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Abstract: Synthetic aperture radar (SAR) image classification is an important task in remote sensing
applications. However, it is challenging due to the speckle embedding in SAR imaging, which
significantly degrades the classification performance. To address this issue, a new SAR image
classification framework based on multi-feature fusion and adaptive kernel combination is proposed
in this paper. Expressing pixel similarity by non-negative logarithmic likelihood difference, the
generalized neighborhoods are newly defined. The adaptive kernel combination is designed on
them to dynamically explore multi-feature information that is robust to speckle noise. Then, local
consistency optimization is further applied to enhance label spatial smoothness during classification.
By simultaneously utilizing adaptive kernel combination and local consistency optimization for the
first time, the texture feature information, context information within features, generalized spatial
information between features, and complementary information among features is fully integrated
to ensure accurate and smooth classification. Compared with several state-of-the-art methods on
synthetic and real SAR images, the proposed method demonstrates better performance in visual
effects and classification quality, as the image edges and details are better preserved according to the
experimental results.

Keywords: multi-feature; adaptive; kernel combination; SAR; image classification

1. Introduction

Synthetic aperture radar (SAR) can acquire images of different land covers through
clouds and rain in all weather conditions and times, and it has a certain surface penetrating
capability. Therefore, SAR images are widely used in disaster monitoring, environment
mapping, urban planning, military reconnaissance, and crop yield estimation [1]. SAR
image classification is one of the core contents of SAR image interpretation. However, with
SAR image classification it is not easy to obtain satisfactory results, due to the speckle
embedding in SAR imaging. This remains a challenging task to be resolved. In recent
years, the research on SAR image classification technology has mainly focused on two
crucial aspects: more effective representation of feature information, and enhancing the
local consistency on pixel labels.

To date, various methods have been proposed for feature information representation
in classification. The most basic feature information representation is various feature
extraction, which includes gray-level co-occurrence matrix (GLCM), Gabor filters (GFs),
wavelet (WL), attribute profiles (APs), etc. GLCM was employed for retrieval of sea
surface wind direction from SAR images [2], and GFs were used for SAR images to detect
change [3]. Discrete wavelet transform processing on coherent sea-ice textures, while
being decomposed, has been utilized to perform fractal analysis of SAR images [4]. AP
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was used to distinguish heterogeneous and homogeneous image contents in SAR image
segmentation by Boldt et al. [5], while Tombak et al. [6] investigated AP for pixel-based
SAR image classification. These features always retain image detail features, which do not
fully exploit the contextual and spatial information to suppress the speckle effect.

In recent years, the representation of feature information has gradually developed to
mine context information. The Markov random field (MRF) has been widely used in SAR
image classification to exploit the context information [7]. The Markov random field model
was used to cluster the SAR image, and according to the centroid of the region, the region
category was located with complete edge [8]. However, this method always considers the
neighborhood to be usually in the small fixed-size, which is not very useful to preserve
the structures. In addition, the composite kernel support vector machine (SVM) is utilized
to exploit the context information [9,10], such as the correlation between pixels, when it
classifies SAR images. According to experience set parameters, a composite kernel was
constructed, and it explores both the two elements of information in the adaptive region: the
texture feature and the context [9]. Moreover, a composite kernel method was proposed to
combine the polarimetric and morphological feature fusion [10] with adjustment parameter
of experience. However, they both set the kernel parameters artificially in the construction
of the composite kernel, the contribution of different features is balanced by experience,
and the feature difference cannot be reflected autonomously, so they cannot accurately
express the image information.

In order to exploit the information in different aspects, multiple features are further
joined for representation. Multi-feature was fused in low-rank representation for SAR
target recognition [11], and it was utilized to classify the SAR image [12], improving the
classification accuracy of the SAR image. However, the multiple features are united in the
simple stacking way, and the difference between the multiple features cannot be taken into
account. The method cannot fully mine the feature information, and the essence of the
image cannot be better highlighted. Although the approaches above can effectively improve
the classification accuracy, “salt and pepper” noise often appears in their classification
results due to multiplicative speckle. A good way to solve this problem is to introduce
the feature space and combine features dynamically according to difference between
features, which can effectively suppress the noise of classification maps and make full use
of feature information.

Another aspect is to improve the local consistency of pixel labels. Typical methods in-
clude over-segmentation techniques used in the preprocessing step and optimization based
on probability theory performed as a postprocessing procedure. The over-segmentation
technique divides the whole SAR image into small uniform patches or superpixels, which
is an indispensable part of the subsequent classifier learning and labeling process [13–15].
In the segmentation process, pixels in each patch share the same label. Optimization
based on probability theory integrates prior label smoothing into the segmentation task
to solve the largest probability [16–18]. Dempster–Shafer evidence theory makes up for
the deficiency caused by the incomplete, partially inaccurate, or uncertain information,
and the hypothesis with the maximum credibility and likelihood degree is selected as the
fusion result [16], but it is sensitive to basic reliability allocation. Graph optimization inte-
grates prior information into graph construction, solves the maximum posterior probability
to enhance the local consistency of labels, and obtains segmentation results with higher
classification accuracy and better spatial connectivity [17]. However, the construction
of graph structure takes more time and requires high computational cost. Majority vote
algorithms are simple to calculate, flexible in resolving conflicts [18,19], and do not require
the allocation of confidence.

Both the above two aspects can effectively promote the performance of SAR image
classification. However, most of the existing SAR image classification methods usually
consider only one of them. In this paper, to address the aforementioned problem for SAR
image classification, we propose a classification framework of multi-feature fusion and
adaptive kernel combination (MAKC), which constructs the feature space to fully mine
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multi-feature information while using optimization to ensure the local consistency of labels.
The main contributions are summarized as follows: (1) Constructing three-dimensional
feature space of generalized spatial information for fusion, meaning space information
is utilized more deeply than ever before, instead of only plane contextual information.
(2) Adaptive kernel combination reflects the feature difference to mine the spatial infor-
mation, with dynamic weights according to image content rather than artificial setting
according to experience. (3) Different from the original over-segmentation algorithm, it
combines the Gamma distribution of SAR images and introduces non-negative logarithmic
likelihood value to evaluate pixel similarity, which makes the algorithm more suitable for
SAR images. (4) Compared with the previous postprocessing optimization procedure that
only considers confidence level, a conflict resolution rule that can comprehensively con-
sider the quality of features enhances the local consistency of pixel labels to fuse features,
and also changes the traditional stacking way of feature fusion.

The rest of this paper is organized as follows. In Section 2, we review the notation
and background materials. In Section 3, the proposed method is detailed. In Section 4, the
experimental results are given and compared with several state-of-the-art classification
methods. Then, in Section 5, the effectiveness of the method step and the adjustment of
parameters are discussed. Finally, in Section 6, the paper is summarized and future works
are suggested.

