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Abstract: Air transport is considered to be the safest mode of mass transportation. Air traffic
management (ATM) systems constitute one of the fundamental pillars that contribute to these high
levels of safety. In this paper we wish to answer two questions: (i) What is the underlying safety
level of ATM systems in Europe? and (ii) What is the dispersion, that is, how far does each ATM
service provider deviate from this underlying safety level? To do this, we develop four hierarchical
Bayesian inference models that allow us to infer and predict the common rate of occurrence of SMIs,
as well as the specific rates of occurrence for each air navigation service provider (ANSP). This study
shows the usefulness of hierarchical structures when it comes to obtaining parameters that enable
risk to be quantified effectively. The models developed have been found to be useful in explaining
and predicting the safety performance of 29 European ATM systems with common regulations and
work procedures, but with different circumstances and numbers of aircraft, each managing traffic of
differing complexity.

Keywords: hierarchical; safety; aviation; regression; risk; separation minima infringements

1. Introduction

Air transport is considered to be the safest mode of mass transportation [1]. ATM
systems constitute one of the fundamental pillars that contribute to these high levels of
safety. The essential function of ATM systems is to ensure that aircraft flying in the same
airspace are kept separate from each other and from the ground.

The International Civil Aviation Organization (ICAO) defines ATM as “the dynamic,
integrated management of air traffic and airspace including air traffic services, airspace
management, and air traffic flow management—safely, economically, and efficiently—
through the provision of facilities and seamless services in collaboration with all parties
and involving airborne and ground-based functions”. Each country is responsible for
ensuring that its airspace has an adequate ATM system.

The main objective of an ATM system is, therefore, to manage and reduce the risk of
accidents. As such, the minimum separation distances between aircraft are defined as the
minimum separation between two aircraft in the airspace to ensure that they do not collide
with one other. The ATM is responsible for ensuring that these separation minima between
aircraft are not violated and, in this way, managing the risk of collision between aircraft.

The safety of ATM systems has steadily improved over the last decades thanks to a
number of measures including better equipment, technologies, and work procedures, as
well as the deployment of additional safety barriers. However, the sustained growth of
air transport imposes increasing demands and requirements on the safety, capacity, and
efficiency of the ATM system.

ATM systems are currently facing their greatest challenge to date, namely the evolution
towards multi-faceted, hyper-dimensional, highly distributed, and mutually dependent
systems, with levels of complexity that were unimaginable just a few decades ago [2]. The
Single European Sky ATM Research (SESAR) project proposes a new paradigm for the
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ATM system of the future, primarily focused on technology and automation [3,4]. This
system implies an architecture heavily influenced by digitalization and the geographic
relocation of services.

It is increasingly challenging to maintain extremely high levels of safety in this complex
and ever-changing environment. Ensuring that the level of safety provided by ATM systems
is consistent with future needs and expectations, and that it is not negatively affected during
the process of transition, is a priority for the aeronautical community.

Within the framework of the Single European Sky (SES), the European Union has sev-
eral mechanisms to promote the cohesion, efficiency, and modernization of ATM systems.
One of these mechanisms is the definition of a performance measurement framework that
sets objectives in four key performance areas for European ATM systems, namely, safety,
capacity, efficiency, and the environment. Safety is the most relevant of these areas, over
and above the other three. As part of this monitoring and evaluation model, stakeholders
must collect and study safety-related information to predict and anticipate not only current
safety risks, but also emerging ones.

The main risk that an ATM must safeguard against is the occurrence of violations of
the separation minima between aircraft, the so-called separation minima infringements
(SMIs) [5]. According to the European Aviation Safety Agency (EASA), the occurrence
of SMIs is the second most important risk for European aviation [6]. EUROCONTROL
registered 827 and 930 incidents of severities A and B (high severity) during 2017 and 2018,
respectively [7]. Of these, 287 incidents in 2017 and 341 incidents in 2018 corresponded to
non-compliance with separation minima between aircraft.

According to the Airborne Conflict Safety Forum, there are approximately 150 losses of
separation for every million flights in European airspace [8]. Considering that, on average,
each flight receives 15 instructions from air traffic control en route, this means one loss of
separation for every 100,000 instructions.

Although the number of SMIs is small compared to the volume of traffic, these are
considered to be critical safety events due to the severity of their potential consequences.
The monitoring of ATM-related safety events effectively boils down to monitoring the
number of SMIs.

Furthermore, ATM systems constitute a highly regulated and standardized environ-
ment, which obeys a common standard set out by EASA. These regulations cover essential
business processes and are common to all European countries. Based on these standards,
the companies that manage ATM systems, air navigation service providers (ANSPs), have
common technology, operating procedures, and work practices. They also apply similar
business management principles, with comparable processes for setting goals, planning,
and managing quality and safety. Their workers carry out the same functions, with equiv-
alent levels of preparation and training regardless of the European country in which a
company provides its services. In addition, they are subject to external audit processes to
guarantee equivalent performance, efficiency, and safety in each country. As such, the aim
is to ensure that the level of safety provided to all flights that cross European airspace is
the same, regardless of the country overflown.

The high degree of homogenization between ANSPs should guarantee an equivalent
underlying level of safety between different airspaces, so that the rate of occurrence of SMIs
would be similar for all of them. However, despite the high level of standardization between
ATM systems and ANSPs, they are affected by different local and specific circumstances that
influence the service provided and, therefore, the quality and safety. The most significant
of these factors are the volume of air traffic and its complexity [9,10].

