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Abstract: Diversity and community structure of soil microorganisms are increasingly recognized as
important contributors to sustainable agriculture and plant health. In viticulture, grapevine scion cul-
tivars are grafted onto rootstocks to reduce the incidence of the grapevine pest phylloxera. However,
it is unknown to what extent this practice influences root-associated microbial communities. A field
survey of bacteria in soil surrounding the roots (rhizosphere) of 4 cultivars × 4 rootstock combina-
tions was conducted to determine whether rootstock and cultivar genotypes are important drivers of
rhizosphere community diversity and composition. Differences in α-diversity was highly dependent
on rootstock–cultivar combinations, while bacterial community structure primarily clustered accord-
ing to cultivar differences, followed by differences in rootstocks. Twenty-four bacterial indicator
genera were significantly more abundant in one or more cultivars, while only thirteen were found to
be specifically associated with one or more rootstock genotypes, but there was little overlap between
cultivar and rootstock indicator genera. Bacterial diversity in grafted grapevines was affected by
both cultivar and rootstock identity, but this effect was dependent on which diversity measure was
being examined (i.e., α- or β-diversity) and specific rootstock–cultivar combinations. These findings
could have functional implications, for instance, if specific combinations varied in their ability to
attract beneficial microbial taxa which can control pathogens and/or assist plant performance.

Keywords: agricultural practices; cultivar; grafting; interaction rootstock scion; plant performance;
rhizosphere bacteria; taxonomic indicators; viticulture

1. Introduction

Soil microbial communities perform a wide range of ecosystem processes and func-
tions and are increasingly recognized as vital components of a healthy agroecosystem. For
instance, bacteria play pivotal roles in the biogeochemical cycling of nutrients, and influ-
ence plant productivity and health through the action of specific plant growth-promoting
(PGPB) and biocontrol bacterial species, and/or negatively, through the actions of plant
pathogens [1,2]. Rhizosphere bacterial diversity is known to affect plant health, with com-
munities with a higher diversity generally better able to withstand invasion of pathogens
and possessing higher amounts of PGPBs [3–5]. The higher biodiversity often relates to in-
creasing levels of ecosystem functions and services [6,7]. In addition, plant functional traits,
such as abiotic and biotic tolerance (e.g., salinity, drought, diseases) and nutrient uptake, are
to varying degrees directly influenced by the root-associated microbial communities [8–10].

Conversely, soil communities are also affected by plant characteristics, primarily
through the production of root exudates. For instance, up to 40% of the photosynthates
produced by a plant can be actively released by the roots [11], and the quality and quantity
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of these carbon compounds can vary between and within plant species [12–14], potentially
leading to highly specific relationships between plants and microorganisms [15,16], such
as those between rhizobia and legumes [17] or with plant pathogens [18,19]. Bacterial
communities are also known to differ according to plant genotypes and hosts [12,15,20,21],
although this effect is by no means ubiquitous, and plant genotypic differences do not
always lead to significant differences in microbiomes in the rhizosphere [22].

Viticulture is one of the world’s main horticultural practices. In 2018, approximately
77.8 million tons of grapes were produced globally, primarily for wine production [23].
Grafting is common practice in viticulture to reduce the incidence of the grapevine pest
phylloxera; European Vitis vinifera L. scions (i.e., the upper plant) merged with North
American Vitis sp. hybrid rootstocks [24]. This results in plants with stress- and disease-
resistance combined with desirable agronomic characteristics for grape production and
allows breeders to select specific traits independently for rootstocks and cultivars.

There is a considerable body of research on the effect of rootstock on scion physiology
and physical properties in viticulture, for instance, by showing improved drought toler-
ance [25,26], and changes in stomatal conductance and transpiration [27]. Less research
has been conducted on the effects of the scion on the rootstock, and, to date, this effect has
been examined only on physical rootstock properties such as root biomass and length [28].
The interaction between rootstocks and scions also remains understudied, but research
has shown that it can affect yield and quality of grapes [29], and root behavior and plant
growth [30]. With grafting, scions and rootstocks each maintain their own genetic iden-
tity [24], and in other plant species this has led to changes in bacterial diversity [31] or
community structure [32].