2. Background

In this section, we briefly review texture information representations of SAR images,
which are gray-level co-occurrence matrix (GLCM), wavelet (WL), and attribute profile
(AP). In addition, the information entropy, image entropy, and entropy rate superpixel
methods are introduced. SAR image size is I1 × I2. A gray-level co-occurrence matrix
(GLCM) can express the imaging mechanism and the statistical characteristics of SAR
images [20,21]. Derived from the co-occurrence matrix on four directions, 0◦, 45◦, 90◦, and
135◦, six measures named contrast, correlation, homogeneity, energy, mean value, and
median value are selected, then the average value of four directions on each measure is
computed to represent the image pixel, and the feature vector of each pixel is represented as

FG
ij = ( f G

ij1, f G
ij2, f G

ij3, f G
ij4, f G

ij5, f G
ij6), 1 ≤ i ≤ I1, 1 ≤ j ≤ I2. (1)

Then, the 3D GLCM feature tensor of I1 × I2 × 6 size is obtained for the SAR image,
which is

FG
f ea =


FG

11 FG
12 · · · FG

1I2
FG

21 FG
22 · · · FG

2I2
· · · · · · · · · · · ·
FG

I11 FG
I12 · · · FG

I1 I2

. (2)

The GLCM feature is very good for contrast enhancement and despeckling, and
effectively describes spatial information about the relative position of pixels, but does
not involve structural relationships and weak the target signal or edge information. The
characteristics of texture and noise are not essentially distinguished. Fortunately, WL and
AP can make up for GLCM.

WL transform provides frequency information through multi-resolution analysis [22],
which can essentially distinguish the characteristics of texture and noise. Inspired by
reference [23], the two-level four-tap Daubechies wavelet decomposition is performed over
a 9 × 9 window for each pixel of the SAR image in this section. The wavelet energy is
extracted from seven channels, and the feature vector of each pixel is denoted as

FW
ij = ( f W

ij1, f W
ij2, f W

ij3, f W
ij4, f W

ij5, f W
ij6, f W

ij7), 1 <= i <= I1, 1 <= j <= I2. (3)
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Then, a 3D WL feature tensor of I1 × I2 × 7 size can be obtained [4,24], and is repre-
sented as

FW
f ea =


FW

11 FW
12 · · · FW

1I2
FW

21 FW
22 · · · FW

2I2
· · · · · · · · · · · ·
FW

I11 FW
I12 · · · FW

I1 I2

. (4)

AP provides a multi-level characterization of an image, which is created by the
sequential application of morphological attribute filters (AFs). AFs are the operators of
the connection, which only consider the connected components of the image. Thus, they
do not distort or insert new edges when processing images, but simply merge existing
flat areas. So, AP can be used to model different kinds of structural information of the
scene in order to increase the effectiveness of classification. The four SAR attributes of area,
the diagonal, moment of inertia, and standard deviation are applied [5,6]. There are three
thresholds for each attribute, and the feature vector of each pixel is represented as

FA
ij = ( f A

ij1, f A
ij2, f A

ij3, · · · f A
ij23, f A

ij24, f A
ij25), 1 ≤ i ≤ I1, 1 ≤ j ≤ I2. (5)

Then, a 3D attribute profile tensor of I1 × I2 × 25 size is obtained on the SAR image
according to the thickening and thinning operation, which is

FA
f ea =


FA

11 FA
12 · · · FA

1I2
FA

21 FA
22 · · · FA

2I2
· · · · · · · · · · · ·
FA

I11 FA
I12 · · · FA

I1 I2

. (6)

Information entropy was proposed by Shannon. Shannon et al. postulated that the
amount of information could be expressed in terms of the amount of eliminated uncer-
tainty [25,26]. According to information theory, information entropy is considered from the
statistical property of the whole information source. For a particular information source,
information entropy is only one. Suppose the random event set is {Xi, i = 1, 2, · · · , N}, the

probability of its occurrence is pi, and the condition
N
∑

i=1
pi = 1, 0 ≤ pi ≤ 1, i = 1, 2, · · · , N

is satisfied: then define information entropy H(X) = −
N
∑

i=1
pi log pi.

An SAR image is composed of pixels. Pixels of different intensities occupy different
areas in the image, making the image show different shapes, and different shape image
areas contain different information. Because the image distribution has block structures,
there is a position correlation between each pixel. Therefore, on the basis of the one-
dimensional entropy, the image entropy, which can reflect the spatial property of gray-scale
distribution, is introduced to form the two-dimensional entropy, considering the two-
dimensional spatial property of the SAR image. Assuming an SAR image is I1 × I2 size,
and the image data have a non-negative value that is f (i, j) ≥ 0, the image entropy E( f ) is
defined as

pij = f (i, j)/
I1

∑
i=1

I2

∑
j=1

f (i, j) , E( f ) = −
I1

∑
i=1

I2

∑
j=1

pij log pij (7)

where f (i, j) is the gray-scale value of the pixel whose coordinate position is (i, j) in the
image, and pij is the probability of pixel gray-scale value f (i, j) appearing in the image.

The entropy rate superpixel method is an over-segmentation technique that can
improve the local consistency of pixel labels. Among the existing superpixel algorithms,
the entropy rate method can not only obtain superpixels of adaptive size from the global
perspective, but also has the adaptive ability in the heterogeneous region and the ability to
preserve local details for optical images [27,28]. For optical images, the distance between



Appl. Sci. 2021, 11, 1603 5 of 22

pairwise neighboring pixels can be used to generate superpixels by the entropy rate method.
Definition of pixel similarity between the two in terms of distance is as follows:

d(x, y) = ‖x− y‖2 =

√
(x− y)T(x− y) (8)

where x, y are two pixel values in the image, and the similarity between the two pixels
is calculated by Formula (8). An image is mapped to a graph G = (V, E) with vertices
denoting the pixels and the edge weights denoting the pairwise similarities given in the
form of a similarity matrix. The entropy rate of the random walk on the constructed
graph is a criterion to obtain compact and homogeneous clusters, and a balancing function
encourages clusters with similar sizes.

However, the original entropy rate method is not completely suitable for SAR images
due to the fact that speckle noise will severely affect the distance directly calculated between
individual pixels, so an accurate and robust distance measure between neighboring pixels
should be derived.

3. Methodology

In this section, the implementation of the proposed method is illustrated concretely.
The overall framework of the proposed method is shown in Figure 1. The figure includes a
preprocessing step and three main parts from left to right.

Figure 1. Framework of the proposed method.

