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Abstract: Cup-plant (Silphium perfoliatum L.) stalks were investigated as a potential wood-replacement
in particleboards (PBs). Two types of PBs were produced—(1) single-layer and (2) three-layer boards.
In the three-layer cup-plant PB, the core layer was made from cup-plant, while the surface layer
consisted of spruce particles. The cup-plant as well as spruce control panels were produced with
polymeric methylene diphenyl diisocyanate (pMDI) as the adhesive, with the physical and mechanical
properties measured to meet class P1 of the European EN 312 standard. For the intrinsic morphology
of the particleboards, scanning electron microscopy was applied. Wood-based and cup-plant-based
particleboards indicated significant differences in morphology that affect the resulting properties of
particleboards. Furthermore, an innovative approach was used in the determination of the pMDI
bondline morphology. With a compact Time-of-Flight Secondary Ion Mass analyser, integrated in a
multifunctional focused-ion beam scanning-electron-microscope, it was possible to show that the Ga+

ion source could be detect and visualize in 3D ion molecular clusters specific to pMDI adhesive and
wood. Mechanical performance data showed that cup-plant particleboards performed well, even
though their properties were below the spruce-made controls. Especially the modulus of rupture
(MOR) of the cup-plant PB was lowered by 40%, as compared to the spruce-made control board.
Likewise, thickness swelling of cup-plant made boards was higher than the control. Results were
linked to the specific porous structure of the cup-plant material. In contrast, it was shown that
three-layer cup-plant PB had a higher MOR and also a higher modulus of elasticity, along with
lower thickness swelling, compared to its single-layer cup-plant counterpart. The industry relevant
finding was that the three-layer PB made from cup-plant stalks fulfilled the EN 312 standard, class P1
(usage in dry conditions). It was shown that raw material mixtures could be useful to improve the
mechanical panel performance, also with an altered vertical density profile.
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1. Introduction

Wood is the traditional and prime raw material in particleboards production since
1887, and annual production volumes in Europa exceed 30 million m3 [1]. Considering
the high production volumes, declining stocks of natural resources [2], i.e., possible fu-
ture wood shortage situations, could play important roles. In addition, as the use of
potentially contaminated waste wood in particleboards reaches 90% in some European
countries, it could create environmental concerns, with a higher request for alternative
non-contaminated materials.

Non-wood materials could also be utilized in particleboard (PB) production, which
have the advantages of achieving higher resource-effectiveness, at ecologically and eco-
nomically viable conditions. While agricultural crops are primarily cultivated for food, for
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various chemical products, or for biogas production [3], unutilized plant parts could be
potentially processed to PBs. Using agricultural residues for PBs might have economic
benefits for manufacturers, as the expenses for residues and wastes might be below market
prices for wood [4]. Likewise, the utilization of waste materials in industrial production is
also reducing environmental burdens, as residues such as stalks, husks, or straw are often
left on the fields, or even burned.

Cup-plants seem to be a reasonable candidate for replacing wood in PBs. Dry mass
yield between 11 t/ha and 20 t/ha per harvest is high and might compete with the yield
achieved in forests, which can be ~16 t/ha per harvest [5]. Cup-plant (Silphium perfolia-
tum L.) originates in Eastern North America [6], but is now well-established across Central
Europe. Although it was grown in gardens as an ornamental plant during the 18th century,
today it is widely cultivated for energy production [7]. Cup-plant characteristics, including
aspects of cultivation and utilization, including particleboard manufacturing have been
demonstrated [8].

Particleboards from rice straw or rice husks [9–12], wheat straw [13], sunflower
stalks [14–17], from vine prunings [18], cotton stalks [19], apple and plum orchard prun-
ings [20], or even teal oil camellia [21], were already shown, i.e., produced. Balducci et al. [22]
and Dix et al. [23] introduced residues of several Central European agricultural plants as a
raw material for low density PBs, and Selinger and Wimmer [24] introduced light-weight
sandwich PBs from hemp shives and fibers. It is obvious that agricultural resources could
provide materials to replace wood in PBs, even if their property profiles are generally below
conventional PBs. As the mechanical properties of PBs made with alternative materials are
lowered, the anatomical structure and morphology of the utilized particles are of ultimate
importance due to the close connections to the relevant properties [25].