In this regard, one of the main concerns of the industry is the underlying common
level of safety, and the extent to which the different ATM systems and ANSP providers stick
to or deviate from that common level of safety depending on their specific circumstances.

Given this situation, the monitoring and measurement of safety events, especially
SMIs, must improve. Safety analysts and other decision makers within the aviation industry
currently have to make safety assessments based on statistically incomplete information.
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Data on the number of losses of separation between aircraft is scarce and incomplete, partly
due to their low occurrence and partly due to the sensitive nature of this information.
Furthermore, the statistical models and techniques applied in the sector do not exploit the
potential of the most advanced inference methods. It is of utmost importance that the most
advanced techniques and methods are widely used to infer the rates of occurrence of safety
events and to predict adverse safety effects.

In this paper, we wish to answer two questions: (i) What is the underlying safety level
in Europe? and (ii) What is the dispersion, that is, how far does each ATM service provider
deviate from this underlying safety level? To do this, we will use hierarchical Bayesian
inference models that allow us to infer and predict the common rate of occurrence of SMIs,
as well as the specific rates of occurrence for each ANSP.

Studies and models regarding SMIs have focused, over the past few years, on technical
aspects and human error as main causes of unsafe situations [10,11]. Some authors have
partially analyzed some design aspects such as traffic mix [5,12,13], relative geometry
between aircraft [14], complexity of airspace sectors [4], air traffic controller workload, or
flight efficiency. However, none of these approaches incorporate predictive capabilities,
nor allow benchmarking between ANSP.

Additionally, given the high level of safety in the industry, SMIs respond at very
low frequencies of occurrence, and it is very difficult have a sufficient number of data for
relevant conventional statistical analysis [15–17].

Hierarchical and Bayesian models have been used in recent decades to overcome
these limitations and to predict safety incidents in other modes of transport, specifically
in road transport [18]. However, within the aviation context, there is yet little research
in this area [19].

Bayesian models are useful for performing this type of analysis, because they permit
inference of the statistical parameters and the distributions being studied in spite of the fact
that little data is available [20,21]. They allow a priori knowledge about the phenomenon
under study to be incorporated [22–24]. They also permit various levels or hierarchies
to be considered when explaining the different phenomena. Furthermore, they allow
information from different sources to be integrated in an orderly manner [22]. As such, in
this article, we propose and evaluate several Bayesian models that consider the hierarchical
relationship between the ANSPs and illustrate the underlying mechanism in the generation
of SMIs from explanatory variables that represent the main local differences.

These models are intended to explain and predict the safety performance of 29 Eu-
ropean organizations, with common regulations and work procedures, but with different
circumstances and numbers of aircraft, each managing traffic of differing complexity.
Figure 1 outlines the process and highlights the original contributions of the paper.
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2. Hierarchical Bayesian Models

Hierarchical models are mathematical representations that involve multiple param-
eters in such a way that credible values of some of the parameters depend significantly
on the values of other parameters. Hierarchical Bayesian models have been used in dif-
ferent industries to analyze different aspects of safety [18,20,23–25] but have not yet been
regularly used in aviation [11,21,22,26,27].

What makes hierarchical modelling so effective is that the estimate of each individual
parameter is simultaneously informed by data from all other parameters. All param-
eters inform the top-level parameters, which in turn restrict all individual parameters.
These structural dependencies provide better-informed, that is, more precise estimates of
all parameters.

Consider that each ATM system will experience a certain number of SMIs per year.
Each ATM will provide service to a certain number of aircraft in its airspace. Parameter θs
defines the rate of occurrence of SMIs for each ATM system. θs can be estimated from the
number of SMIs that have occurred in the past, the number of flights managed, and their
complexity. Similarly, given that all ATM systems operate according to the same rules and
procedures, each parameter θs will depend on a global parameter ω that defines the rate of
occurrence of SMIs of a generic ATM system that applies the rules and procedures deriving
from the European regulations. This hierarchy of dependencies between parameters
could be extended to even more levels, bearing in mind that, over and above European
regulations, ATM systems around the world are governed by ICAO standards.

In hierarchical models, parameters at different levels co-exist in a joint parameter
space. The joint prior distribution can be factored or decomposed so that some parameters
depend on others. In other words, chains of dependencies can be established between
parameters. These factorizations are not unique, and each model can choose the most
convenient parameterization at any time.

Given a series of parameters θs and ω, and a set of data D, we can apply Bayes’
theorem as follows:

p(θs, ω|D) α p(D| θs, ω) p(θs, ω) (1)
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What characterizes a hierarchical model is that the terms on the right side of Equation (1)
can be factored into a chain of dependencies, as seen in Equation (2):

p(θs, ω|D) α p(D| θs, ω) p(θs, ω) = p(D| θs)p(θs|ω) p(ω) (2)

According to this refactoring, the data, D, depends only on each parameter θs. This
means that once the value of the parameter θs has been established, the data becomes
independent of all other parameters. It is also clear that the value of each parameter
θs depends on the value of ω, and its value is conditionally independent of all other
parameters. In other words, when the value of ω is set, θs becomes independent of all other
parameters. Any model that can be factored or decomposed into a chain of dependencies
like that given in Equation (2) is a hierarchical model.