The preprocessing takes the SAR image as the starting point, solves the pixel similarity
based on Gamma distribution by the non-negative logarithmic likelihood difference, and
generates the superpixel mapping, and the specific description is shown in Section 3.1.

The three bodies are the feature space construction, adaptive kernel combination,
and conflict resolution. Feature space construction is carried out on three group texture
information feature tensors from the SAR image, respectively, which are gray-level co-
occurrence matrix (GLCM), wavelet (WL), and attribute profile (AP) from top to bottom.
Each feature tensor is clustered through the superpixel mapping to obtain 3D adaptive
blocks. Based on these blocks, the internal context information feature space and the
generalized space information feature space are constructed, as detailed in Section 3.2.
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In the adaptive kernel combination stage, the texture feature kernel, contextual kernel
and spatial kernel corresponding to three feature spaces in one group are adaptively
combined through dynamic weight to obtain a composite kernel, which realizes information
fusion within features of one group. Dynamic weights according to image content rather
than artificial setting combine feature kernels, which reflect the feature difference to mine
the spatial information. The stage is described in detail in Section 3.3.

Conflict resolution is the decision embodiment of local consistency optimization, and
the classification maps generated by three composite kernels accordingly are considered to
enhance the local consistency smoothing labels, which realizes complementary information
fusion among features in different groups, and the final classification result is obtained. See
Section 3.4 for detailed description.

3.1. Segmentation of Non-Negative Logarithmic Likelihood Difference Based on
Gamma Distribution

To enhance local consistency, a 3D adaptive block is obtained by an improved entropy
rate superpixel method. Under speckle noise, pairwise similarities cannot be calculated
directly. In order to reduce speckle noise impact, the Gamma distribution statistical
characteristics of the SAR image are taken into account. For the intensity image, the
probability density function of the Gamma distribution is defined as

P(x) =
βγxγ−1

Γ(γ)
e−βx (9)

where γ is the shape parameter, β is the scale parameter, and Γ(·) is the Gamma function.
The non-negative logarithmic likelihood difference value [29] is adopted to represent the
intensity similarity between pixels based on Gamma distribution, which is defined as

d(i, j) = |log P(i)− log P(j)| (10)

where i and j are intensity values of two pixels, and P(i) is the value obtained by substitut-
ing i into the probability density function (9) of the Gamma distribution, which reflects the
statistical characteristic on the local neighborhood of the pixel with i value and suppresses
the effect of speckle noise. The logarithmic transformation of P(i) is performed to improve
the sensitivity to the difference in likelihood probability values without changing the
monotonicity of the original data. The absolute value of the difference between log P(i)
and log P(j) represents the similarity between two pixels with i and j values, replacing (8)
in the original method to reduce the impact of speckle noise, so that pixel similarity is not
represented by pixel gray value difference directly.

Using Formula (10), the superpixel results by the improved superpixel algorithm are
shown in Figure 2a. The region-based statistical characteristic can reflect the change rule
of most data in the image, so it can suppress the noise. From Figure 2, the superpixels
obtained by the improved method have adaptive sizes and shapes. In particular, the region
in the red rectangle box is significantly more attached to the edge than the previous shown
in Figure 2b. The red rectangle area is zoomed in Figure 2c,d, from top to bottom; it contains
dark gray crop features, black vegetation features, white bare land features, and dark black
river features. As can be seen from the two figures, the superpixel edge is better attached
to the boundary of the black vegetation area in Figure 2c, while in Figure 2d, the superpixel
edge is far away from the boundary of the vegetation area. Then, the shape and size of
each block according to local structure can be adaptively adjusted, instead of the boundary
being far away from the shape contour of the local object.
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Figure 2. Comparison of superpixel results: (a) the improved algorithm, (b) the previous algorithm,
(c) the zoom part of (a), and (d) the zoom part of (b).

3.2. Feature Space Construction

The above superpixel results for the SAR image are mapped to each 3D feature.
So, the adaptive 3D feature blocks, where S f lag

i (i = 1, · · · , numblock, numblock denotes
the number of blocks, and f lag is a member of {G, A, W}), are generated on each 3D
feature tensor. Moreover, each pixel of each 3D feature tensor is clustered according to
the superpixel label at the corresponding position. The 3D feature blocks can preserve
the structure of the object comprehensively due to it being multi-layer, adhering to edges,
and of unfixed size. Hence, they can explore the contextual and spatial information more
accurately. The generalized neighborhood of each block S f lag

i includes the neighborhood

blocks S f lag
i,j (j = 1, · · · , numnei, numnei is the number of block S f lag

i neighborhood) in the
current layer and other layers, as shown in Figure 3b.

Figure 3. (a) Adaptive feature blocks and (b) generalized neighborhood of an adaptive block Si.
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The internal context information and generalized spatial information need to be
extracted from each shape adaptive feature block and neighborhood. Because each shape-
adaptive 3D feature block S f lag

i includes a group of neighbor F f lag
ij vectors, F f lag

ij is the
expression of feature information which is GLCM, AP, and WL extracted above, and the
number of neighbor vectors is denoted as numpix, so the internal context information of

each 3D feature block S f lag
i is expressed as the average of each feature F f lag

ij values in S f lag
i ,

which is defined as

Smean, f lag
i = (

numpix

∑
k=1

F f lag
ij )/numpix. (11)

The average value vector Smean, f lag
i is assigned to each pixel in the shape-adaptive

block S f lag
i to replace the original feature value F f lag

ij . Then, the internal context information

feature F f lag
mean can be constructed by performing the same filtering operation on all shape-

adaptive blocks, which is

F f lag
mean =

{
Smean, f lag

1 , Smean, f lag
2 , · · · , Smean, f lag

i , · · · , Smean, f lag
numblock , · · · , Smean, f lag

1 , Smean, f lag
2 , · · · , Smean, f lag

i , · · · , Smean, f lag
numblock

}
I1×I2

, (12)

where numblock is the number of all S f lag
i shape-adaptive blocks on one layer, and the

number of Smean, f lag
i elements in the feature set F f lag

mean is I1 × I2. Then, 3D internal context

information feature space F f lag
mean is constructed by Smean, f lag

i vectors.
Considering that the neighboring shape-adaptive blocks have similar spatial informa-

tion on different layers in 3D space, the generalized spatial information is represented by
spatial distance metric similarity, which is expressed as

Sspa, f lag
i =

numnei

∑
j=1

wi,j × Smean, f lag
i,j , (13)

wi,j =
∥∥∥Smean, f lag

i,j − Smean, f lag
i

∥∥∥−1

2
/(

numnei

∑
j=1

∥∥∥Smean, f lag
i,j − Smean, f lag

i

∥∥∥−1

2
), (14)

where Sspa, f lag
i is the generalized spatial information value of the shape-adaptive block S f lag

i ,

Smean, f lag
i,j is the mean of the jth neighborhood of block S f lag

i , and numnei is the number

of neighboring S f lag
i shape-adaptive blocks.

