12Npω3

1 − a12Npω3
1 − a2

12Npω2ω2
1 + a12Npω2ω2

1 + Npω2ω2
1 − 2Npω2

2ω1 + Npω3
2,

B = αa12ω1ω2 − αa2
12ω2

1 + αa12ω2
1 − a12βω1ω2 − αω1ω2 + βω2

2 − 2Npω3
2 + 3Npω1ω2

2 − Npω2
1ω2,

C = −αa12ω1ω2 + a12βω1ω2 + αω1ω2 − βω2
2 + Npω3

2 − Npω1ω2
2.

When pool 2 attacks pool 1, x∗ is also expressed as

x∗ ∈
{

0, 1,
−B±

√
B2 − 4AC

2A

}
, (28)

but with

A = a2
21Npω2

2ω1 − a21Npω2
2ω1 − a2

21Npω3
2 + a21Npω3

2 − Npω3
1 + 2Npω2ω2

1 − Npω2
2ω1,

B = −αa21ω1ω2 − a2
21βω2

2 + a21βω2
2 + a21βω1ω2 + 2a2

21Npω3
2 − 2a21Npω3

2 − 2a2
21Npω1ω2

2

+ 2a21Npω1ω2
2 + αω2

1 − βω1ω2 + Npω1ω2
2 − Npω2

1ω2,

C = a2
21βω2

2 − a21βω2
2 + a2

21(−N)pω3
2 + a21Npω3

2 + a2
21Npω1ω2

2 − a21Npω1ω2
2.

Next, we proceed to analyze the evolutionary stability of the above rest points to
find the ESSs. However, this is very difficult in our game model. We therefore discuss
the evolutionary stability of the rest points based on the phase portrait of the replicator
dynamics, which is a geometric representation of the trajectories of the population states, as
shown in Figure 2. The condition for rest points to be stable is that for a rest point, any path
starting from the neighborhood (red circle in Figure 2) of that point will finally converge to
that point.
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4.2. Both-Side Attack Case

Next, we consider the both-side attack case, where the two pools attack each other.
According to (2), the revenue densities of both pools can be expressed as follows:

r1 =

Nx1ω1(1−a12)α
Nx1ω1(1−a12)+Nx2ω2(1−a21)

+ Nx1ω1a12r2

Nx1ω1 + Nx2ω2a21
, (29)

r2 =

Nx2ω2(1−a21)β
Nx1ω1(1−a12)+Nx2ω2(1−a21)

+ Nx2ω2a21r1

Nx2ω2 + Nx1ω1a12
. (30)

Note that (29) and (30) form an equation system in terms of r1 and r2. Solving this
equation system, we obtain the expressions of r1 and r2, which are given by (31) and (32).

r1 =
x1ω1(x2ω2(a12(a21β + α− β)− α) + α(a12 − 1)a12x1ω1)

N((a12 − 1)x1ω1 + (a21 − 1)x2ω2)
(
a12x2

1ω2
1 + x2ω2(a21x2ω2 + x1ω1)

) , (31)

r2 =
x2ω2(x1ω1(a21(a12α− α + β)− β) + (a21 − 1)a21βx2ω2)

N((a12 − 1)x1ω1 + (a21 − 1)x2ω2)
(
a12x2

1ω2
1 + x2ω2(a21x2ω2 + x1ω1)

) . (32)

According to (1), (29) and (30), the expected payoffs of miners in both pools can be
given by

y1 = ω1(r1−p), (33)

y2 = ω2(r2−p). (34)

However, in the both-side attack case, the expressions of the rest points are difficult
to obtain due to the complexity of the replicator dynamics. Thus, we resort to numerical
calculations to obtain the values of the rest points.

5. Numerical Results

In this section, we conduct simulations to show the evolution of population states
in the two-pool case. The simulation results can be used to verify the correctness of our
analysis in Sections 3 and 4. We also plot the phase portraits of the replicator dynamics to
show the stability of the obtained NEs. We consider three cases, i.e., the case without BWH
attack (no-attack case), the one-side attack case and the both-attack case. Based on these
results, we investigate the impacts of the BWH attack size on the stable population states.
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5.1. Simulation Algorithm

We simulate the pool selection process based on Algorithm 1. This algorithm shows
how each miner selects the pool to join based on the pairwise proportional imitation
protocol. At the beginning of the simulation, each miner joins a pool randomly. After the
initialization, each miner i randomly chooses a pool j (j ∈ M) for payoff comparison and
decides to move to pool j from its current pool k (k ∈ M) with a certain probability ρk,j, if
the expected payoff of pool j is larger than the expected payoff of pool k. Otherwise, the
miner will stay in its current pool k. These steps will be repeated until the population states
x converges.