Despite the potential influence of grapevine genotypic variation on bacterial com-
munity structure and functioning in the rhizosphere, and the importance of the root
microbiome for plant development and health, little is known about how rootstock and
scion, and importantly, their interaction, exert an influence on soil bacterial communities in
grapevines. Therefore, a survey was conducted with the aim of elucidating the effect of
different rootstock and grafted scion combinations on soil bacterial communities associated
with the rhizosphere of grapevines.

2. Materials and Methods
2.1. Experimental Design and Soil Sampling

In October 2016, a field survey of bacteria from the rhizosphere of different scion-
rootstock combinations was conducted. Grapevines were planted 11 years prior to the
experiment in a vineyard at the Institute for Grapevine Breeding, Julius Kühn-Institut in
Siebeldingen, Germany. The vineyard was located in an area with sandy loam soil (type
pararedzina). In 2016, the area received approximately 625 mm rainfall.

Each of four scion cultivars (Calandro, Reberger, Felicia, and Villaris; from now on
referred to as cultivars) were grafted onto each of four rootstock types (125 AA, 5 BB,
Binova, and SO 4). All cultivars belong to the Vitis vinifera species; Calandro and Reberger
are red grape varieties, and Felicia and Villaris are white grapes. The rootstocks were
all Vitis berlandieri and Vitis riparia crosses with low genetic variation [33,34]. Grafted
grapevines were placed in adjacent rows which were all subjected to cover cropping: every
second row with a vineyard-specific mixture of various legumes and other forbs (Wolff-mix)
and tilled via disc harrow in spring each year, and the remaining rows with grass and
mulched three times between April and August, depending on the weather and growing
conditions. Fertilization was conducted yearly with Entec 26 (26% N, 13% S) at a rate of
39 kg N/ha. For the duration of the experiment no irrigation took place.

Rhizosphere soils were collected in a single day, from three randomly selected plants
from each cultivar x rootstock combination, yielding a total of 48 samples. Samples were
collected by removing roots with attached soil in the field using sterile metal forceps,
cleaned with 70% ethanol between each sample to avoid cross-contamination. Samples
were transported on ice and processed in the laboratory within 24 h. Sampled roots were
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shaken to remove loosely adhering soil, and rhizosphere soil was collected by removing
the remaining firmly attached soil particles using a sterile disposable brush. Samples were
stored at −20◦ C for further DNA extraction.

2.2. DNA Extraction and Sequencing

DNA was extracted using the PowerSoil DNA extraction kit (Qiagen, Hilden, Ger-
many) following the manufacturer’s instructions, and 0.5 g of rhizosphere soil per sample,
with an addition of 50 mg of sterile glass beads (ø 0.1 mm, BioSpec Products, Bartlesville,
WA, USA) to improve extraction yield. DNA quality and quantity were determined us-
ing a NanoDrop 2000 Spectrophotometer (Thermo Fisher scientific, Walthan, MA, USA).
Amplicon library preparation and sequencing based on the V4 region of the bacterial
16S rRNA gene was conducted at the Argonne National Laboratory Sequencing Facility
(Lemont, IL, USA) using the Illumina MiSeq platform, following the Earth Microbiome
Project protocol [35], yielding paired-end reads of 150 bp in length.

2.3. Sequence Quality Filtering and Data Analysis

Reads were imported into QIIME2 version 2018.2 [36], demultiplexed and primers
were removed using the EMP procedure. Sequences were filtered, dereplicated and de-
noised, chimeric sequences were removed, and paired using the DADA2 plugin [37] in
QIIME2, resulting in amplicon sequence variants (ASVs) of 253 bp in length. ASVs were
aligned using MAFFT [38] and used to generate a mid-point rooted phylogenetic tree
using FastTree [39]. Taxonomic assignment was performed using the RDP classifier version
2.10.1 [40].