∥∥∥Smean, f lag
i,j − Smean, f lag

i

∥∥∥
2

is the Euclidean
distance that measures the dissimilarity between neighboring block and center block [30,31].
wi,j is the weight, which is inversely proportional to the Euclidean distance. The larger
the Euclidean distance and the smaller the weight, then the less impact the neighborhood
value has on the new generalized spatial information value. The vector Sspa, f lag

i is assigned

to each pixel in the shape-adaptive block to replace Smean, f lag
i . The generalized spatial

information feature F f lag
spa is constructed by performing the same filtering operation on all

shape-adaptive blocks, which is described as

F f lag
spa =

{
Sspa, f lag

1 , Sspa, f lag
2 , · · · , Sspa, f lag

i , · · · , Sspa, f lag
numblock , · · · , Sspa, f lag

1 , Sspa, f lag
2 , · · · , Sspa, f lag

i , · · · , Sspa, f lag
numblock

}
I1×I2

. (15)

numblock is the number of all shape-adaptive blocks of one layer, and the number of Sspa, f lag
i

elements in the feature set F f lag
spa is I1 × I2. Then, 3D generalized spatial information feature

space F f lag
spa is constructed by Sspa, f lag

i vectors.
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3.3. Adaptive Kernel Combination

Three different feature kernels are expressed based on the above feature information
3D space. From feature tensors information F f lag

f ea , where f lag is a member of {G, A, W},
a set of feature pixels is randomly selected as training samples, which is denoted as{

F f ea, f lag
1 , F f ea, f lag

2 , · · · , F f ea, f lag
n

}
, where n is the number of the training samples. Spatial

pixels from F f lag
mean and F f lag

spa are extracted, respectively, corresponding to the position indexes of

selected feature pixels, which are denoted as Smean, f lag
1 , · · · , Smean, f lag

n , Sspa, f lag
1 , · · · , Sspa, f lag

n ,
respectively. After that, three different kernels use the radial basis function as kernel
function, and are created based on the three kinds of training samples, that is

K f lag
f ea

(
F f ea, f lag

i , F f ea, f lag
j

)
= exp

(
−
∥∥∥F f ea, f lag

i − F f ea, f lag
j

∥∥∥/2δ2
)

, (16)

K f lag
mean

(
Smean, f lag

i , Smean, f lag
j

)
= exp

(
−
∥∥∥Smean, f lag

i − Smean, f lag
j

∥∥∥/2δ2
)

, (17)

K f lag
spa

(
Sspa, f lag

i , Sspa, f lag
j

)
= exp

(
−
∥∥∥Sspa, f lag

i − Sspa, f lag
j

∥∥∥/2δ2
)

. (18)

By adaptive kernel combination of the above three kernels, the composite kernel can
be constructed. To determine the dynamic weight, principal component analysis [32] is
used on F f lag

f ea , F f lag
mean, and F f lag

spa respectively to obtain the first three principal components
(PCs) in each feature space, which can reduce the computational cost. Canny filter is used to
detect the edge on PCs to obtain the binary image of the contour. The image entropy [25,26]
is used to measure the amount of structure information in the binary image. If image
entropy is high, this means the structural information contained in the image is rich. The
image entropies are calculated as follows:

E f lag
f ea = −

1

∑
i=0

P f ea, f lag
i log P f ea, f lag

i , E f lag
mean = −

1

∑
i=0

Pmean, f lag
i log Pmean, f lag

i ,

E f lag
spa = −

1

∑
i=0

Pspa, f lag
i log Pspa, f lag

i .

(19)

P f ea, f lag
i is the probability that the pixel gray value is i in the binary image of F f lag

f ea , i is

equal to 0 or 1. Similarly, Pmean, f lag
i and Pspa, f lag

i are the probability in the different features

F f lag
mean and F f lag

spa , respectively. E f lag
f ea , E f lag

mean, and E f lag
spa are image entropy. The obtained

image entropy ratios are set as the dynamic weight of the corresponding kernels, and the
composite kernel is defined as

W f lag
f ea =

E f lag
f ea

E f lag
sum

, W f lag
mean = E f lag

mean

E f lag
sum

, W f lag
spa =

E f lag
spa

E f lag
sum

, E f lag
sum = E f lag

f ea + E f lag
mean + E f lag

spa ,

K f lag
com

(
Fcom, f lag

i , Fcom, f lag
j

)
= W f lag

f ea K f lag
f ea

(
F f ea, f lag

i , F f ea, f lag
j

)
+ W f lag

meanK f lag
mean

(
Smean, f lag

i , Smean, f lag
j

)
+ W f lag

spa K f lag
spa

(
Sspa, f lag

i , Sspa, f lag
j

)
.

(20)

The adaptive kernel combination obtains composite kernels, which are incorporated
into the SVM classifier to implement the SAR classification. Each group of feature informa-
tion generates a composite kernel and obtains a SAR classification result. The below three
classification maps are fused to obtain SAR image final classification.

3.4. Conflict Resolution of Local Consistency Optimization

For enforcing the local consistency on pixel labels, optimization by probability theory
is used to smooth labels based on the above three classification maps. Conflict resolution is
used to determine the class of pixel p(i, j) in conflict labels as follows on the SAR image,
and 1 ≤ i ≤ I1, 1 ≤ j ≤ I2.
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In no-conflict situations, coui,j
k denotes the classification times that each pixel p(i, j) is

classified as class k in three classification maps, m is the class number, and then final class
label l can be obtained by the maximum count value, that is

Labnocon
i.j =

{
l
∣∣∣coui,j

l = max(coui,j
1 , · · · , coui,j

k , · · · , coui,j
m ), 0 <= coui,j

k <= 3.
}

. (21)

In conflict situations, where a pixel has three different classification maps’ labels, it is
hard to choose the right map’s label as the final result. To address this issue, a probability
is solved to determine the label of a pixel based on image feature information quality.
The equivalent number of looks (ENL) [33] is an index to measure the smoothness of
uniform regions. The higher the value, the less the noise affects the feature information
and the better the feature quality. In order to further improve the reliability of labels,
confidence level is combined with ENL to make decisions. A confidence level is defined
with the initiation value zero for each map, and the valid decision times of each F f lag

f ea
feature information are counted according to classification map Labnocon

i.j in no-conflict
situations. The label of largest probability is selected, the probability is defined as

Pro f lag =
CL f lag

W
∑

f lag=G
CL f lag

+
M f lag

W
∑

f lag=G
M f lag

, (22)

where M f lag = δ2
f lag/µ2

f lag, (23)