Algorithm 1 Mining Pool Selection Algorithm

1: Initialize: t← 1
2: while x is not converged and t < MAX_COUNTER do
3: for all i ∈ N do
4: k← The current pool of miner i
5: j← rand(1, M) . Choose a pool j for payoff comparison at random
6: Move from pool k to j with probability
7: ρk,j = xj max(yj(x, ω, sj, a)−yk(x, ω, sk, a), 0)
8: end for
9: t← t + 1

10: end while

5.2. Results and Discussions

In this section, we verify the correctness of the analysis by simulations and also show
the impacts of BWH attack on the population states of the mining pools. In the simulations,
we execute Algorithm 1 to obtain the population states after convergence. The parameter
settings used in the simulations are shown in Table 2.

Table 2. Parameter settings.

Parameter Description Value

N Number of miners 5000
M Number of mining pools 2
C Fixed revenue from the coinbase 1000
ρ Transaction fee per unit block 2
T Average block generation interval 600
p Power charge required for unit hash power 0.001

1
γc + b Propagation delay parameter 0.005

5.2.1. No-Attack Case

First, we consider the case without BWH attack (i.e., a12 = 0, a21 = 0). In this case,
we set the minimum required hash powers of the two pools as ω1 = 30 and ω2 = 20 and
the block sizes of both pools as s1 = s2 = 100. Under this parameter setting, we obtain an
NE (0.4, 0.6) by calculating (27) with a12 = 0. Figure 3a shows the corresponding phase
portraits. The figure shows that all paths converge to the point (0.4, 0.6), indicating the
stability of the NE obtained from theoretical analysis. This result is consistent with the
simulation results in Figure 3b and the results in [24], indicating the correctness of the
theoretical analysis. In addition, the ratio of the population of pool 1 to that of pool 2 in the
stable population state is the inverse ratio of the hash powers of pool 1 to that of pool 2.
This means that the revenue of a miner depends only on the required hash power of the
pool to which he or she belongs in this case.
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Figure 3. No-attack case.

5.2.2. One-Side Attack Case

Next, we consider the one-side attack case, where pool 1 attacks pool 2 with attack
size a12 = 0.015. Other parameters are set to the same as those in Figure 3. Under this
setting, we obtain four NEs: (0, 1), (0.55, 0.45), (0.77, 0.23) and (1, 0) by calculating (27).
Figure 4a shows the phase portrait of the replicator dynamics. We can see from Figure 4a
that the population states converge to (0.55, 0.45) from the initial state with 0 ≤ x1 < 0.77
and converge to (1, 0) from 0.77 < x1 ≤ 1. This means that only (1, 0) and (0.55, 0.45)
are stable, i.e., they are ESSs. We consider three initial population states for simulations,
i.e., (x1, x2) = (0.20, 0.80), (x1, x2) = (0.75, 0.25) and (x1, x2) = (0.85, 0.15). Figure 4b
shows the simulation results of the evolution of population states over time. We can see
from Figure 4b that the population state converges to different points from different initial
states, indicating the existence of two stable population states, which are (x1, x2) = (1, 0)
and (x1, x2) = (0.55, 0.45). The simulation results are consistent with the theoretical ones,
verifying the correctness of our analysis. Comparing the stable population states with
those in the no-attack case, we can see that the population fraction of pool 1 increases from
0.4 (no-attack case) to 0.55 or to 1.0 (one-side attack). This indicates that pools can attracts
miners to join by launching the BWH attack.
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(a) Phase portraits of replicator dynamics.
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Figure 4. One-side attack case with a12 = 0.015.

We proceed to investigate the impacts of attack size on the stable population states,
for which we fix the initial population state at (0.5, 0.5). Figure 5a,b show the simulation
results for small attack size (i.e., in the region [0, 0.1]) and large attack size (i.e., in the region
[0.9, 1.0]), respectively. From Figure 5a, we can see that as the attack size increases, the
population of the attacking pool (i.e., pool 1) increases, while that of the attacked pool (i.e.,
pool 2) decreases. The results show that using more hash power for BWH attack attracts
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more miners to join, when the attack size is small. However, this is not the case when the
attack size is sufficiently large, as shown in Figure 5b. We can see from Figure 5b that, for
the case of the large attack size, the population of the attacking pool decreases as the attack
size increases, while that of the attacked pool increases. The reason is that the larger the
attack size is, the less hash power is used for mining, leading to decreased mining revenue,
which dominates the trend of the total revenue of the pool. This indicates that devoting
too much hash power for BWH attack may discourage miners to join the attacking pool.
Similar observations have also been reported in [25].
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Figure 5. Stable population states vs. attack size a12.

