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Abstract: The need to safeguard our planet by reducing carbon dioxide emissions has led to a
significant development of research in the field of alternative energy sources. Hydrogen has proved
to be the most promising molecule, as a fuel, due to its low environmental impact. Even if various
methods already exist for producing hydrogen, most of them are not sustainable. Thus, research
focuses on the biological sector, studying microalgae, and other microorganisms’ ability to produce
this precious molecule in a natural way. In this review, we provide a description of the biochemical
and molecular processes for the production of biohydrogen and give a general overview of one of
the most interesting technologies in which hydrogen finds application for electricity production:
fuel cells.
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1. Introduction

Nowadays, searching for renewable energy represents one of the major challenges
for the global scientific community. Population growth and industrial activities, with con-
sequential high-energy demand, require solutions and proposals in the short-term. It is
assumed that the world population could reach 8–10 billion in 2040, while the increase
in global energy demand, within the same year, is estimated between 100 and 170 qBtu.
However, models cannot accurately predict sudden changes in the global energy situa-
tion, as different socio-economic scenarios and political choices modulate each country’s
response [1,2]. Considering the slow oil, coal, natural gas formation processes, the exces-
sive exploitation of fossil fuels has triggered a drastic and irreversible reserve reduction.
Another side aspect of fossil fuel use concerns greenhouse gas (GHG) emissions, particu-
larly carbon dioxide (CO2), during the combustion reaction [3]. In particular, in the years
between 1998 and 2018, CO2 emissions increased by 48%, making it necessary to implement
carbon capture and storage (CCS) technology to limit serious and detrimental effects on
climate change [2]. In this worrying scenario, fossil fuels still provide more than 80% of
primary energy needs, although the interest in renewable sources, together with their
consumption, are steadily increasing [4].

Among renewable options, hydrogen shows the important advantage of CO2-free com-
bustion, with water as a by-product. Thermodynamic properties, compared to traditional
fuels, confirm the interest in its investments in research, although several aspects related
to production and storage are still to be mastered. Today, several industrial applications
depend on hydrogen, but the most is obtained by techniques, such as steam reforming or
electrolysis, not entirely free from the involvement of fossil fuels [5]. Some living organisms,
such as microalgae and bacteria, are the basis of processes capable of producing hydrogen
in a completely eco-sustainable way. Microalgal hydrogen production is made possible
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by biological processes directly or indirectly, depending on sunlight, or by fermentation
processes and thermochemical technologies for biomass conversion (Figure 1).
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In recent years, many green systems have focused on algal biomass to obtain energy
from living matter. Microalgae store and exploit light energy thanks to the photosynthetic
process. To support cell growth and metabolic activities, they use resources widely avail-
able in nature, such as water and CO2. These organisms can concentrate considerable
CO2 amounts and obtain nutrients necessary for growth, even from substrates or waters
deriving from industrial waste. Algal cultivation systems, which are simple and relatively
inexpensive, ensure advantageous growth rates. Furthermore, they can be set up on in-
fertile territories without competing with agricultural areas that can be exploited for food
resources. In particular, the general interest in microalgae has increased significantly in
recent decades due to the variety and versatility of the metabolites present in various and
numerous species [6].

The present review article is a collection of the most recent evidence on hydrogen
production in green microalgae and the efforts to understand and improve the above-
mentioned processes in the most widely used species.

2. Hydrogen Metabolism in Green Microalgae: Biophotolysis

Hydrogen metabolism was firstly observed in eukaryotic microalgae in 1939 by Ger-
man physiologist Hans Gaffron [7]. Due to the oxygen incompatibility, it occurs only
transiently in photosynthetic organisms.