All statistical analyses were conducted in R version 3.6.2 [41]. The ASV table, tax-
onomy table, phylogenetic tree and associated metadata were imported into the package
Phyloseq version 1.30.0 [42], and any non-bacterial ASVs and those taxonomically affiliated
to chloroplast and mitochondrion were removed. The resulting table was rarefied to 15,704
sequences per sample to account for any differences in sequencing depth.

Observed ASV richness, Shannon and Simpson diversity indices were calculated using
Phyloseq and Faith’s phylogentic diversity (PD) in the packages picante version 1.8 [43]
and btools version 0.0.1 [44]. Significant differences in α-diversity measures (i.e., variation
of species within a sample) between cultivars, rootstocks and their interaction were tested
using ANOVA on Aligned Rank Transformed data (i.e., a non-parametric ANOVA) using
the package ARTool version 0.10.7 [45]. This method was used because the α-diversity
measures did not meet the assumption of normally distributed and/or homogeneity of
variance for a parametric ANOVA. As PD showed the strongest effect of treatment, a post
hoc analysis was performed for the rootstock × cultivar interaction term using estimated
marginal means with the package emmeans version 1.4.5 [46].

Bacterial community structure (β-diversity, i.e., variation in species between samples)
was assessed using principal coordinate analysis (PCoA) based on Bray-Curtis distances,
which calculates dissimilarity between samples using relative sequence abundances. To
determine potential significant effects of rootstock, cultivar and their interaction, PER-
MANOVA with 999 permutations was used with the package vegan version 2.5.4 [47].
Bacterial taxonomic composition was evaluated by merging taxa to the phylum level (and
summing their abundances), and removing those with an abundance <20. Data were
plotted based on relative abundances per rootstock and cultivar combination. To detect
bacterial taxa with an affinity towards specific (combinations of) cultivars or rootstocks,
indicator species analysis using the package indicspecies [48] was performed using abun-
dance data of taxa merged at the genus level. The analysis was carried out separately for
rootstock and cultivar samples and resulted in a list of species associated with individ-
ual, or groups of, cultivars or rootstocks, based on calculations that take into account the
strength of association and the statistical significance of the relationship between species
abundances and treatment groups.



Appl. Sci. 2021, 11, 1615 4 of 11

3. Results
3.1. Bacterial α-Diversity across Different Cultivar-Rootstock Combinations

Rootstock identity was found to exert a significant influence on rhizosphere bacteria
for all α-diversity measures, while cultivar identity only significantly affected Simpson and
Faith’s PD indices (Table 1). However, all α-diversity measures showed a significant inter-
action between cultivars and rootstocks (Table 1) indicating that the observed differences
between rootstocks varied in strength according to cultivar identity.

Table 1. ANOVA results of α-diversity measures per rootstock and cultivar identity and the inter-
action between the two factors. Data were aligned rank transformed prior to statistical analysis.
Significance levels are as follows: *** p < 0.001, ** p < 0.01, * p < 0.05, ns = not significant.

Richness Shannon Simpson Faith’s PD

Rootstock F3,32 = 4.6 ** F3,32 = 5.2 ** F3,32 = 3.2 * F3,32 = 7.3 ***
Cultivar F3,32 = 0.9 ns F3,32 = 2.6 ns F3,32 = 4.5 ** F3,32 = 7.1 ***

Rootstock:Cultivars F9,32 = 3.9 ** F9,32 = 4.0 ** F9,32 = 3.0 ** F9,32 = 4.8 ***

Of all α-diversity measures, Faith’s PD showed the largest difference for both root-
stocks (Figure 1a) and cultivars (Figure 1b) as main effects, in addition to their interaction
(Figure 1c). This interaction effect was also observed for the other diversity measures
(Figure S1). Post hoc analysis on Faith’s PD indicated that the most distinct rootstock–
cultivar combinations were 5 BB-Reberger, 125 AA-Calandro and 125 AA-Vilaris. However,
values of Faith’s PD were quite similar for the majority of cultivar x rootstock combinations.
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3.2. Bacterial β-Diversity across Different Cultivar-Rootstock Combinations

The main determinant of bacterial community structure in the rhizosphere was cultivar
identity (PERMANOVA: R2 = 0.14, p < 0.001), with samples from Calandro and Villaris
plants harboring a different community to those of Felicia and Reberger (Figure 2a).
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(a) collection of all samples or (b) plots separated according to each rootstock.