We now examine the importance of the attacking revenue (i.e., revenue from the
attacked pool) in the pool selection, for which we show in Figure 6 how the attack size of
pool 1 affects the stable population states for both the case with attacking revenue (this
paper) and without attacking revenue ([25]). We fix the initial population state as (0.5, 0.5)
and also consider two regions, i.e., small attack size (i.e., 0.0 to 0.1) and large attack size (i.e.,
0.9 to 1.0). We can see from Figure 6a that, for the case without considering the attacking
revenue, miners prefer to join the attacked pool (i.e., pool 2) as the attack size increases.
This is unreasonable, since intuitively joining the attacked pool will earn less revenues than
joining the attacking pool, due to the advantage brought by BWH attack. We can see from
Figure 6a that increasing the attack size to a sufficiently large (or even to 1) has no impact
on the mining selection of miners in the case without considering the attacking revenue.
This is also unreasonable, because the advantage of the attacking pool decreases due to the
reduction of mining revenue in this situation, making the attacking pool less attractive for
miners. The results in both figures show that ignoring the attacking revenue as in [25] may
provide us with less accurate and convincing insights into the pool selection problem.
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Figure 6. Impact of considering the attacking revenue.
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We also investigate the case where pool 2 attacks pool 1 with attack size a21 = 0.015.
Other parameters are the same as those in Figure 3. Under this setting, we obtain two
NEs (0, 1) and (1, 0) by calculating (28). Figure 7a plots the phase portrait of the replicator
dynamics. We can see from Figure 7a that the population states converge to (0, 1) from any
initial state, implying that the NE (0, 1) (i.e., the state where all miners join pool 2) is stable
and thus the only ESS. We also show in Figure 7b the simulation results for three initial
population states (x1, x2) = (0.20, 0.80), (0.50, 0.50), (0.75, 0.25). The results show that all
the population states finally converge to the state (0, 1), which agree with the theoretical
results. Note that the minimum hash powers required to join pool 1 and pool 2 are ω1 = 30
and ω2 = 20 in Figures 4 and 7. Comparing the results in these two figures, we can see that
a pool with lower hash power requirement is more likely to attract miners when launching
the BWH attack.
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(a) Phase portraits of replicator dynamics.
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Figure 7. One-side attack case with a21 = 0.015.

5.3. Both-Side Attack Case

Finally, we focus on the both-side attack case with attack sizes of a12 = 0.015 and
a21 = 0.015. Other parameters are set as those in Figure 3. Under this parameter setting,
we obtain five NEs: (0, 1), (0.2, 0.8), (0.4, 0.6), (0.8, 0.2) and (1, 0) based on numerical calcu-
lations. We show in Figure 8a the phase portrait of the replicator dynamics. We can see
from Figure 8a that the population states converge to (0, 1) for initial states with x1 ≤ 0.2,
converge to (1, 0) for initial states with x1 ≥ 0.8 and converges to (0.4, 0.6) for initial states
with 0.2 < x1 < 0.8. This implies that the ESSs in this case are (0, 1), (1, 0) and (0.4, 0.6). To
verify the correctness of the analysis, we conducted simulations with three initial states
(x1, x2) = (0.20, 0.80), (0.75, 0.25), (0.85, 0.15) and summarize the results in Figure 8b. The
results show that all the population states finally converge to the state (0, 1) from initial
state (0.2, 0.8), converge to (0.4, 0.6) from initial state (0.75, 0.15) and converge to (1, 0) from
initial state (0.85, 0.15), which agree with the theoretical results. Comparing the results
with those of the no-attack case, we can see that the pool with sufficiently large initial
population fraction (e.g., more than 0.8) will attract more miners to join. In addition, when
the initial population fraction of either pool is not sufficiently large, attack has no impacts
if the two pools attack with the same size, which can also be observed from Figure 5a.

Next, we investigate the impacts of attack sizes a12 and a21 on the converged popula-
tion states. Figure 9 shows how the stable population state changes when the attack size of
pool 1 (a12) increases from 0 to 0.03 under various values of the attack size of pool 2 (a21).
In Figure 9a, the initial state is fixed as (0.50, 0.50) and the attack size of pool 2 is set as
0.010, 0.015, 0.020. This figure shows that, as the attack size of pool 1 (resp. pool 2) increases,
the stable population fraction of pool 1 (resp. pool 2) increases. This means that using
more hash powers for attack will attract more miners to join the pool after convergence.
Furthermore, we can see that when the two pools use the same attack size, the populations
converge to nearly the stable state without attack (0.4, 0.6), which means that attack has no
impacts in this case. The results with initial states (0.1, 0.9) and (0.9, 0.1) are also shown in
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Figure 9b,c. We can see the same phenomenon from these two figures that mining pools
can attract more miners to join after convergence by increasing their attack sizes, implying
that attack can give mining pools advantages.
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Figure 9. Stable population states vs. attack sizes a12 and a21.

6. Conclusions

In this paper, we have investigated the mining pool selection problem in the presence
of a Block WithHolding (BWH) attack and obtained the stable population states from the
perspective of evolutionary game theory. In particular, we have focused on the scenario
with two mining pools and provided simulation and theoretical results to show the correct-
ness of the analysis. The results in this paper have shown that pools can attract miners to
join by launching the BWH attack, and devoting more hash power (computation power) for
attack attracts more miners, when the attack power is small. However, too large of an attack
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power will discourage miners to join. These observations indicate the significant impacts
of BWH attack on the mining pool selection of miners. Note that this paper considered the
two-pool scenario as the case study, which is good enough for us to obtain fundamental
findings but may provide less insights to the general case with more mining pools. There-
fore, we will focus on the general scenario in the future work. In addition, we will also
consider conducting experiments with more practical parameter settings or in real-world
blockchain networks like Bitcoin to help us understand the problem more deeply.
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