Various microscopic techniques were applied to describe the anatomical and structural
composition of wood-based composites. As an example, scanning electron microscopy was
used for describing anatomical structures in PBs [26]. However, due to the lignocellulosic
nature of the samples, there is insufficient compositional contrast to distinguish clearly
between wood fractions, and adhesive bondlines [27]. To this end, elemental mapping
by means of electron dispersive X-rays might be a feasible method. However, Electron
Dispersive X-rays (EDX) techniques are also limited by their spatial resolution, sensitivity,
or the ability to detect and map molecules that are indicative of wood-adhesive bond-
lines, particularly when wood and the used adhesive are both represented by the same
chemical elements, albeit different molecular clusters. Here, the alternative method Time-
of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) is suggested. Lately, TOF-SIMS
was integrated into focused-ion-beam scanning-electron-microscope (FIB-SEM) TESCAN
instruments [28], which brings additional advantages such as high spatial resolution
(>5 nm) to elemental mapping, as well as simultaneous ion and SEM imaging. It was
shown that TOF-SIMS (single instrument) can describe the distribution of molecules in
biological systems [29] and also in wood tissues [30–33], but the use of TOF-SIMS for
mapping the molecular distribution in adhesive-wood phases was not demonstrated so far.
Consequently, the following hypotheses are stated:

Hypothesis 1 (H1). Compact time-of-flight ion mass analyser (C-TOF) is capable of detecting
elements and molecules specific to pMDI adhesion status.

Hypothesis 2 (H2). The penetration of the adhesive can be visualized in 3D using TOF-SIMS data.

Hypothesis 3 (H3). The mechanical properties of PBs made from the cup-plant fulfil industrial
standards (EN 312, class 1).

Hypothesis 4 (H4). A three-layer PB made from cup-plant particles in the core layer, and spruce
particles in the surface layer, could show improved properties over a single-layer produced panel.
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2. Materials and Methods

Single-layer as well as three-layer particleboards (PBs) were produced using cup-
plant stalk particles (Silphium perfoliatum L.). Stalks were 1.8 m long and square-sized
with 25 × 25 mm2. As a control, single-layer and three-layers PBs were also produced
using spruce particles (Picea abies [L.] Karst). The material was first chipped in a Klöckner
chipper 120 × 400 H2W.T (Klöckner Maschinenfabrik, Lauenburg, Germany), at a cutting
speed of 725 rpm, and a feeding speed of 1 m/s. The obtained chips approximately sized
20 × 10 × 5 mm3 were then milled in a Condux-Werk HS 350 (Condux Maschinenbau
GmbH & Co. KG, Hanau—Wolfgang, Germany) hammer mill. Afterwards, the particles
were screened in the cascade vertical drum screener Allgaier D7336 (Allgaier-Werke GmbH,
Uhingen, Germany). The sieve screens had mesh size openings of 5.0 mm, 3.15 mm,
1.24 mm, and 0.60 mm, respectively. Particles used to manufacture PBs were taken from
the sieves with openings between >3.15 mm and <5 mm, which were then manually mixed
at a weight ratio of 50:50. Afterwards, the particles were oven-dried at 74 ◦C for 4 days,
reaching moisture contents between 5% and 7%. For the three-layer PBs, spruce particles at
dimensions <1.24 mm were used for the surface layers, while cup-plant particles formed
the core layer (3LCP). Same procedure was done for the three-layer PB, with both the core
layer and the surface layers made from spruce (3LSP). For both three-layer PB types, the
shelling ratio, which is the ratio of the surface layer thickness to the total thickness of the
panel, was set at 0.3.