Although this separation was independent of rootstock identity, i.e., there was no sig-
nificant interaction effect (PERMANOVA: R2 = 0.18, p = 0.65), in particular the combination
125 AA-Calandro and 5BB-Calandro harbored a distinct bacterial community from the
other cultivar–rootstock combinations (Figure 2a). Rootstock identity was found to exert
a comparatively minor significant effect on differences in bacterial community structure
(PERMANOVA: R2 = 0.10, p < 0.001). However, such differences were less visible than that
imposed by differences in cultivar identity within each rootstock.

3.3. Taxonomic Level Analysis

Taxonomic composition at the phylum level did not vary greatly between the different
cultivar–rootstock combinations (Figure 3). For all combinations, the phyla of Proteobacteria,
Acidobacteria, Actinobacteria, Bacteroidetes and Firmicutes had the highest relative abun-
dance, and while the abundances of the less dominant phyla varied per rootstock–cultivar
combination, here there were also no large differences observed.
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3.4. Bacterial Indicator Species Analysis

Indicator species analysis was conducted separately for cultivars and rootstocks at
the genus level. Twenty-four bacterial genera were associated with one or more cultivars
(Figure 4a), while only thirteen were found to be specifically associated with the root-
stocks (Figure 4b), and only one genus (Elioraea) was associated with both rootstock and
cultivars. The number of genera that associated with a single cultivar or rootstock were
low-Marmoricola was specifically associated with one cultivar (Reberger) while the genera
Escherichia/Shigella and Enterobacter were exclusively associated with the rootstock 125 AA.
Instead, the vast majority of bacterial genera were indicative of multiple groups, with the
majority associated to 3 (out of the 4) groups for both cultivars (Figure 4a) and rootstocks
(Figure 4b).
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The genus Elioraea, which was an indicator species in both rootstocks and cultivars,
is relatively unknown, with few known members; the genus is thought to belong to
the aerobic anoxygenic photosynthetic bacteria [49], which are obligate aerobes that can
capture energy from light through photosynthesis [50]. Species in the genus Marmoricola
are all mesophilic, non-pathogenic and often found in soil environments [51]. The genera
Escherichia/Shigella and Enterobacter all belong to the Enterobacteriaceae, and have members
which are known human, animal and plant pathogens, as well as plant-associated growth-
promoting species, and lignin degraders [52]. The genera Desulfacinum, Desulfarculus and
Desulurivibrio, which were indicator species for all but the cultivar Felicia, are known to be
anaerobic sulfate reducers [53].
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4. Discussion

The aim of this study was to determine whether rootstock and cultivar identity
are important drivers of the structure and composition of rhizosphere communities in
grapevines. Based on the results from experiments on other plant species [31,32] and
the limited knowledge in grapevines [9,54], the expectation was that there would be an
effect of grafting on rhizosphere microbial communities of different cultivar–rootstock
combinations. For many of the measures that were examined, such as α-diversity and
taxonomic composition, highly specific cultivar–rootstock interaction effects were observed,
but on the whole, these effects occurred for a few specific rootstock–cultivar combinations.

However, a clear differentiation in bacterial community structure (β-diversity) was
observed, and in particular a clear distinction was observed between two groups of culti-
vars; Calandro and Villaris on the one hand and Felicia and Reberger on the other. There is
clear genetic component to plant root exudate composition [22,55,56] and this can strongly
affect rhizosphere bacterial communities in Vitis sp. [57]. The two red cultivars (Calandro
and Reberger) were more closely related to each other (sharing one parent) than to the
two white grapevine cultivars, which were also closely related (sharing both parents) [34].
Therefore, the expectation was that there would be a differentiation along red and white
cultivars, but this was not the case. Due to the genetic basis of root exudate composition,
examination of root exudate quality, and its effect on bacterial communities, might offer
more insight into the causes of the observed effect.