2.1. Photosynthetic Electrons and Hydrogenase

The pivotal process of microalgal metabolism consists of oxygenic photosynthesis
and complex redox reactions that take place at the level of the thylakoid membranes in
chloroplasts through two successive phases. During the first light-depending reactions,
ATP and reduced NADH, and NADPH, are generated to be involved in the next dark
reactions where the atmospheric CO2 is fixed by a RuBiSco (ribulose-1,5- bisphosphate
carboxylase/oxygenase) enzyme to ultimately generate energy rich-carbohydrate stores.
Specifically, during the light phase, an electron transport chain is generated along with
photosystems II (PSII) via the plastoquinone (PQ) pool, cytochrome b6f complex (Cyt b6f),
and photosystems I (PSI) due to the light energy received as photosystems are associated
with light-harvesting complexes I and II (LHC I and LHCII), consisting of numerous
photoreceptive pigments. These electrons through PSI leave the electron transport chain
and reach the final acceptor ferredoxin (Fd) [8,9].

In anoxic conditions, Fd is able to address electrons to the hydrogenase enzyme.
This kind of enzyme catalyzes a reversible reaction in which hydrogen can also be split
into electrons and protons:

2H+ + e− ↔ H2 (1)
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Hydrogenases from the green algae Chlamydomonas reinhardtii are the most well-
characterized among microalgae. This model organism expresses two different Fe-hydrogenases
genes: HydA1, the isoform mainly involved under anoxic conditions, and HydA2 [10,11].
Hydrogenase activity is part of the various responses that microalgal organisms carry out in
response to anoxic or stress conditions, and is highly regulated on several levels. After the
ribosomal translation in the cytoplasm, the protein is driven to chloroplasts through a
transit peptide at the N-terminal end [12]. Assembling of the protein and the catalytic
center, H cluster, are required to obtain the functional 47–48 kDa enzyme. HydEF and HydG
genes encode for maturation proteins, crucial for its activation [13]. H cluster is composed
of [4Fe4S] unit cysteine-linked to a di-iron unit able to receive electrons via Fd, but easily
reversibly inactivated by oxygen [14,15]. Evidence of hydrogen metabolism is reported
also in less investigated species, such as Scenedesmus obliquus [16,17], Chlorella fusca [18],
Chlamydomonas moewusii, Lobochlamys culleus [19], Chlorococcum littorale [20], Tetraselmis
subcordiformis [21].

2.2. Direct and Indirect Biophotolysis

Hydrogenase can receive electrons from different metabolic sources deriving upstream
from the biophotolysis of water. At the PSII level, the splitting of water simultaneously
produces O2 and electrons, which, in lighting conditions, reach the Fd and are processed
for carbon fixation through the ferredoxin-NADP+ reductase. Under anoxic conditions,
oxygen depletion generates a favorable environment for the expression of hydrogenases
that start to receive photosynthetic electrons. This process is the direct biophotolysis.

Biophotolysis can also indirectly feed the hydrogen evolving process through the
electrons deriving from the breakdown of complex stored carbohydrates, such as starch,
which reach Fd and, finally, the hydrogenase. Moreover, the electron load is transferred
to the PQ pool via a specific type-II calcium-dependent NADH dehydrogenase (Nda2),
and then is transferred to Fd, bypassing PSII without oxygen cogeneration. This process is
called indirect biophotolysis [22,23]. Hydrogen evolution is triggered and promoted by
modulating different growth strategies, largely experimented on Chlamydomonas reinhardtii
strains. The most commonly adopted strategy is sulfur deprivation that forces cells to
reduce protein synthesis and recover sulfur (S) from protein degradation, such as PSII
linked protein D1, impairing the photosystem functions. Exposure to light after dark
incubation causes the formation of electrons, but also reactive oxygen species near the
defective photosystems with potentially harmful consequences on cell structures. In this
context, hydrogenase activity works as a safety valve to preserve structures from oxidative
stress, combining electrons with protons to produce hydrogen [24].

3. The Role of Growth Parameters in Hydrogen Production

Acting on cultivation parameters is the simplest way to produce immediate effects on
the growth or the specific metabolite production.

Regarding media components, the aforementioned S deprivation gives the expected
effects only if preceded by a photosynthetic growth phase, providing all of the necessary el-
ements for growth. More recently, alongside this strategy, which envisages separate growth
and a deprivation step with several operational issues, a different modality that involves
minimal quantities of S to simulate a condition of starvation has also been tested [25,26].
Moreover, particular attention should be paid to the carbon source used: it has been ob-
served that an increase in starch reserves during the phase preceding S deprivation can be
crucial in supporting production. Mixotrophic conditions involving both inorganic and
organic carbon sources appear to be preferred. [27,28].