All PBs were produced with the target density of 600 kg/m3, and a panel thickness
of 12 mm, and bonded with polymeric methylene diphenyl diisocyanate (pMDI) resin
(Huntsman I-BOND® PM4390, Huntsman GmbH, Hamburg, Germany). Two resin dosages
were applied—pMDI was applied in amounts of 4% (MDI4), and 6% (MDI6), respectively.
Particles were resinated in a drum blender for 5 min, using a pneumatic spraying nozzle.
Consequently, the resonated particles were manually distributed in a wooden forming box
(550 × 550 mm2), and pre-pressed. The pre-pressed mat was then hot-pressed at 200 ◦C, at
3.2 MPa for 100 s, using a hydraulic Siempelkamp press (Siempelkamp Ma-schinen und
Anlagenbau GmbH, Krefeld, Germany). The target thickness of the panels was checked at
random positions. In total, one PB per type was manufactured (Figure 1).
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Figure 1. Cross-sectional views of the produced particleboards. 3LCP—three-layer particleboard (PB) with a cup-plant core
layer, and spruce surface layers; 3LSP—three-layer spruce PB, 1LCP—single layer cup-plant PB, and 1LSP—single layer
spruce PB.

For scanning electron microscopy (SEM), a Tescan S8000 (Tescan Brno, s.r.o., Brno,
Czech Republic) was used to study the surface morphology of the various PB types.
Likewise, morphology and interactions between cup-plant particles and wood particles
were observed as well. The ultra-high-resolution mode was used, by means of an Everhart
Thornley secondary electron detector. Low accelerating voltages (between 500 V—1 kV)
were used to avoid surface charging. Sample surface was cut with a sliding microtome [34].

The multifunctional focused-ion beam SEM, TESCAN LYRA3 (Tescan Brno, s.r.o.,
Brno, Czech Republic), was used, which also had an integrated compact time of flight
secondary ion mass analyser (C-TOF-SIMS) (TofWerk AG, Thun, Switzerland). An area of
interest (AOI) of 50 × 50 µm2 was scanned with a focused Ga+ ion beam (4092 pA, 30,000 V),
while time-of-flight of secondary ions, and their clusters (molecules) were continuously
analysed by C-TOF-SIMS. C-TOF was operated at 10 µs dwell time, which provided the
mass range of 0–170 m/Q. In parallel with the AOI scanning using focused ion beam
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(FIB), C-TOF was used to record spectra at negative ion polarity and to capture elemental
distribution maps at resolution of 1024 × 1024 pixels, by always binning 4 × 4 pixels. Data
were derived from 100 scanned frames, which resulted in a crater with 1.7 µm depth in
the sample (Figure 2, particularly B and D). With TOF-SIMS, the distribution of typical
elements in wood, along with molecules indicating pMDI adhesives, were possible to
visualize. Here, the distribution of carbon (C), oxygen (O), hydrogen (H), and hydroxyl
(OH) groups were displayed to indicate wood, while CNO, CNH, and CN ion clusters
were taken to display the pMDI adhesive distributions. Sample surfaces were coated with
platinum in a sputter coater, prior to measurements, which avoided charging of the sample
when exposed to the primary ion beam.
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Figure 2. Selected area of interest (AOI) SEM of a spruce particle interphase prior (A), and crater-formations due to
the TOF-SIMS analysis (B). AOI of a cup-plant particle interphase prior (C) and crater formations due to the TOF-SIMS
analysis (D).

Mechanical testing was carried out on a Zwick® 1474 universal testing machine
using the testXpert II software (Zwick GmbH & Co. kg, Ulm, Germany). Three-point
bending tests according to EN 310 [35] were employed for the bending properties. Samples
sized 12 × 50 × 290 mm3 were subjected to a loading rate of 7 mm·min−1, until failure.
Internal bonding (IB) strength following EN 319 [36] was measured with squared samples
(50 × 50 mm2). Prior to testing the samples were sanded and then glued to the stainless-
steel blocks. The blocks were then positioned in gimbal-mounted holders and pre-loaded
with 5 N in tension. Subsequently, a loading rate of 1 mm/min was applied until failure
was reached.