Hierarchical dependencies between parameters enable all available data to be used
to jointly inform the estimated values of the parameters. In our case, this means that data
from each ATM system can be used to estimate the θs parameters of the other ATM service
providers. In turn, the data from all providers can be used together to estimate the ω

parameter, which gives the rate of occurrence of SMIs of a generic ATM system.

3. Data Used

The data used in this study were obtained from a number of European institutions
involved in monitoring the performance of ATM systems, including the Performance
Review Body (PRB), the Performance Review Unit (PRU), and EASA.

The PRB is an advisory body of the European Commission that assists the Commission
and national authorities in the supervision of the performance of ATM systems. The
PRU is part of the EUROCONTROL Single Sky Directorate. It provides information and
data analysis on the performance of European ATM. EASA collaborates with the two
aforementioned institutions by collecting the necessary safety data in each state.

The study covers a total of 29 European states. The value to be estimated and predicted
yi,s is the number of annual SMIs that have taken place in each of the 29 ATM systems
included in the study. The variable y is to the number of annual SMIs. Subscript i relates to
the year, and subscript s relates to the specific ATM system.

Specialist literature on the topic suggests that the two factors that best explain the
occurrence of SMIs are the volume of air traffic and the complexity of this traffic. To verify
these dependencies, the following explanatory variables are analyzed in the study.

x1i, s is the volume of air traffic, i.e., number of annual flight hours, defined as the
number of total flight hours per year of aircraft operating under Instruments Flight Rules
(IFR) in the airspace of each of the countries considered in the study. The subscripts i and s
refer to the year and ATM system, respectively.

To assess the complexity of air traffic, Eurocontrol has defined a set of indicators that
can be used for ANSP benchmarking [28]. The complexity indicators are based on the
“interactions” that arise when there are two aircraft in the same “place” at the same “time”.
The variable “complexity score” x2i, s is defined as the total duration in minutes per flight
hour of all interactions between controlled aircraft in a given volume of airspace.

The indicator “complexity score” is the product of two components: the adjusted
density x3i, s and the structural index x4i, s. The variable x3i, s measures the relative
concentration of aircraft in the airspace. The airspace is divided into a discrete grid of cells
measuring 20 × 20 nautical miles in the horizontal and 3000 feet high. An interaction is
defined as the simultaneous presence of two planes in one of these cells. The variable x4i, s
is the sum of horizontal, vertical, and velocity interactions.

In this study, the values for complexity score, adjusted density, and structural index
are aggregated on an annual basis. Therefore, the variables x2, x3, x4 refer to the annual
mean value (calculated as the sum of the daily values of a year divided by the total flight
hours in the year). The subscript i indicates the year in question, and the subscript s
indicates the ATM system analyzed.
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The above data was obtained for 29 countries and their ATM systems over seven
consecutive years. The identity of the countries is not given in the study. Each has been
assigned a number from 1 to 29. In total, the data sample comprises five variables with 203
records per variable.

Figure 2 shows the relationship between variables y, x1, x2, x3, x4 by means of
scatterplots and the calculation of the correlations between them, as well as the density
functions of each variable. The value of the variable x1 “number of flight hours” is divided
by 100,000 so that it is more easily readable in the figure.
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4. Proposed Hierarchical Models

The models analyzed in this study combine regression analysis with hierarchical
structures [29,30].

Let yi,s be the predicted variable and let x1i,s, x2i,s, x3i,s, x4i,s be the predictors. There
is a likelihood function that expresses the probability of the values of the predicted variable
as a function of the values of the predictors. Generalized Linear Models (GLM) are used
that express the combined influence of the predictors as their weighted sum. Function
lin(xi, s) of the predictors is defined as:

lin(xi, s) = βos + β1s ∗ x1i,s + β2s ∗ x2i,s + β3s ∗ x3i,s + β4s ∗ x4i,s

lin(xi, s) = βos +
4
∑

j=1
βjs ∗ xji,s

(3)

where i refers to each measurement and s relates to each ATM system.
Each coefficient βjs represents the expected variation in the predicted variable due to

a unit increase in the value of the predictor xji,s.
Likewise, prior distributions are defined for the coefficients βjs:

βjs ∼ priors ∼ N(θs, τ) , where τ = 1/σ2 (4)

θs depends in turn on other hyperparameters that enable the relationship between the
different ATM systems and the general safety standard to be expressed via a hierarchical
relationship. θs is defined as a Beta distribution of parameters (as, bs).

According to [31], analysis of the first and second moments of a distribution Beta(a, b)
can be reparametrised as follows:

a = ϑK, b = (1− ϑ)K with K =
ϑ(1− ϑ)

Var
− 1 (5)

Parameter ϑ represents the mean or overall influence of the variable xj on the precicted
variable, while parameter K is a measure of the dispersion around parameter ϑ. Parameter
K is inversely proportional to the variance (Var), as such, it is an appropriate indicator
of the dispersión of ϑ characteristic of each ATM system. The higher the value of the
paramater K for an ATM system, the lower the variance, and, therefore, the influence of
the variable xj on the number of SMIs will be closer to the overall mean value for Europe.
Conversely, the lower the value of the parameter K, the greater the dispersión.