The less studied condition of nitrogen (N) deprivation induces hydrogen production
in Chlamydomonas reinhardtii, albeit with a delayed effect and lower yields, suggesting a dif-
ferent mechanism in establishing process [29]. In Scenedesmus obliquus, N deprivation mod-
ulates metabolism towards lipids accumulation to be used as an energy reserve, suggesting
that this strategy is not advantageous for the purposes of hydrogen production [30]. In ma-
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rine Chlorella spp., where S deprivation is inapplicable due to the sulfates-rich presence in
seawater, the effect of phosphorus (P) deficiency was evaluated. Similarly, P deprivation
was able to establish anaerobic metabolism with a sustained hydrogen photoproduction,
even if low-density culture were required to reduce the effect linked to cellular P reser-
voirs [31]. Less common element deprivations, such as magnesium (Mg), were also tested.
Mg-deprived Chlamydomonas reinhardtii cells exhibited a longer hydrogen production over
time than the same cells in the case of S deprivation. This response may depend on the
lesser Mg importance for cellular activities compared to S [32].

Various chemical compounds added in the cell media can affect protons and electrons
mobilization inside the cell and, consequently, hydrogen metabolism. The protonophores
carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 2,4-dinitrophenol (DNF) increase
hydrogen production, owing to proton mobilization [33]. The action of other similar de-
coupling agents, such as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DMCU) and carbonyl
cyanide p-trifluoromethoxy phenylhydrazone (FCCP) allow to stimulate hydrogen produc-
tion through the PS II independent pathway, although the underlying mechanisms are not
deeply understood [34].

Parameter changes to produce hydrogen require several operational steps, especially
during cell transfer upon different media. To handle culture more easily, some attempts
have demonstrated the feasibility of cell cultivation through different immobilization sys-
tems [35]. Most of the attempts have been applied in Chlamydomonas reinhardtii through the
use of fiberglass matrix, thin alginate films, or, more recently, sodium alginate beads. In par-
ticular, the latter study selected beads of few millimiters diameter to further investigate the
process in the classical photobioreactors, bringing out the need to adapt bioreactors to new
immobilization systems [36–38].

Indeed, photobioreactor design must take into account downstream applications and
process needs. Closed systems are used in lab-scale hydrogen production experiments and
represent a better alternative to open systems. Growth parameters, especially temperature
and pH, are strictly monitored and, at the same time, the collection of the gas produced is
less subject to dispersions. Particular importance is attached to the agitation mode and the
intensity and quality of the light radiation. Vertical column, tubular, and flat panel, are the
most investigated photobioreactor modalities for hydrogen production. The latter seems to
be preferred as it provides the highest surface/volume ratio, although it is not a solution to
all technical issues, and this area of research still faces numerous challenges [9,39].

4. Genetic Engineering Approaches
4.1. Random Mutagenesis

The approaches described in the previous paragraph act in a transitory way, since it
is not possible to manage microalgal culture by applying stress conditions permanently.
Indeed, depriving a cell culture of the optimal growth conditions for a long time leads
to cellular suffering that can culminate in cell death. In this way, only a discontinuous
hydrogen production is possible, alternating stress and recovery phases to avoid permanent
damage to the cells. One strategy to overcome this limitation concerns the selection of
organisms with a higher aptitude to withstand these stress conditions; another one could be
the selection of organisms which are less susceptible to the conditions that usually hinder
hydrogen evolution in photosynthetic green microalgae.

Physical and chemical treatments induce transmissible genomic mutations that favor
the appearance of new traits in an organism. These treatments are not oriented towards a
specific target and it is necessary to take into account an expensive screening phase among
the mutants produced to select the ones with characteristics of interest. However, a recent
study demonstrated that Chlamydomonas reinhardtii mutants obtained via atmospheric and
room temperature plasma (ARTP) showed a lighter green coloration, compared to wild
types, indicative of lower chlorophyll content. The lower chlorophyll content is associated
with better photosynthetic performance (probably due to the improved light transmit-
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tance and the consequent increased solar energy conversion efficiency), as confirmed by
transcriptomic analyses, with consequent benefits in hydrogen production [40].