Less difference was observed between the different rootstock genotypes. While the
cultivars consisted of genotypes from very different parents, the rootstocks all had a similar
lineage [33] and therefore were likely to be more similar genetically (and phenotypically)
than the cultivars. Previous studies have shown clear differences in bacterial communities
between different rootstock genotypes grafted with a single scion genotype [54]. However,
this can be context dependent, and rhizosphere bacterial communities have been shown to
differ between rootstocks in one vineyard and not in another [58]. In addition, Berlanas
et al. [58] found no difference in rhizosphere microbiomes between different 7-year-old
grapevine rootstock genotypes, but that mature (25 years old) rootstock genotypes were as-
sociated with different rhizosphere microbiomes. In this context, given that the grapevines
used in the current study were 11 years old, the specific effect of rootstock genotype might
not have yet developed. Many aspects of both host and environment are responsible for
the quality and quantity of root exudates [55], and hence in shaping rhizosphere bacterial
communities, and it seems likely that a combination of factors played a role in shaping
bacterial communities in the current experiment.

The α-diversity measures were determined to a large degree by the interaction between
rootstock and cultivar. Although most combinations did not differ significantly, there were
some notable exceptions, such as the combinations 5 BB-Reberger and 125 AA-Felicia
with low, and 125 AA-Calandro with high α-diversity values. This variation could have
functional implications as microbial species richness has been linked to resistance to
invasion of pathogens [3,4]. High species richness, particularly combined with a more
even distribution of those species, is often paired with improved ecosystem services and
stability, and enhanced plant performance due to beneficial traits [59–61]. In the current
study, the strongest response was observed with Faiths Phylogenetic Diversity, implying a
potentially higher diversity in terms of functions [62] and resistance to invasion [63].

There were no large differences between any of the rootstock–cultivar combinations
at the phylum level in the current study. The rhizosphere soils were dominated by the
phyla Proteobacteria, Acidobacteria, Actinobacteria, Bacteriodetes and Firmicutes, which
is in line with soils found across the globe [6], as well as in vineyards [64,65]. However,
functional effects of the microbiome on plants are more likely to occur at lower taxonomic
levels, and individual taxa can also make a large impact, such as with biocontrol, PGP and
pathogenic bacteria [1,2]. Indicator species analysis showed that, on the whole, genera
were differentially abundant in more than one cultivar or rootstock genotype, and at least
some of these genera are known to differ in terms of their functionality. Five bacterial
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genera were in relatively higher abundance in the rhizosphere of the cultivars Calandro
and Villaris, which grouped together in terms of bacterial community structure, than in the
other two cultivars. For this cultivar group, two genera Desertibacter and Rhodothalassium
occurred in relatively high abundance. Both of these genera belong to families [66,67] with
members known to be able to benefit plant growth [68]. Three genera were specifically
associated with the other β-diversity cultivar group (Felicia and Reberger), but here, only
one genus (Stenotrophomonas) was in high abundance. Species in the Stenotrophomonas
are known to be closely associated with plants, and also have known plant beneficial
effects [69]. Although speculative, it seems that both groups of cultivars are able to recruit
(i.e., attract and select) different, potentially beneficial, genera.

5. Conclusions

The results from this study reveal for this first time that bacterial diversity in grafted
grapevines is affected by both cultivar and rootstock identity, but that this effect is depen-
dent on which diversity measure is being examined (i.e., α- or β-diversity) and specific
rootstock–cultivar combinations. This finding is of particular importance since it could
affect the ability of specific combinations to chemically attract, via root exudates, specific
bacteria that could affect key functions associated with plant protection, performance, and
productivity [70], as well as specifically to viticulture because it can affect colonization
in other plant organs such as grapes [65], potentially impacting wine quality [71]. A first
step toward further understanding the nature and cause of the observed rootstock x scion
interactive effects on soil bacterial communities in this study would be to unravel the
link between grapevine genomes with their root exudation patterns, as well as to their
rhizosphere bacterial communities.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-3
417/11/4/1615/s1, Figure S1: observed richness, and Shannon and Simpson diversity indices of
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