Taking this reparameterization into account, the prior distributions of the coefficients
βjs are:

θs ∼ Beta(ϑ, ks) , where ϑ ∼ Beta(1, 1) , Ks ∼ Gamma( 1, 1000) (6)

Once the predictors are combined, they are mapped with the predicted variable.
Firstly, an inverse link function f () must be defined according to the following equation:

µi, s = f ( lin(xi, s)) (7)

where µ represents the central tendency of the prediction of the values of yi, s.
This central tendency µi, s may correspond to the mean or any applicable measure of

central tendency, such as mode, median, etc. The only thing that remains to do is to specify
the probability density function, abbreviated as pd f , which enables the measurements
yi, s to be generated from the central tendency µi, s. The literature generally refers to this
probability distribution as the noise distribution.

yi,s ∼ pd f (µi,s , [scale, shape, etc, .]) (8)
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The shape of the probability density function pd f will depend on the scale of measure-
ment of the predicted variable. In our problem, all the predictive variables correspond to
metric data, while the predicted variable corresponds to count data, a particular case of
metric data.

If the predicted variable corresponds to count data, the typical pd f distribution is
usually a Poisson distribution. The canonical link function for Poisson distribution is
a log–link function [32]. The combination of both results in a Poisson regression, as
indicated below:

Noise distribution : yi,s ∼ pd f (µi,s , [parameters]]) ∼ poison(µi,s) (9)

Inverse link function : µi, s = f ( link(xi, s), [parameters]) ∼ exp(lin (xi,s) (10)

As can be seen, a Poisson regression is a type of generalized linear model (GLM) that
enables a non-negative integer response, that is, a natural number, to be modelled against
a linear predictor via an exponential link function. The exponential link function allows us
to transform the expected values of the response found on the scale of (0, ∞) into the scale
of the linear predictor, that is (−∞, ∞).

To mitigate the limitations due to overdispersion in the data, three additional models
have been tested.

Hierarchical negative binomial regression model. The negative binomial model is
parameterized in terms of the mean (λi) and the scale factor (r) [33]. It can be likened
to a hierarchical two-stage process in which the response is modelled against a Poisson
distribution whose expected recount is in turn modelled by a Gamma distribution with a
mean λi and a constant scale parameter (r).

p(yi) =
Γ(yi + r)

Γ(r)y!
×

λ
yi
i ∗ rr

(λi + r)µi+r (11)

where the expected value of yi is given by µi and the variance is µi+ µ2
i

ω .
The negative binomial model is appropriate for situations of over-dispersion caused

by clustering (due to the influence of other factors that have not been measured). JAGS is
Just Another Gibbs Sampler, a program for analysis of Bayesian hierarchical models using
MCMC) that uses a parametrization of the negative binomial distribution based on the
parameters p and r. Direct estimation of the parameters p and r of the binomial distribution
usually implies a bad autocorrelation of the MCMC chains. To avoid this problem, we will
use a reparameterization in which we will set priors for the mean λs and the parameter r,
while the variance and the parameter p will be obtained from λs and the parameter r.

y[i] ∼ NB(ps, r) ;

ps =
r

r+λs
; vars =

r∗(1−ps)
ps∗ps

;

r, λs ∼ Gamma(0.001, 0.001)

(12)

Hierarchical zero-inflated regression model regression. This model is appropriate
when the overdispersion is due to a higher-than-expected number of zeros in a Poisson
distribution [34]. Zero-inflated models combine a binary logistic regression model with a
Poisson regression.

Hierarchical normal quadratic regression with variance proportional to the num-
ber of flights. This last model combines the advantages of Poisson distributions with a
normal model [35,36]. This allows a variance proportional to the number of SMIs to be
combined with the effect of stable confidence intervals, especially if the number of incidents
is high, which gives rise to a quadratic regression.

The data points yi, s are assumed to derive from a normal distribution. The model
establishes a different variance for each ATM system proportional to the number of flights
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handled by each organization. A Gaussian noise is added to the regression to account for
cases where the variance is constant. The hierarchical structure of parameters is similar to
that of the previous models.

Table 1 summarizes the mathematical formulation of the models developed.

Table 1. Models developed.

Model 1: Hierarchical
Poisson Regression

Model 2: Hierarchical Negative
Binomial Regression

Model 3: Hierarchical
Zero-Inflated Regression

Model 4: Hierarchical Normal
Quadratic Regression with Variance

Proportional to the Number
of Flights.

Response
distribution yi,s ∼ poisson(µs)

yi,s ∼ NB(ps , r)
ps = r/(r + λs)

yi,s ∼ ZIP( λs ,θs) yi,s ∼ N(µs , τs ∗ x1i,s)

Link function log(µs) = βos +
4
∑

j=1
βjs ∗ xji,s log(λs) = ηs = βos +

4
∑

j=1
βjs ∗ xji,s

log(θs) = γ0

log(λs) = ηs = βos +
4
∑

j=1
βjs ∗ xji,s

µs = βos +
4
∑

j=1
βjs ∗ xji,s + β1s ∗ xj2

i,s + εs

Hyper priors βjs ∼ Beta(ϑ, ks)
ϑj ∼ Beta(1, 1)

βjs ∼ Beta(ϑ, ks)
ϑj ∼ Beta(1, 1)

βjs ∼ Beta(ϑ, ks)
ϑj ∼ Beta(1, 1)

βjs ∼ Beta(ϑ, ks)
ϑj ∼ Beta(1, 1)

Disfuse
priors Kjs ∼ Gamma( 1, 1000) r ∼ Gamma(0.001, 0.001)

Kjs ∼ Gamma( 1, 1000)
γ0 ∼ N(0, 1000)

Kjs ∼ Gamma( 1, 1000)

Kjs ∼ Gamma( 1, 1000) εs ∼ N(0, τs)
τs = 1/σ2

s
σs ∼ Gamma( 0.001, 0.00 1)

5. Evaluation of the Models

All the models in this study have been developed using MCMC [37] simulations based
on Gibbs using the JAGS simulation program [38]. The most significant results of each
model are summarized below.