Thickness swelling was determined according to EN 317, with conditioned samples
sized 12 × 50 × 50 mm2 fully immersed in 20 ◦C distilled water. Thickness swelling was
determined at two-time intervals, i.e., after 2 and 24 h. After the immersion time had
elapsed, the test samples were removed from the water and excess water was removed
with a paper cloth. Then, the thickness swelling was measured manually, using a thickness
gauge, at the center of the samples. Vertical density profiles (VDP) were measured with the
x-ray density analyzer GreCon RG44 (GreCon, Germany). Five samples were measured
from each type, with samples sized 12 × 50 × 50 mm2. The obtained data were processed
with Statistica v.12 (StatSoft, inc., Tulsa, OK, USA) software. Normality of the data were
checked by the Shapiro-Wilk test. The Statistical significance was set at p < 0.05 for the
analysis of variance (ANOVA), with Scheffé post-hoc tests.

3. Results and Discussion
3.1. Scanning Electron Microscopy

SEM images indicate that spruce fines located in the surface layer of a particleboard
(PB) have a better adherence with each other than the core-layer particles (Figure 3A).
Further, an apparent porosity was seen at the transition of the spruce surface layer migrating
into the cup-plant core layer (Figure 3D), a fact that potentially affected the mechanical
properties. The anatomical structure of the core layer vs. surface layer was clearly different.
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While the wood showed a rather regular and compact cellular structure dominated by
the tracheids (Figure 3B,C), the cup-plant structure was more diverse, showing annular
thickenings (Figure 3E) and pitted perforations (Figure 3F), constituting a wider range of
pore sizes, all potentially influencing resulting properties.
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3.2. TOF-SIMS Analysis

For the spruce wood (Figure 4) and the cup-plant PB (Figure 5), cross-sections were
prepared for the detection of carbon at mass-to-charge m/Q of 12, hydrogen at a m/Q of 1,
oxygen at a m/Q of 16, and hydroxyl ion cluster OH at a m/Q of 17. Secondary ion molecular
clusters typical for pMDI adhesives were also detected. The cyanide ion anion (CN) was
identified at the m/Q peak of 26, hydrogen isocyanide (CNH) at the m/Q peak 27, while
cyanate (CNO) was detected at a m/Q of 42. Due to the detection of molecules associated
with pMDI (CN, CNH, and CNO), the resin distribution within the composite could be
displayed. Results showed that in the pMDI-bonded PB, the pMDI-wood bondlines were
not spot-like, but appeared rather even and non-regular, with a penetration deep into the
wood structure. This finding corresponded to data presented by Mahrdt et al. [37]. We are
showing that C-TOF attached to FIB-SEM with Ga+ ion source could detect ion molecular
clusters specific to pMDI adhesive and wood. Additionally, with the Ga+ ion source, it
should be possible to detect G-lignin at peak Q/m 137 [30], however, the applied C-TOF
setup delivered only a low secondary ion signal (although visible), which did not allow an
elemental mapping. This could be further elaborated in a future study. The relevance of
CN, CNH, CNO being related to the pMDI distribution in the wooden structure was also
confirmed by the FIB-SEM image (Figures 4 and 5).
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Particle–particle bondlines for both PB types were visualized by TOF-SIMS. The Q/m
12 peak (carbon) was adopted to represent the genuine wood structure, while for the
particle–particle bondline, the molecular cluster CN (Q/m 26) was taken. The results
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showed that the pMDI adhesive was more dispersed in the cup-plant PB than in the spruce
PB (Figures 6 and 7). While the spruce PB showed very narrow particle–particle bondlines,
with penetration in non-compressed cell lumina regions (Figure 6), the adhesive in cup-
plant PBs appeared to be more spread-out (Figure 7). This could be related to the greater
and more dispersed porosity present in the cup-plant. An essential and novel outcome
of this research was also that individual particle–particle bondlines could be visualized
through molecular C-TOF SIMS identification. Here, no additional sample preparation
such as staining was required, with the samples not getting modified in any way, as it is the
case with other bondline identification methods [27]. With C-TOF, it is possible to visualize
bondlines in 3D, different to regular electron or light microscopy imaging. The capability
of 3D imaging also approved Hypothesis 2. The obtained approach delivered data for
in-depth analysis of bondline mechanics and substrate interaction, since the dataset could
be transformed into the finite element model, with the stress and strain distributions of the
structural components to be further assessed [38].
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3.3. Mechanical Properties