CL f lag = Countif
(

classmapi,j(F f lag
f ea ) = Labnocon

i,j

)
. (24)

The ENL values M f lag are denoted as MG, MA, MW , f lag is a member of {G, A, W}.
They equal to the square ratio of the standard deviation σf lag and the expectation µ f lag of
intensity in SAR image area. Formula (24) calculates the confidence level of each classifica-
tion map. If classmapi,j(F f lag

f ea ), that is the pixel label at positions (i, j) in classification map

of feature F f lag
f ea , is equal to the same position pixel label Labnocon

i,j , which is final label result

in the no-conflict case, then the confidence level CL f lag of feature F f lag
f ea is increased by 1,

that is, count the number of labels in each feature classification map that are equal to the
final label results in the no-conflict case. CLG, CLA, CLW count the number of times that
each feature F f lag

f ea classification map is consistent with the result of Labnocon
i.j in no-conflict

situations obtained by (21). Finally, the undetermined test pixel sample p(i, j) label is the
label in F f lagx

f ea classification map with the highest probability value Pro f lagx in conflict
situations, which is

Labcon f lict
i,j =

{
l
∣∣∣Pro f lagx = max(ProG,ProA,ProW), then l = classmapi,j(F f lagx

f ea )
}

. (25)

In the end, the label matrix Lab of classification result is obtained. The procedure of
multi-feature fusion and adaptive kernel combination algorithm is outlined in Algorithm 1.
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Algorithm 1 Multi-feature fusion and adaptive kernel combination

INPUT: Original SAR image X ∈ I1 × I2, the training samples and their corresponding labels,
and the training samples number of each class is ni, the number of superpixels is numblock.
OUTPUT: The label matrix Lab of classification result on the SAR image.
Step 1: The SAR image X is represented as three texture information tensors: GLCM feature
tensor FG

f ea, WL feature tensor FW
f ea, and AP feature tensor FA

f ea.
Step 2: The SAR image X is segmented according to the number of superpixels numblock and
Formula (10), and obtain SG, SW , SA so that the superpixels result is mapped to the above three
texture information tensors FG

f ea,FW
f ea,FA

f ea.
Step 3: The internal context information feature spaces FG

mean, FW
mean, FA

mean are constructed on
SG, SW , SA according to Formula (12).
Step 4: The generalized spatial information feature spaces FG

spa, FW
spa, FA

spa are constructed on
FG

mean, FW
mean, FA

mean according to Formula (15).

Step 5: The information feature kernels K f lag
f ea

(
F f ea, f lag

i , F f ea, f lag
j

)
, K f lag

mean

(
Smean, f lag

i , Smean, f lag
j

)
,

and K f lag
spa

(
Sspa, f lag

i , Sspa, f lag
j

)
are constructed on three feature spaces F f lag

f ea , F f lag
mean, and F f lag

spa

according to Formulas (16)–(18), and f lag ∈ {G, W, A}.
Step 6: The dynamic weights W f lag

f ea ,W f lag
mean and W f lag

spa are calculated via Formula (20), and the

adaptive kernel combination gains composite kernels K f lag
com

(
Fcom, f lag

i , Fcom, f lag
j

)
by

K f lag
f ea

(
F f ea, f lag

i , F f ea, f lag
j

)
, K f lag

mean

(
Smean, f lag

i , Smean, f lag
j

)
, and K f lag

spa

(
Sspa, f lag

i , Sspa, f lag
j

)
; three

classification mappings are acquired from these composite kernels with training samples.
Step 7: According to Formulas (21) and (25), the three classification mappings are fused, and the
final classification result Lab is obtained by local consistency optimization.

4. Results
4.1. Experimental Setup

In the experiment, three synthetic images and three real images are used to test six
methods, namely Syn1, Syn2, Syn3, SAR1, SAR2, and SAR3. In the proposed classification
framework MAKC, the numbers of original superpixels are set to 2000, 2800, 4300, 10,500,
64,500, and 4500, respectively. The AP uses four attributes to generate a twenty-five
dimensional data set as [50 625 1849], [0.05 0.1 0.15], [58 248 328], [0.5 2 3.5]; the window
size of GLCM is 9× 9, the direction step of GLCM is 2, and the window size of WL is 9× 9
respectively according to the literature [2,4,5]. The radial basis function kernel parameter σ
in (15)–(17) is set to 1 in our method, and the parameters of the SVM classifier in all methods
are selected by a fivefold cross-validation on the training set. Fifty training samples are
randomly selected for each class to train the classifiers, and the remaining samples are used
as testing data. The parameters of the other test methods are set as the defaulted values
reported in [9,10,17,34,35], respectively. The experiments were conducted on a laptop
computer with an Intel Core i5 2.6-GHz CPU and 16-GB memory; the algorithms were
implemented in MATLAB 2016b.

The classification results of the MAKC method are compared with the below meth-
ods visually and quantitatively: SVM [34], clone kernel spatial fuzzy c-means clustering
(CKS-FCM) [35], composite kernel feature fusion (CKFF) [10], SVM-composite kernel
(SVM-CK) [9], and multi-feature weighted sparse graph (MWSG) [17]. The MAKC uses
the multi-feature texture information, context information, and generalized spatial infor-
mation, constructs an adaptive composite kernel for classification with dynamic weights,
and performs local consistency optimization to integrate multi-feature information. The
SVM classifies images by statistical features without considering spatial information, and
represents the classical basic SVM method. For the CKS-FCM method, spatial information
is incorporated into the objective function of FCM, and a non-Euclidean distance based on a
kernels metric is used in the kernel function. For the CKFF method, the spatial information
is exploited by the morphological feature and stacked feature fusion with a composite
kernel by manual weights on the SAR image. The SVM-CK method is used to extract
context information for spatial information expression, the composite kernel is constructed
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by manual weights, and multi-feature fusion is not involved. In the MWSG method, multi-
feature samples distance is expressed by Gaussian kernel distance as weights integrated
sparse representation, which constructs an adjacent matrix of a graph framework for SAR
image classification; it expresses the overall spatial information. To objectively evaluate the
classification results, four metrics of overall accuracy (OA), class-special accuracy (CA),
average accuracy (AA), and Kappa coefficient (Kappa) are adopted on real SAR images.

4.2. Results on Synthetic SAR Images

In this section, the experiments performed on three synthetic SAR images are detailed.
All of the three synthetic SAR images are corrupted by the complicated simulated noise
with three-looks, which follows the multiplicative speckle rule [20]. The test synthetic
images are named Syn1, Syn2, and Syn3, and contain different numbers of texture types:
2, 4, and 8, respectively. The size of each image is 512 × 512 pixels. To evaluate the
classification performance, training samples are selected randomly in all of the comparison
methods, taking fifty samples for each class. Moreover, the averages of the classification
accuracies over ten runs are reported. The classification maps are shown in Figure 4, and
the classification results for the overall accuracy and the Kappa coefficient are shown in
Tables 1 and 2, respectively.
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Table 1. Overall accuracies of different algorithms on the synthetic SAR images.