5.1. Model 1

Figures 6 and 7 give the overall result and precision of Model 1. Figure 6 shows
the values predicted by Model 1 (in red) and the real values (in black). It also gives the
confidence intervals at 2.5% and 97.5%, respectively (red lines), and the mean value of the
prediction (black line). It is clear from Figure 4 that the 95% interval does not contain all of
the SMIs and that the prediction is less optimal for high values of flight hours.

Figure 7 shows the residuals of the model, the predicted values versus residuals, and
the Q–Q plot. The residual plot shows a high density of points close to the origin and a low
density of points away from the origin. It is symmetric about the origin, and there are not
any patterns in the value of the residuals as we move along the x-axis. A small number of
cases have notable errors. There are nine measurements with errors greater than 50. These
correspond to ANSPs 9, 11, 22, 28, 8, 20, and 12.

Figure 8 comprises caterpillar plots giving the distributions of each hyperparameter
Kjs of the model (K, K1, K2, K3, and K4). Each distribution is indicated by a horizontal
line representing the 95% interval and a dot showing the mean value. Each provider is
non-dimensionalized by assigning a number to it. The vertical red line represents the
global mean of the means of the posterior distributions. Each Kjs parameter is a measure of
the dispersion of the regression model coefficients for each service provider. The higher the
value of Kjs, the lower the variance and, therefore, the nearer the value of the parameter
for an ANSP to the mean value of the ϑj parameters at a European level. Conversely, the
smaller the value of Kjs, the greater the dispersion. It should be borne in mind that all
values of ϑj (ϑ, ϑ1, ϑ2, ϑ3 and ϑ4 ) are common for all ANSPs.
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The numbers show that the mean values of Kjs are generally high. This is in agreement
with the hypothesis that the coefficients of the regression model are of the same order for
the ANSPs and similar to the corresponding ϑj value. However, in each case, there is a set
of service providers whose behavior deviates significantly from the mean. Extreme values
of Kjs, that is, values that are unusually high or low compared to the mean values, can be
helpful in identifying ANSPs with atypical rates of incidents.

For different ANSPs, the parameters that show the most variation are K1, K2, and K3.
In other words, the variability in response between ANSPs is greater for the variables x1
“number of flight hours”, x2 “Complexity Score”, and x3 “Adjusted Density”, in that order.

Finally, the values of ϑj (ϑ, ϑ1, ϑ2, ϑ3, and ϑ4 ) for this model are summarized in Table 2.

Table 2. Distributions of the hyperparameters ϑj (ϑ, ϑ1, ϑ2, ϑ3, and ϑ4 ) for all the models.

Variable Mean SD
Percentiles

2.50% 25% 50% 75% 97.50%

Model 1: Hierarchical Poisson Regression

ϑ 0.109 0.152 0.002 0.022 0.052 0.124 0.676

ϑ1 0.399 0.049 0.269 0.379 0.409 0.433 0.466

ϑ2 0.148 0.056 0.007 0.136 0.165 0.184 0.220

ϑ3 0.007 0.006 0.000 0.002 0.005 0.009 0.023

ϑ4 0.908 0.197 0.181 0.950 0.980 0.992 0.999

Model 2: Hierarchical Negative Binomial Regression

ϑ 0.475 0.219 0.032 0.318 0.493 0.623 0.944

ϑ1 0.253 0.032 0.190 0.231 0.253 0.274 0.316
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Table 2. Cont.

Variable Mean SD
Percentiles

2.50% 25% 50% 75% 97.50%

ϑ2 0.176 0.036 0.097 0.153 0.178 0.201 0.238

ϑ3 0.024 0.024 0.001 0.008 0.018 0.032 0.080

ϑ4 0.757 0.203 0.239 0.626 0.830 0.920 0.989

Model 3: Hierarchical Zero-Inflated Regression

ϑ 0.507 0.405 0.008 0.089 0.506 0.947 0.996

ϑ1 0.338 0.074 0.222 0.275 0.331 0.402 0.471

ϑ2 0.145 0.084 0.009 0.052 0.166 0.221 0.259

ϑ3 0.038 0.068 0.000 0.003 0.006 0.019 0.211

ϑ4 0.457 0.421 0.005 0.055 0.277 0.980 0.999

theta 0.999 0.021 1.000 1.000 1.000 1.000 1.000

gamma0 980.192 997.964 14.318 271.489 672.407 1360.143 3670.797

Model 4 (6bis): Hierarchical Normal Quadratic Regression with variance
proportional to the number of flight hours

ϑ 0.728 0.193 0.283 0.600 0.755 0.890 0.990

ϑ1 0.954 0.038 0.857 0.933 0.964 0.984 0.998

ϑ2 0.391 0.198 0.033 0.236 0.408 0.537 0.748

ϑ3 0.157 0.120 0.004 0.055 0.132 0.240 0.420

ϑ4 0.559 0.298 0.013 0.312 0.625 0.817 0.979

5.2. Model 2

Figures 9 and 10 give the overall results and the precision of Model 2. In this model,
the 95% interval contains all of the SMIs, but at the expense of very wide confidence
intervals, which grow exponentially with increasing number of flight hours. It is also at the
expense of poor precision for high values of number of flight hours, as can be seen in the
right-hand margin of Figure 9.