The results showed that the mean MOR values of the cup-plant PBs (3LCP, 1LCP)
were below the mean measured for spruce PBs. Further, mean MOR of the three-layer cup-
plant PB (3LCP) was above the one-layer cup-plant PB (1LCP), although not statistically
significant. Additionally, MOR of three-layer cup-plant PB (3LCP) was not different to the
one-layer spruce PB (1LSP, p > 0.05; Figure 8). The spruce PB types and the three-layer
cup-plant PB did meet the EN312 class P1 standard [39], which is for general use in dry
conditions. In contrast, average MOR of the one-layer cup-plant PB did not reach the
P1 standard.
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Figure 8. Modulus of rupture (MOR) of measured particleboards (PBs). 3LCP—three-layer cup-plant
PB, 3LSP—three-layer spruce PB, 1LCP—single-layer cup-plant PB, and 1LSP—single-layer spruce
PB (n = 10).

Average MOE measured for both cup-plant PBs types (3LCP, 1LCP) did not differ,
(p > 0.05), and were also not statistically different from the one-layer spruce PB (1LSP,
Figure 9). In addition, MOE of both cup-plant PBs were significantly (p < 0.05) lower than
the three-layer spruce PB. Even with all seen MOE variability (Figure 9), the cup-plant PBs
could be classified as P1 of EN 312, which refers to PBs used in dry conditions for interior
fitments, including furniture.
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Figure 9. Modulus of elasticity (MOE) of measured particleboards (PBs). 3LCP—three-layer cup-
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spruce PB (n = 10).

The measured MOR and MOE of the one-layer spruce PB, and the three-layer spruce
PB were consistent with data reported by Rofii et al. [40]. It was also documented that
MOE and MOR of three-layer PBs were above the one-layer PBs [41]. MOE and MOR were
both affected by particle alignments, surface layer density, as well as by the nature of the
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used raw material [42]. As cup-plant particles differ in their anatomical structure [8] and
sizes when compared to spruce particles, this has evidently an effect on the properties of
the produced PBs. Juliana et al. [43] reported a rise in MOE and MOR of three-layer PB
made from Kenaf stalk cores, when the surface layers were made of rubberwood. MOR
and MOE of the produced one-layer cup-plant PB showed similar values than PBs made
from waste tea leaves [44], bleached straw [13], eggplant stalks [45], or rice straw [9].

Internal bonding values (IB) of the cup-plant PBs (3LCP, 1LCP) were also below the
spruce PB types (Figure 10). One-layer cup-plant PB showed an average IB of 0.30 MPa,
which was not significantly different from the IB of the three-layer cup-plant PB (0.34 MPa).
Overall, the PBs made from cup-plant were again found suitable as general usage panels in
dry conditions, as defined in EN 312 P1 [39]. In PBs, the core layers strongly determine the
internal bonding, which explains why there are no significant differences for IB between
single-layer and three-layer PBs. Rofii et al. [40] reported that surface layer characteristics
of PBs have no significant effect on the IB. Additionally, Balducci et al. [22] showed that the
surface layer of three-layer Miscanthus PBs had no significant influence on the measured
IB. A reduced IB was found for rice husks PBs [46], hazelnut husks [47], or waste tea
leaves [36]. An IB lower than 0.2 MPa was measured for rice straw [9], and for waste grass
clipping PBs [48].
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Figure 10. Internal bonding strength (IB) of the measured particleboards (PBs). 3LCP—three-layer
cup-plant PBs, 3LSP—three-layer spruce PB, 1LCP—single-layer cup-plant PB, and 1LSP—single-
layer spruce PB (n = 20).

3.4. Thickness Swelling and Water Uptake

The three-layers PBs made from cup-plant, and the three-layer PB made from spruce
wood, both showed similar thickness swelling after 2 h (TS2h, Figure 11). Data also show
that the spruce particles in the surface layer did significantly lower TS2h, as it is the case
with the cup-plant PBs (3LCP). The TS2h of single-layer cup-plant PB was almost twice
the TS2h of the three-layer cup-plant PB. No TS2h difference was found between 3LSP
and 3LCP. A lower thickness swelling of three-layer PB than single-layer PB was also
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measured by [22], where Miscanthus or topinambour stalks were utilized for the core layer
in three-layer PB.
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3LCP—three-layer cup-plant PB, 3LSP—three-layer spruce PB, 1LCP—single-layer cup-plant PB, and
1LSP—single-layer spruce PB.