4.2. Targeted Mutagenesis

On the other hand, targeted approaches turn out to be more advantageous and several
proposals have been provided by genetic engineering tools to increase yields and overcome
current limitations.

As already mentioned, Fd receives electrons from the electron transport chain to ad-
dress them to hydrogenase. Even under optimal conditions for enzyme expression, other as-
similatory pathways compete for the reductants impairing the overall yield. Ferredoxin-
NAD(P)+ reductase (FNR) represents the main competitor shuttling electrons from Fd
towards CO2 fixation. To bypass this limitation, fusion protein has been designed. Among
the most recent attempts, a fusion complex between Fd and hydrogenase in an in vivo
culture of Chlamydomonas reinhardtii was evaluated. The complex demonstrated higher
production rates and greater oxygen tolerance than the sole enzyme [41]. Similar behavior
was also observed in the Chlamydomonas reinhardtii protein D1 mutant. A double amino
acid substitution (L159I – N230Y) gave the mutant several new characteristics, including
greater oxygen tolerance than the wild strain [42]. Similarly, Chlamydomonas reinhardtii mu-
tants knock out for flavodiiron protein (FDP) showed higher photoproduction of hydrogen
than wild types. In this way, it is again demonstrated how by eliminating a competing
pathway (for example the FDP-mediated O2 photoreduction pathway), the electrons are
preferentially conveyed towards the production of hydrogen. Furthermore, it has been seen
that, even exposure to prolonged light pulses in these mutants do not direct the metabolism
towards CO2 fixation. It is, therefore, demonstrated how genetic engineering approaches
together with actions on growth parameters are jointly useful to increase production [43].

LHC complexes exhibit a poor light energy conversion with more than 80% absorbed
light energy wasted as fluorescence or heat and not addressed towards hydrogen produc-
tion. Conversely, a truncated light-harvesting antenna has demonstrated improvements in
terms of photoinhibition and light saturation phenomena. Afterward, the same approach
has also shown encouraging results for hydrogen production: tla1 CC-4169 Chlamydomonas
reinhardtii mutant has exhibited to produce until six-time more hydrogen compared to the
wild type strain with a light intensity of 350 µE m−2 s−1 [44,45].

Non-coding RNA molecules, such as microRNA (miRNA) or long non-coding RNA
(lncRNA), with regulatory function, are part of the most recent discoveries in microalgae
and several studies have already exploited them for innovative approaches. In particular,
miRNAs exhibit a regulatory function on the translation process by binding or degrading
the messenger RNA and avoiding the corresponding protein synthesis. Transcriptomic
studies showed that stressful situations in microalgae lead to an increase in these molecules
which reflects the need to obtain immediate responses by the cell [46]. In Chlamydomonas
reinhardtii, some endogenous miRNAs have overexpressed in S deprivation conditions.
These observations led to the design of several artificial miRNAs (amiRNAs) to increase
hydrogen yields by stimulating a faster oxygen consumption or repressing psbA gene ex-
pression that encodes for PSII linked D1 protein [47,48]. Similarly, optogenetic systems have
also developed using properly blue light-inducible expression amiRNAs. This gene control
system has enhanced hydrogen production, confirming as a most promising tool [49].
Approaches related to genetic engineering require a fine upstream design and considerable
resources. Certainly, specific approaches compared to random ones allow for better man-
agement of resources. Genome-scale metabolic reconstructions have already been used to
direct choices in this sense for many species of prokaryotes and eukaryotes. For algal organ-
isms, a similar tool has been developed using information from the literature. In particular,
the AlgaGEM software is configured as a tool capable of defining the primary metabolism
of Chlamydomonas reinhardtii and allowing the in silico prediction of any changes in the
growth parameters or the engineering of specific metabolic pathways [50].
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Engineering strategies generally allow the establishment and introduction of new
traits that are advantageous for different research fields. Although they are not easy to
implement techniques and require huge resources, new bioinformatics tools to support
this area seem to push further to consider this strategy as one of the most promising for the
energy sector.