Method Syn1 OA Syn2 OA Syn3 OA

SVM 85.85 75.75 57.37
CKS-FCM 97.21 98.94 92.1

CKFF 98.91 92.26 92.85
SVM-CK 98.76 96.69 95.9
MWSG 99.31 97.66 97.14
MAKC 99.33 99.68 99.03

Table 2. Kappa coefficients of different algorithms on the synthetic SAR images.

Method Syn1 Kappa Syn2 Kappa Syn3 Kappa

SVM 0.72 0.68 0.51
CKS-FCM 0.94 0.99 0.91

CKFF 0.98 0.9 0.92
SVM-CK 0.98 0.96 0.95
MWSG 0.99 0.97 0.97
MAKC 0.99 1 0.99

For the Syn1, results can be observed in Figure 4a1–h1, which is a two-class synthetic
image. Figure 4a1 shows the ground truth image corresponding to Figure 4b1. The
classification result of SVM is very poor, as shown in Figure 4c1. This is because SVM does
not consider spatial information. Figure 4d1 shows the classification result of CKS-FCM,
which has many spots in consistent regions. CKS-FCM combined with non-local spatial
information has certain noise suppression, but it is still not ideal. Although Figure 4e1,g1
obtained by CKFF and MWSG, respectively, are better than Figure 4c1,d1, some pixels are
obviously misclassified in consistent regions. CKFF and MWSG both take advantage of
multi-feature information, CKFF stacks features simply, and MWSG eliminates singular
data for computational fusion. More information is utilized than in SVM or CKS-FCM. In
Figure 4f1, the SVM-CK obtains classification regions with no noise, but the edge of the
segmentation regions is rough. SVM-CK only uses context information without feature
fusion to emphasize the details. In contrast, the classification of MAKC shown in Figure
4h1 has good regional consistency and no noise. MAKC not only uses context information,
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but also makes use of generalized spatial information, and adjust the details by local
consistency optimization of multiple feature fusion.

Figure 4b2 shows a four-class simulated SAR image named Syn2, and the correspond-
ing ground truth is shown in Figure 4a2, which contains four gray levels 0, 77, 179, and
255. The classification results of SVM and CKFF are very poor, as shown in Figure 4c2,e2,
respectively. The four regions are not divided by SVM, and CKFF has dense noise points.
The four different regions in Figure 4d2,g2 obtained by CKS-FCM and MWSG, respectively,
can be separated. However, their classifications have a large number of pixels misclassified.
In the classifications of SVM-CK in Figure 4f2, the edge of regions is fuzzy, and there are
chaotic points here. The classification result of MAKC has better regional consistency
than others, as shown in Figure 4h2. In the Syn2 image, the texture contour is varied,
and the type is complex; SVM fails to embody nonlinear information among data, and
CKFF does not mine spatial context information and is sensitive to noise under complex
data. CKS-FCM only uses non-local spatial information to suppress noise, SVM-CK lacks
generalized spatial information and does not use feature fusion, and MWSG has limited
expression of local spatial information, and these methods do not enhance local spatial
consistency except MAKC.

In Figure 4b3, the synthetic SAR image Syn3 consists of eight classes, and the gray-
levels of eight classes in Figure 4a3 come closer to each other, which will increase difficulty
for the accurate classification and recognition. It is clear that some local patches are
misclassified as other classes in the homogeneous areas in Figure 4c3. In Figure 4d3,e3, the
speckle noise in the Syn3 cannot be suppressed by CKS-FCM and CKFF, and the pixels
in gray and in white of classification results are mixed together significantly. For the
classification results in Figure 4f3,g3, though these two algorithms can divide eight areas
roughly, the edges are rugged and some local regions are still not well identified. They
cannot produce accurate and clear classification for the Syn3. Fortunately and obviously,
the proposed method MAKC in Figure 4h3 achieves the best classification result, not only
in region consistency but also in boundary separability. This is because MAKC captures
the most information and considers local consistency.

Table 1 lists the average overall accuracy of classification results over ten independent
runs, and Table 2 shows the Kappa coefficients of different algorithms on the synthetic SAR
images, which is consistent with the visual results. The results show that the proposed
MAKC method achieves better classification performance in terms of OA and Kappa than
the other state-of-the-art methods. The accuracy of the MAKC method reaches 99% on the
synthetic images, especially on Syn2, where the Kappa coefficient reaches 1. The reason for
this is that MAKC adopts a variety of features and makes full use of the neighborhood spa-
tial information, the composite kernel fully expresses the nonlinear relationship, and local
consistency optimization compensates for feature defects. Similarly, SVM-CK also employs
nonlinear and context spatial information but without local consistency optimization and
generalized spatial information to implement the classification.

4.3. Results of Real SAR Images

Three real SAR images (SAR1, SAR2, and SAR3) are tested. SAR1 has a size of
475 × 446 pixels, and was taken on 1 April 1993. It covers the Naval Air Weapons Sta-
tion China Lake, CA, at the latitude 35◦41′14.25′′ north, the longitude 117◦41′29.27′′ west,
with Ku-band radar with a 3-m resolution. The image includes three types of ground
objects of runway (dark), bare land (gray), and infrastructures (bright). SAR2 has a size of
256 × 256 pixels, and was taken on 13 August 1997 with C-band radar with a 4-m resolu-
tion, and covers a suburb of Beijing, China, about latitude 40◦04′43.44” north, longitude
116◦11′28.43” east. This image includes three types of land cover: water (dark), crop (gray),
and vegetation (bright). SAR3 has a size of 505 × 476 pixels and was taken on 19 June 2007
near to latitude 48◦31′13.99” north, longitude 43◦28′13.86” east. It covers an area of the
south Russian steppes northeast of the Black Sea with a 15-m resolution X-band radar. The
image consists of four types of land cover: water (dark), vegetation (dark gray), crop (light
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gray), and bare land (bright). Figures 5–7 show different classification results obtained by
different investigated methods on real SAR images with 50 training samples randomly
selected for each class.

Figure 5. Results of a real SAR image: (a) ground truth; (b) real SAR image; (c) SVM; (d) CKS-FCM; (e) CKFF; (f) SVM-CK;
(g) MWSG; (h) MAKC.