The precision and fit of this model are worse than the previous one. Some values
shown in Figure 8 have very high residuals (greater than 600). The plot of residuals versus
predicted values shows an increase in error and spread as the predicted values increase.
This same effect can be seen at the edges of the Q–Q plot. These effects are especially due to
the inability of the model to reproduce the seven data points at the far right of the diagram.
This data corresponds entirely to a single ANSP, number 9. For the remaining data and
ANSPs the model fits well. Furthermore, there are eight measurements with errors greater
than 50, which correspond to ANSPs 9, 22, 28, 20, and 12.

Figure 11 comprises caterpillar plots giving the distributions of each hyperparameter
Kjs of the model. The numbers show that the mean values of Kjs are generally high. The
graphs show that in the case of parameters K and K4 there is no dispersion, and that for
parameters K1, K2, and K3, dispersion is limited to a few service providers, notably ANSPs
13, 8, 22, 19, 6, 10, and 29. This coincides with the analysis of Figure 10.



Appl. Sci. 2021, 11, 1600 14 of 24

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 25 

𝜗  0.024 0.024 0.001 0.008 0.018 0.032 0.080 𝜗  0.757 0.203 0.239 0.626 0.830 0.920 0.989 
Model 3: Hierarchical Zero-Inflated Regression 𝜗 0.507 0.405 0.008 0.089 0.506 0.947 0.996 𝜗  0.338 0.074 0.222 0.275 0.331 0.402 0.471 𝜗  0.145 0.084 0.009 0.052 0.166 0.221 0.259 𝜗  0.038 0.068 0.000 0.003 0.006 0.019 0.211 𝜗  0.457 0.421 0.005 0.055 0.277 0.980 0.999 

theta 0.999 0.021 1.000 1.000 1.000 1.000 1.000 
gamma0 980.192 997.964 14.318 271.489 672.407 1360.143 3670.797 

Model4 (6bis): Hierarchical Normal Quadratic Regression with variance 
proportional to the number of flight hours 𝜗 0.728 0.193 0.283 0.600 0.755 0.890 0.990 𝜗  0.954 0.038 0.857 0.933 0.964 0.984 0.998 𝜗  0.391 0.198 0.033 0.236 0.408 0.537 0.748 𝜗  0.157 0.120 0.004 0.055 0.132 0.240 0.420 𝜗  0.559 0.298 0.013 0.312 0.625 0.817 0.979 

5.2. Model 2 
Figures 9 and 10 give the overall results and the precision of Model 2. In this model, 

the 95% interval contains all of the SMIs, but at the expense of very wide confidence in-
tervals, which grow exponentially with increasing number of flight hours. It is also at the 
expense of poor precision for high values of number of flight hours, as can be seen in the 
right-hand margin of Figure 9. 

Figure 9. Model 2: predicted values (red) vs. actual values (black), and 2.5% and 97.5% confidence
intervals for Model 2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 25 
 

Figure 9. Model 2: predicted values (red) vs. actual values (black), and 2.5% and 97.5% confidence 
intervals for Model 2. 

 
Figure 10. Model 2: Residuals, predicted values vs. residuals, and Q–Q plot for Model 2. 

The precision and fit of this model are worse than the previous one. Some values 
shown in Figure 8 have very high residuals (greater than 600). The plot of residuals versus 
predicted values shows an increase in error and spread as the predicted values increase. 
This same effect can be seen at the edges of the Q–Q plot. These effects are especially due 
to the inability of the model to reproduce the seven data points at the far right of the dia-
gram. This data corresponds entirely to a single ANSP, number 9. For the remaining data 
and ANSPs the model fits well. Furthermore, there are eight measurements with errors 
greater than 50, which correspond to ANSPs 9, 22, 28, 20, and 12. 

Figure 11 comprises caterpillar plots giving the distributions of each hyperparameter 𝐾  of the model. The numbers show that the mean values of 𝐾  are generally high. The 
graphs show that in the case of parameters K and K4 there is no dispersion, and that for 
parameters K1, K2, and K3, dispersion is limited to a few service providers, notably AN-
SPs 13, 8, 22, 19, 6, 10, and 29. This coincides with the analysis of Figure 10. 

  

Figure 10. Model 2: Residuals, predicted values vs. residuals, and Q–Q plot for Model 2.



Appl. Sci. 2021, 11, 1600 15 of 24
Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 25 

Figure 11. Model 2: Distributions of the 𝐾  parameters for Model 2. From left to right and top to down: K (a), K1 (b), K2 
(c), K3 (d), and K4 €. 

Finally, the values of 𝜗  (𝜗, 𝜗1, 𝜗2, 𝜗3, and 𝜗4) for this model are summarized in Table 2. 