5. Fermentation Processes and Biomass-Applied Technologies

Direct and indirect biophotolysis processes are intrinsically linked to the photosyn-
thetic process and the connected electron transport chain. Together with these two pho-
tosynthetic pathways that contribute to the production of hydrogen, another one linked
to fermentative metabolism has also been identified. In dark conditions, the enzymatic
activity of pyruvate:ferredoxin oxidoreductase (PFR) in Chlamydomonas reinhardtii is respon-
sible for the reduction of Fd and the passage of electrons towards hydrogenase. Overall,
this pyruvate-dependent hydrogen production acts in ways similar to those observed in
bacteria, and though the yield is low, its contribution is not negligible [51]. The accumu-
lation of complex carbohydrates, such as starch, or endogenous substrates, is positively
associated with the production of hydrogen, while, it was also observed that exogenous
carbon-rich media further stimulate its production in the early anaerobic stages. Several
fermentative bacteria use anaerobic processes to transform carbon sources into various
by-products, including hydrogen. Processes, such as photo- and dark- fermentation,
are commonly exploited and widely investigated in bacteria species, such as Escherichia coli,
Clostridium spp., Thermococcales spp., Rhodobacter spp., and Rhodopseudomonas spp. [52,53].
The consumption of organic substrates, also deriving from waste, by photofermentation,
include the transformation into organic acids, alcohols, CO2,, and H2 in presence of light,
but with a low overall yield of solar energy conversion. In a similar way, but without
light, dark fermentation uses various substrates and waste too, leading to the release of
different components and gaseous mixtures in which hydrogen is present [46,54]. It has
recently been observed that hydrogen production can be increased by up to 60% compared
to Chlamydomonas reinhardtii monoculture systems, by using co-culture systems with Es-
cherichia coli. Growth media glucose-rich are exploited by bacteria that produce acetic acid,
which can be used in algal metabolism [55]. Synergistically, different photobiological and
fermentative microbial metabolisms may interact and cooperate increasing the hydrogen
yields [56].

Microalgae show an enormous biodiversity being present in different habitats, even ex-
treme and hostile to most living organisms, suitably adapting their metabolism. It is
therefore possible to modulate the growth conditions to obtain biomass of the desired
composition, based on the requirements of the downstream process also using industrial
and agricultural processing water and waste. In this perspective, various strategies have
been applied by combining bioenergy production and bioremediation approaches [57,58].
Unicellular green alga Scenedesmus obliquus managed to biodegrade the phenolic content
present in the olive oil mill wastewater. This strategy makes it possible to remedy a prob-
lem particularly encountered in the Mediterranean area and, since the biotransformation
carried out consumes oxygen, favorable conditions to trigger a concomitant production
of hydrogen are also generated [59]. A consortium of microalgae, mainly composed of
Scenedesmus and Chlorella species, grown in pig manure showed good growth, without the
addition of external nutrients, and significant fermentative hydrogen production [60,61].

One of the main problems associated to these approaches is the elevated costs in terms
of management and purification of the components obtained, which include the presence of
several by-products, also toxic. Moreover, although the biomass of the microalgae contains
a reduced lignin content compared to other lignocellulosic feedstock previously used for
energy purposes, preliminary treatments are often necessary to facilitate the extraction
and conversion of the microalgae content. Mechanical, thermal, chemical, or biological
treatments are often applied to biomass separately or in combination as a preliminary
step [57,58].
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6. Fuel Cell