Figure 6. Results of a real SAR image: (a) ground truth; (b) real SAR image; (c) SVM; (d) CKS-FCM; (e) CKFF; (f) SVM-CK;
(g) MWSG; (h) MAKC.
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Figure 7. Results of a real SAR image: (a) ground truth; (b) real SAR image; (c) SVM; (d) CKS-FCM; (e) CKFF; (f) SVM-CK;
(g) MWSG; (h) MAKC.

For the SAR1, results can be observed from Figure 5b, which includes three types
of ground objects of runway, bare land, and airport infrastructures. Figure 5a shows the
ground truth image corresponding to Figure 5b. The runway is marked as the first category,
and is represented in purple in the classification maps of SAR1. The bare land is identified
as the second category, which is indicated by gold in the classification maps of SAR1. The
airport infrastructures are the third class, which is shown by orange in the classification map
of SAR1. As can be observed, the SVM method of Figure 5c shows a very noisy estimation
in its classification map because it only considers the pixel intensity information, with
no combination of spatial information. By incorporating the non-local mean to suppress
the noise of the SAR image, the CKS-FCM of Figure 5d delivers a smoother visual result.
However, it fails to identify the region area although the edge is clear, e.g., the third class,
airport infrastructures. By combining nonlinear spatial information, the CKFF in Figure 5e
and the SVM-CK in Figure 5f have better visual performance, but still have some incorrect
classification labels, e.g., confusion between bare land and airport infrastructures. By
expressing the overall spatial information of the SAR image, MWSG in Figure 5g achieves
a good result, but fails to identify the pixels in the detailed and edge regions, e.g., the first
class, runway. By contrast, the proposed MAKC method in Figure 5h has the best visual
classification performance, which not only reduces the speckles greatly but also preserves
the meaningful structural information. Because the multi-feature description image is
comprehensive, and nonlinear spatial information is mined richly, the local details of the
image are considered through consistency enhancement, so the MAKC method achieves
convincing results. The runway contour and area classification of the proposed method
in the red rectangle are obviously better than those of other methods. Table 3 shows the
corresponding classification accuracy of all methods, in which the best results are shown
in bold. As can be seen, the proposed MAKC method achieves the highest classification
accuracy in terms of AA, OA, and Kappa. The average accuracy is more than 7 percentage
points higher than other methods, and the overall accuracy is more than 3 percentage
points higher than other methods.
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Table 3. Classification precision results on SAR1.

CLASS SVM CKS-FCM CKFF SVM-CK MWSG MAKC

runway 56.00 88.58 82.83 85.08 92.50 88.54
bare land 60.83 61.85 91.40 87.21 91.85 96.33

infrastructures 97.05 25.01 61.52 86.62 68.11 92.39
AA 71.29 58.48 78.58 86.30 84.15 92.42
OA 60.85 65.16 89.47 86.87 91.45 95.06

Kappa 0.25 0.35 0.69 0.64 0.74 0.84

Figure 6c–h illustrates different classification maps obtained by different test methods
on the SAR2 image. As can be seen from Figure 6b, the SAR2 includes three types of land
cover: crop, vegetation, and water. In the ground truth Figure 6a, the crop is marked as the
first category, and is represented by gold in the classification maps of SAR2. The vegetation
is identified as the second category, which is indicated by orange in the classification maps
of SAR2. The water is the third class, which is shown by purple in the classification map of
SAR2. Observed from Figure 6c,d, the SVM and CKS-FCM classification maps are very
noisy because both do not clearly reflect nonlinear information. The CKFF in Figure 6e can
deliver a comparatively clear result, but there are noise points in the local area, e.g., second
class, vegetation, at the top right of the classification map. CKFF does not extract context
spatial information and thus region smoothness is insufficient. Although the SVM-CK and
MWSG algorithms of Figure 6f,g show improvements in the reduction of speckles, there
are still deviations in local area details, e.g., third class, water. Both do not optimize the
local of image and do not utilize generalized spatial information. By contrast, the proposed
MAKC method in Figure 6h can provide the best visual performance in these areas, being
more accurate in details, with great suppression of noise. This is due to the diversity of
information captured by MAKC and the enhancement of local consistency. In the red box,
the classification region edge of the proposed method is smoother than other methods
and closer to the ground truth, and has less noise points. The corresponding quantitative
results are shown in Table 4 with the best results in bold. As can be seen, compared with
other methods, the proposed MAKC method exceeds the average of all methods by 4.3%,
4.5%, and 6.8% in terms of AA, OA, and Kappa with the highest values, respectively.

Table 4. Classification precision results on SAR2.

CLASS SVM CKS-FCM CKFF SVM-CK MWSG MAKC

crop 92.43 83.32 89.92 93.00 88.31 95.79
vegetation 79.29 74.28 92.23 95.56 95.22 94.85

water 85.33 98.20 92.40 92.06 94.76 94.11
AA 85.68 85.27 91.51 93.54 92.76 94.92
OA 84.71 83.78 91.63 93.82 93.16 94.90

Kappa 0.77 0.75 0.87 0.91 0.89 0.92

In addition, another experiment is conducted on the SAR3 image in Figure 7b; the
image consists of four types of land cover: water, vegetation, crop, and bare land. In
ground truth Figure 7a, this water is labeled as the first category, and is represented by
blue in classification maps of SAR3. Vegetation belongs to the second category, and in
ground truth and in the SAR3 classification maps is purple. Crop is the third category and
is orange in ground truth and in classification maps. The fourth category of bare land is in
gold in ground truth and the classification maps. The quantitative results are represented
in Table 5 with the best results in bold. As can be observed, the proposed MAKC method
outperforms all the compared methods in terms of AA, OA, and Kappa when a small
number of training samples is available. There are two main reasons for this. On the one
hand, multi-feature can well retain the geometric characteristics of SAR images to provide
more discriminative information for classification. On the other hand, the discriminative
information is sufficiently utilized by mining the abundant spatial information within each
feature and fusing the complementary information among features. A visual performance
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comparison of different methods is represented in Figure 7c–h. As can be seen, the proposed
MAKC method in Figure 7h provides the best regional consistency compared with other
test methods. The best consistency of vegetation areas in the red box was the proposed
method, while the boundary distinction between bare land and crops was better maintained
by the proposed method than the other methods.

Table 5. Classification precision results on SAR3.