5.3. Model 3 
Figures 12 and 13 show the overall result and precision of Model 3. Model 3 behaves 

in a similar way to Model 1. It must be remembered that the zero-inflated model has been 
designed as a variation of the Poisson model, with a component that introduces a binomial 
model to account for an excess of zeros. However, the estimate of parameter 𝛾  (see Table 
3) with a mean value of 980 and a similar standard deviation, namely 997, indicates that
the binomial model does not give a good fit.

Table 3. Comparison of DIC values. 

DIC 
Mean 

Deviance Penalty 
Penalized 
Deviance 

Model 1: Hierarchical Poisson 
Regression 1582 28.93 1611

Model 2: Hierarchical Negative 
Binomial regression 2237 33.16 2270

Model 3: Hierarchical Zero-Inflated 
Regression 1596 29.06 1625

Model 4: Hierarchical Normal 
Quadratic Regression with variance 

proportional to the number of flights 
1458 74.36 1532

Figure 11. Model 2: Distributions of the Kjs parameters for Model 2. From left to right and top to down: K (a), K1 (b), K2 (c),
K3 (d), and K4 (e).

Finally, the values of ϑj (ϑ, ϑ1, ϑ2, ϑ3, and ϑ4) for this model are summarized in Table 2.

5.3. Model 3

Figures 12 and 13 show the overall result and precision of Model 3. Model 3 behaves
in a similar way to Model 1. It must be remembered that the zero-inflated model has
been designed as a variation of the Poisson model, with a component that introduces a
binomial model to account for an excess of zeros. However, the estimate of parameter
γ0 (see Table 3) with a mean value of 980 and a similar standard deviation, namely 997,
indicates that the binomial model does not give a good fit.

Table 3. Comparison of DIC values.

DIC

Mean
Deviance Penalty Penalized

Deviance

Model 1: Hierarchical Poisson
Regression 1582 28.93 1611

Model 2: Hierarchical Negative
Binomial regression 2237 33.16 2270

Model 3: Hierarchical Zero-Inflated
Regression 1596 29.06 1625

Model 4: Hierarchical Normal
Quadratic Regression with variance

proportional to the number of flights
1458 74.36 1532
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This model contributes very little in addition to Model 1. This is because the difficulty
in achieving a good fit is not caused by an excess of zeros but rather due to difficulties in
reproducing the high-number SMIs. Table 3 shows that the values of the hyperparameters
ϑj (ϑ, ϑ1, ϑ2, ϑ3, and ϑ4) are similar to those obtained using Model 1. Similarly, in this
model there are eight measurements with errors greater than 50, which correspond to the
ANSPs 9, 22, 28, 20, and 12.

Figure 14 comprises caterpillar plots giving the distributions of each hyperparameter
Kjs of the model (K, K1, K2, K3, and K4).
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5.4. Model 4

Figures 15 and 16 give the overall result and the precision of Model 4. The main
advantage of this model, compared to the previous ones, is that the confidence levels give
a very good fit to the data and the predictions are, in all cases, in line with the initial data.

This model has more parameters than the previous ones. In particular, the introduction
of the error parameter εs permits fine-tuning of the data of each ANSP. This means that it is
flexible and capable of quantifying the dispersion of the data.

In this model, the hyperparameters Kjs (K, K1, K2, K3, and K4) and ϑj (ϑ, ϑ1,
ϑ2, ϑ3, and ϑ4 ) behave in a similar manner to the way they do in the other models.
Figure 17 gives an analysis of the caterpillar plots of the βjs parameters of the regres-
sion function. This enables us to have a more intuitive view of the influence of the variables
xjs on each ANSP.
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Additionally, in this model, there is another consideration with respect to the param-
eter β1s in that it corresponds to the coefficient of the quadratic term in the regression.
This parameter can be used to reflect the dependence of the rate of occurrence of SMIs
on the number of flight hours. In aviation this phenomenon is known as the stress effect
and refers to the increase in accident rates as a function of the number of operations or
flight hours. This has not been considered in the other three models. The value of the
quadratic coefficient in the regression parameter is a measure of the importance of the stress
effect. The higher the value of β1s, the greater the positive correlation between the rate of
occurrence of SMIs and the square of the number of flight hours and, consequently, the
greater the stress effect. ANSPs that experience this effect are considered to be saturated,
since variations in the number of flight hours have a significant effect on the occurrence of
SMIs. Therefore, special attention must be paid to this factor.

Analysis of the parameters εs, the error term in the linear regression, and σs, the
variance proportional to the number of hours of operation, is especially relevant in this
case. Figure 18 shows the caterpillar plots for these variables.

Practically all the ANSPs have values of σs equal to zero with the exception of ANSPs
29, 18, 19, 21, 25, 7, and 6. All of these correspond to small service providers with low
numbers of flight hours.

Finally, the values of ϑj (ϑ, ϑ1, ϑ2, ϑ3, and ϑ4 ) for all the models are summarized
in Table 2.
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6. Comparison of the Models

The four hierarchical models in the study use the following probability density func-
tions: Poisson, negative binomial, zero-inflated, and normal. We will use deviation infor-
mation criteria (DIC) to compare the models [39] via MCMC simulations.

This parameter calculates the deviation as the mean of the posterior predictive function:

DIC = −2 ln
(

p
(
y
∣∣θ−))+ 2pD where D = −2

∫
ln
(

p
(
y
∣∣θ−))dθ (13)

This criterion is a measure of the goodness of fit of the data and, at the same time,
introduces a term to evaluate the complexity of the model. This criterion is asymptotically
the same as performing cross-validation using part of the data to estimate the data and
the rest to calculate the goodness of the predictions [40]. The lower the calculated DIC
value, the more accurate the model’s predictions. One model can be considered superior to
another when its DIC is more than five points below that of its competitor [41].