Hydrogen is an energy carrier with a high calorific value of 122 kJ/g, which is about
2.75 folds than fossil fuels, and it is also an environmentally friendly molecule since it only
gives water as a by-product of its combustion [62]. For this reason, hydrogen environmental
damage ratio has been estimated as 1, compared to that of several hydrocarbon fuels about
20 times higher [8,63]. Hence, hydrogen is considered as the best alternative to fossil fuels,
which usage is supposed to be drastically reduced by 2050, according to the 2015 Paris
Climate Agreement. Several technologies are currently available for hydrogen production
(Figure 2), which can be classified according to the starting material: on the one hand,
from fossil fuels, hydrogen can be obtained by thermochemical conversions, such as partial
oxidation, autothermal reforming, or steam reforming. On the other hand, exploiting
renewable sources, hydrogen is made by water electrolysis or biomass thermochemical
conversion [64].
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However, none of these processes is sustainable: they all are energy-intensive process,
usually requiring high temperatures. For example, water electrolysis requires temperatures
ranging from 20 ◦C to 100 ◦C [65], while thermochemical processes can reach 2000 ◦C [66].
Moreover, fossil thermochemical conversions release high amounts of CO2 [62]. Theoreti-
cally, it could be possible to convert these technologies into green ones by pairing them
to mechanism that prevent CO2 releasing into the atmosphere. This is the CSS approach,
according to whom CO2 can be stored into adequate geological sites, or reutilized for the
chemical synthesis of useful products such as CO, urea, methanol, polymer, and carbon-
ates [67]. Nevertheless, CSS approach has high design and operational costs that make his
application unfeasible on the long term [68]. To implement a completely green sustainable
economy, it is necessary to switch to biohydrogen, the biological hydrogen produced by
microorganisms, including microalgae, according to the methods described in the previous
paragraphs.

An interesting technology that has raised attention in recent years is that of fuel cells,
in which hydrogen is often used as fuel. A fuel cell is an electrochemical technology capable
of energy conversion. It is indeed capable to transform the chemical energy of a fuel into
electricity [69]. A fuel cell may vary for it architecture, for the kind of fuel or for its catalyst;
but it always consists of a few simple main parts (Figure 3): electrodes (an anode and a
cathode), electrolytes, and an external circuit [70].
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The reactions that happen in a fuel cell are simple: the fuel (usually hydrogen) at the
anode is oxidized; then the electrons, through the circuit, reach the cathode, where (usu-
ally) oxygen is reduced to water [71]. Despite the simplicity of the processes, fuel cells
currently present numerous criticalities that limit their use on a large scale. Their main
problems are durability of the materials and high costs, often both related to the catalyst
used. The most commonly used catalyst is platinum, both pure and alloyed, due to its
maximum activity and chemical stability. In some cases, platinum group metals (PGMs)
have even been used, including palladium, ruthenium, rhodium, iridium, and osmium.
However, all of these materials have high costs due to their global scarcity [72]. The second
issue of this technology concerns how to get hydrogen to the fuel cell itself. Storage is,
at the moment, the main limitation to the development of an effective hydrogen economy.
Many technologies are being studied in order to reach the highest volumetric density possi-
ble: physical methods, such as high-pressure cylinders for gaseous hydrogen or cryogenic
tanks for liquid hydrogen, chemical reaction with metal and alloys, new materials, such as
carbonaceous nanostructures for hydrogen absorption [73–75].

For this reason, technological research continues unabated. Based on the various
innovative solutions that are proposed, it is possible to give a classification, to the different
types of fuel cells currently under development. There are six of them [72]:

1. Proton Exchange Membrane Fuel Cell (PEMFC);
2. Alkaline Fuel Cell (AFC);
3. Phosphoric Acid Fuel Cell (PAFC);
4. Molten Carbonate Fuel Cell (MCFC);
5. Solid Oxide Fuel Cell (SOFC);
6. Microbial Fuel Cell (MFC).

6.1. Proton Exchange Membrane Fuel Cell

In a PEMFC, platinum is substituted by an ion exchange membrane that facilitates ion
migration. This membrane is a polymer that usually has negatively charged group in order
to let protons to flow toward cathode; but there also exists anion exchange membranes
that hold positively charged groups so that the anion can be transported [76]. The most
commonly used membrane is that made of perfluorosulfonic acid polymers—commonly
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known as Nafion®. It was first commercialized by the DuPont company in the 1960s and
it soon received wide acceptance because of its qualities. Nafion® is a robust polymer
with high chemical and mechanical resistance, good conductivity, and little water or fuel
crossover [70,77]. However, it is a costly material, covering about 20% of the cost of a fuel
cell [77], and it is also thermolabile since it works only at a low temperature (50–80 ◦C) [78].
Alternative polymers are under development, mainly to allow the fuel cell to operate at
high temperatures in order to optimize its yield. The most promising materials are currently
aromatic-based membranes consisting of aryl rings and polybenzimidazole linkages [77].