CLASS SVM CKS-FCM CKFF SVM-CK MWSG MAKC

water 26.22 95.09 89.34 88.83 95.39 96.25
vegetation 0 42.42 75.60 78.90 84.26 76.41

crop 99.65 39.66 83.31 86.43 81.73 88.77
bare land 36.94 74.81 77.98 86.76 81.01 92.38
AA 40.70 62.99 81.55 85.23 85.59 88.45
OA 53.49 69.55 84.31 87.22 87.11 92.15

Kappa 0.36 0.58 0.77 0.81 0.81 0.88

5. Discussion
5.1. Effects of Spatial Information on Different Numbers of Training Samples

The step of spatial information extraction within three features is removed, and the
three groups complementary feature information is directly classified by SVM to create a
fusion result for classification, while other parameters and operations remain unchanged.
The corresponding classification performance is compared with the proposed MAKC on
real SAR images, which is illustrated in Figure 8. It can be seen that this method has better
classification performance for real SAR images, taking into account different numbers
of training samples. For the SAR1, the classification accuracy decreases when spatial
information extraction is removed. When only ten training samples (TN = 10) are selected
for each class, the OA of the proposed MAKC method is 90.1%, while the OA of the MAKC
without spatial information is 78.67%, which is shown in Table 6 with the best results
in bold. It can be seen that the OA decreases by more than 10%. Because the spatial
information is not extracted, the abundant detail information within each feature cannot be
well exploited. The same situation can also be observed for the SAR2 and SAR3. Overall,
the proposed MAKC can consistently achieve the best results in terms of classification
accuracy when compared with the situation without using spatial information within
features, so spatial information extraction is effective.

5.2. Effects of Local Consistency Optimization on Different Numbers of Training Samples

Figure 9 shows the classification result comparison between MAKC and without local
consistency optimization on different real SAR images, with different numbers of training
samples. It can be seen that the classification performance of MAKC outperforms other
single features (i.e., AP, GLCM, and WL), because MAKC utilizes the complementary infor-
mation among different feature groups by local consistency optimization. The advantage of
the proposed method becomes more obvious when the available training samples are lim-
ited to only TN = 10. For example, as shown in Table 6, for the SAR1 image, the proposed
method has the highest classification accuracy with OA = 90.1%, whereas the OAs of other
single features (i.e., AP, GLCM, and WL) are 87.2%, 85.68%, and 85.89%, with a decrease of
2.9%, 4.42%, and 4.21%, respectively. The same results can also be observed on the other
two data sets (e.g., SAR2 and SAR3). This demonstrates that local consistency optimization
is effective in our proposed classification framework, as it assesses information quality and
confidence level to fuse different features. Table 6 shows the accuracy of various variation
methods and MAKC when the number of training samples is 10 on SAR1. The best results
are shown in bold.



Appl. Sci. 2021, 11, 1603 19 of 22

Figure 8. Classification result (in OA, AA, and Kappa) comparison between MAKC and MAKC without spatial information,
with different numbers of training samples. This is demonstrated on (a) SAR1 image, (b) SAR2 image, and (c) SAR3 image.
TN = n means the number of training samples is equal to n.

Table 6. Classification results on SAR1 with TN = 10.

Method Non-Spatial AP GLCM WL MAKC

AA 0.7173 0.864 0.7081 0.7306 0.8747
OA 0.7867 0.872 0.8568 0.8589 0.901

Kappa 0.46 0.65 0.6 0.6 0.7

5.3. Parameter Discussion of Superpixel Number

In this section, the effect of the number of original superpixels is investigated. The
numbers of training and test samples are selected to be the same as in the aforementioned
experiments on the SAR1, SAR2, and SAR3. According to the size of the image, the number
of original superpixels for SAR1 is selected from 2500 to 18,500 with a step size of 1000.
The number of original superpixels for the SAR2 is selected from 59,500 to 67,500 with a
step size of 500, while the number of original superpixels on the SAR3 is selected from
1500 to 21,500 with a step size of 1000.

Figure 10 illustrates the OA values of the proposed MAKC method under different
original superpixel numbers on all three real SAR images. For SAR1 in Figure 10a, it can be
seen that when the number of superpixels is 10,500, the classification accuracy of OA reaches
the optimum, marked with a red rectangle, and when the number of original superpixels is
selected as other values, OA decreases. This is mainly due to the fact that when the number
of original superpixels is fewer than 10,500, the spatial information of different categories
may be contained in one superpixel, resulting in a decline in classification accuracy. On the
other hand, when the number of original superpixels is higher than 10,500, the size of each
superpixel will decrease, so that spatial information in a large homogeneous area of the
SAR1 image cannot be fully utilized for classification. In addition, the same situation can
also be seen on SAR2 in Figure 10b and SAR3 in Figure 10c with the optimal number of
original superpixels being 64,500 and 4500, respectively.
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Figure 9. Classification result (in OA, AA, and Kappa) comparison among AP, GLCM, WL, and MAKC, with different
numbers of training samples. This is demonstrated on (a) SAR1 image, (b) SAR2 image, and (c) SAR3 image. TN = n means
the number of training samples is equal to n.

Figure 10. Effects of the number of original superpixels on (a) SAR1 image (TN = 50), (b) SAR2 image (TN = 50), and
(c) SAR3 image (TN = 10, TN = 30, and TN = 50). TN = n means the number of training samples is equal to n.

Note that in Figure 10c, the number of training samples is large, and the accuracy value
is stable and high; conversely, the accuracy value fluctuates greatly and is low. The reason
for this is that the number of training samples is large, the extracted discrimination features
are more, and the recognition ability is improved, so the classification results change little.
At the same time, with different numbers of training samples, the best number of original
superpixels for the SAR3 image is the same, which demonstrates the robustness of the
proposed method.

6. Conclusions

In this paper, a new multi-feature fusion classification framework is proposed to
exploit the contextual and generalized spatial information, and dynamically mine nonlin-
ear information by adaptive kernel combination on SAR images, while at the same time
enhancing the local consistency, which is termed the MAKC method. First, three discrim-
inant and complementary texture information tensors can be constructed by extracting
APs, GLCMs, and WLs from an SAR image. Then, 3D feature blocks are obtained by
segmentation mapping based on the gamma distribution and non-negative logarithmic
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likelihood difference on the SAR image. Feature spaces of context and generalized spatial
information are constructed, respectively; adaptive kernel combination explores nonlinear
information, and the information within features is fused. Furthermore, local consistency
optimization is implemented to fuse complementary information among features. In this
way, the different spatial information within each feature group, the abundant texture
information of the SAR image, and the complementary information among feature groups
are well utilized. The classification results of the proposed MAKC on three synthetic SAR
images and three real SAR images are better than several state-of-the-art classification
methods in both quantitative and visual performance, which proves the effectiveness of
this method.

In the proposed framework, the multi-feature adaptive kernel combination is used
to explore the spatial and nonlinear information within the feature tensors. Our future
work will take advantage of the framework with other features and combine them with
other classifiers to improve classification accuracy, e.g., neural networks. In addition,
since the feature information is a tensor, tensor analysis should be studied to extract more
discriminant spatial information.
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