It is further shown that TS24h of both cup-plant PBs were significantly higher than
the three-layer spruce comparison. It can be noted that in the 3LCP the spruce surface
layer has a positive effect on TS24h. In addition, TS24h of the three-layer cup-plant PB was
significantly lower (p < 0.05) than the TS24h measured for the single-layer cup-plant PB.

Water uptake results after 24 h were different in a way with the three-layer spruce
particleboards absorbing the least water, while the single-layer cup-plant had the highest
water uptake. Spruce particles as the surface layer is reducing the water-uptake, meaning
that these particles seemingly reduce water access. This could be linked to a less accessible
pore structure in spruce, compared to cup-plant particles (see Figure 3).

3.5. Vertical Density Profile

As seen in Figure 12, vertical density profiles of the cup-plant PB and the spruce PB
were quite different. Single-layer cup-plant PB showed a flat density profile without distinct
surface peaks. With spruce particles present in the surface layers, in an otherwise cup-plant
PB, the density profile was also altered. It was found that the core layer density of the
three-layer cup-plant PB was higher than that in the surface layers. It was evident that the
density profile altered the mechanical performance of the cup-plant PBs. In Wong et al. [49]
it was found that the density profile was like the one measured for spruce PBs, which is
beneficial to MOE and MOR. Likewise, a flat density profile measured for the single-layer
cup-plant PB was commonly connected to reduced bending properties, as shown with
own data. The three-layer cup-plant PB had a higher density in the core layer, which at
first glance should provide better IB for the three-layer cup-plant PB. Interestingly, this is
not shown with our data. It must be noted that commonly not only the core layer, but the
transition zone (TZ) between the surface and core layer is more prone to fail during an
internal bonding test [50] (Figure 6). As seen in Figure 3, the three-layer cup-plant PB’s
transition zone had a higher proportion of pores and could be seen as a “weak layer”,
with a density similar to the core layer of the single-layer cup-plant PB. Thus, internal
bonding of the 3LCP did not improve over the other panel types. The three-layer spruce
particleboard had the highest surface layer density, which explains the high MOR and
MOE values of this PB type.
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Figure 12. Vertical density profile of the produced particleboards (PBs). 3LCP—three layer-cup-plant
PB, 3LSP—three-layer spruce PB, 1LCP—single-layer cup-plant PB, and1LSP—single-layer spruce
PB; TZ—transition zone between surface and core layer.

4. Conclusions

In this research, we successfully produced single-layer as well as three-layer cup-plant
particleboards (PBs). We approved Hypothesis 1, as such that C-TOF and a combination
of SEM-FIB with Ga+ ion source was able to detect ion molecular clusters specific to
pMDI adhesive and wood. The actual setup of the primary beam did not provide enough
secondary ion signals to capture G-lignin cluster, although a specific peak at m/Q 137 was
visible. This needs to be further elaborated. Mechanical and physical properties of PBs
were compared with spruce-made particleboards. Hypothesis 2 was also confirmed, as the
bondline was visualized in 3D with datasets acquired by C-TOF. Hypothesis 3 was only
partly approved, as the three-layer cup-plant PBs fulfilled the requirement for a general
usage panel (EN312, P1). However, MOR of the single-layer cup-plant PB needs to be
increased to meet EN 312, P1 requirements. Hypothesis 4 was proven with the restriction
that the IB of the cup-plant three-layer PB was not statistically different from the cup-plant
single-layer PB. Nevertheless, three-layer cup-plant PBs delivered better MOE and MOR
values than the single-layer cup-plant PBs. Raw material mixtures with spruce might be
useful to raise MOR and MOE values. The density profile of the three-layer cup-plant PB
has been altered in a way the core layer had higher densities than the surface layer.
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