6.2. Alkaline Fuel Cell

AFCs work at high pH using anion exchange membranes generally based on poly(olefine),
poly(arylene ether), poly(phenylene oxide), poly(phenylene), polysulfone, and poly(ether
imide). These fuel cells have lower costs than PEMFCs, and they are more resistant to high
temperature. However, their main weak point is intrinsic due to the lower conductivity of
OH- compared with protons [79].

6.3. Phosphoric Acid Fuel Cell

Phosphoric acid as an electrolyte in fuel cell consent to elevate the working temper-
ature to high temperature around 220 ◦C. Therefore, it is possible to connect the PAFC
directly to a steam reformer, to easily take up hydrogen from the source. The main flaws
of this type of fuel cell are the necessity to use a metal catalyst on the electrode, and the
hydrogen source that is not sustainable [80]. Recent studies have evaluated how the yield
of PEMFCs improve by doping the membrane with phosphoric acid [81].

6.4. Molten Carbonate Fuel Cell

The electrolyte of this fuel cell is a molten carbonate salt solubilized in a lithium alumi-
nate matrix. It can reach very high working temperatures (650 ◦C); thus, it is not necessary
to connect it to an external hydrogen source because it self-reforms gases, also functioning
with different hydrocarbon fuels [82,83].

6.5. Solid Oxide Fuel Cell

It is a high-temperature fuel cell and exists in two different types, the oxygen ion
conducting fuel cell, and the proton-conducting one. Both have high-energy conversion
efficiency and fuel flexibility, but the high fabrication cost makes them commercially not
competitive [84].

6.6. Microbial Fuel Cell

These are the greenest and most sustainable types of fuel cells, and undoubtedly
represent the future of energy production. MFCs can be double-chambered, with separated
anodes and cathodes, or single-chambered, having the electrodes in the same container [85].
In both cases, they exploit microorganisms and their metabolism to produce the fuel neces-
sary for the fuel cell to function. Most MFCs are mixed, using anode bacterial cultures for
hydrogen production and cathode microalgae strains for oxygen supply [86–88]. However,
prototypes of fuel cells that work only with algal strains are in development [89,90]. MFCs have
significant environmental benefits. Thanks to the biological processes underlying their
functioning, they can combine energy production with other functions, such as bioremedi-
ation activities [91–93]. It also bypasses the hydrogen storage limitation, since hydrogen is
produced and utilized almost at the same time in the anodic chamber. However, this tech-
nology is not yet widely applied due to high costs and ineffective yields, which require
further study for improvement [86,94–97].

7. Conclusions

In this review, we offered a general summary of the current status of biohydrogen
applications. Hydrogen is undoubtedly the future fuel for its green and environmentally
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friendly properties. However, its production technology is still based on fossil fuel; thus,
carbon releasing. Scientific research is working hard to improve new strategies to reach
green and sustainable hydrogen production and exploitation technologies.

Microalgae seem to be an attractive solution to this problem. As previously described,
they can produce biological hydrogen without carbon emissions; rather, by fixing it during
the process. The limiting factor for large-scale applications of this ability is that of low
production yield, and, therefore, scientific research must focus in this direction. Solutions
described in this review represent the most promising developments for implementing
hydrogen yield.

The extreme versatility of microalgae also consents to combine several applications;
thus, multiplying the benefits. The use of microalgae in dedicated fuel cells allows the
development of an ecological energy production system, which can be associated with
bioremediation advantages. In fact, microalgae can grow even in wastewater, purifying
them from heavy metals and other dissolved substances.

Since current wastewater treatment plants present some critical issues concerning
GHG emissions [98–100], developing an integrated purification and energy production fa-
cility based on microalgae could represent a promising ecological technology for the future.
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