According to the values obtained in the simulation, Model 4 appears to be the most
efficient and Model 2 the least efficient. This coincides with the analysis carried out in the
previous sections. The table confirms that Models 1 and 4 are better at predicting SMIs. For
small values of SMIs, the Poisson model (Model 1) is more efficient, while for high values
of SMIs, the normal model (Model 4) is more accurate. For intermediate values, all models
behave in a similar manner. The DIC values for Models 1 and 3 are similar.

The hierarchical relationship framework underlying all the models includes param-
eters ϑj and Kjs. Each of the models includes a parameter or set of parameters ϑs that
synthesizes the general level of safety of the EU ATM system. Parameter ϑs represents
the mean or overall influence of variable xj on the predicted variable. Parameter Kjs is a
measure of the dispersion of an ANSP around parameter ϑj. These parameters could be
used in further studies to benchmark among different regions in the world (USA, Middle
East, etc.), providing similar data set are available for all the regions.

If the values of Kjs are high and similar to each other for all ANSPs, this means that
there is a central tendency around the European mean, since Kjs is inversely proportional to
the variance of ϑj. Conversely, small values of Kjs indicate that an ANSP has an unusually
low or high number of SMIs, compared to the European average.
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A value of Kjs that is significantly different to that of other ANSPs will alert us to those
ANSPs whose behavior deviates from the ideal.

To illustrate the meaning of Kjs, let us analyze in detail an example. Let us look at
parameter K4 in Model 1 (Figure 8d). The estimated values of K4 for each of the 29 ANSPs
are presented in Table 4. K4 is related to the influence of the variable x4, “complexity
index”, in the number of SMIs. K4 indicates the deviation of each ANSP with respect to
the influence of complexity index in the number of SMIs from the overall European ATM
system. It can be observed that the values of K4 are higher than 900 for almost all ANSPs,
except for ANSP-12 and ANSP-9. Kjs is inversely proportional to the variance of ϑj. For
those ANSPs with elevated K4 values, the influence of complexity index in the occurrence
of SMIs is similar and close to that of the overall European ATM system. However, ANSPs
12 and 9 exhibit lower values of K4, 78 and 335, respectively, indicating that for these two
providers the dependency of the SMIs with the variable complexity index does not behave
as the overall EU ATM system.

In general, ANSPs exhibiting higher errors in each model happen to have low values
for one or more Kjs parameters, which indicates higher deviation of this ANSP with respect
to the influence of one explanatory variable in the number of SMIs, regarding the overall
European ATM system.

Furthermore, the final model has two additional features. Firstly, it combines the
advantages of Poisson distributions with a normal model. To do this, it introduces a
variance proportional to the number of SMIs. When the variance of an ANSP is constant
for the entire range of SMIs, the Gaussian noise εs added to the regression, allowing σs to
be set to 0, if necessary. This model also has a quadratic term in the regression equation,
which reflects the dependence of the rate of occurrence of SMIs on the square of the number
of flight hours. In aviation, this phenomenon is known as the stress effect, and refers to the
increase in accident rates as a function of number of flight hours.

Table 4. Deviation of each ANSP with respect to influence of complexity index in the number of
SMIs for the overall European ATM system.

Model 1

ANSP K4 1/K4 ANSP K4 1/K4

K4[12] 78.72 0.01270363 K4[11] 995.88 0.00100414

K4[9] 335.54 0.00298031 K4[16] 996.41 0.0010036

K4[18] 910.07 0.00109882 K4[10] 997.51 0.0010025

K4[22] 938.38 0.00106567 K4[5] 998.61 0.00100139

K4[6] 940.35 0.00106344 K4[15] 999.38 0.00100062

K4[29] 967.66 0.00103342 K4[2] 1000.17 0.00099983

K4[19] 983.35 0.00101693 K4[14] 1001.45 0.00099855

K4[8] 985.24 0.00101498 K4[13] 1001.74 0.00099826

K4[27] 987.27 0.00101289 K4[17] 1002.27 0.00099774

K4[28] 988.36 0.00101177 K4[7] 1003.27 0.00099674

K4[26] 991.03 0.00100905 K4[4] 1004.16 0.00099585

K4[25] 992.95 0.0010071 K4[21] 1006.19 0.00099385

K4[1] 993.41 0.00100664 K4[3] 1011.88 0.00098826

K4[20] 994.45 0.00100558 K4[24] 1012.89 0.00098727

K4[23] 995.47 0.00100455

7. Conclusions

This study makes use of the advantages of hierarchical Bayesian inference models to
quantify the levels of safety in European airspace. The study has three objectives:
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• Generate predictive models that enable the number of losses of separation between
aircraft in the airspace to be predicted using predictive variables such as the number
of flight hours or the complexity of the airspace.

• Estimate the general underlying safety level of European ATM systems.
• Estimate how much each of the European ANSPs deviates from this general value.

For this, four models were developed that combine a hierarchical approach with a
regression model. These enable us to infer and predict the common rate of occurrence of
SMIs, as well as the specific rates of occurrence for each ANSP. The models take two factors
into consideration: the hierarchical relationship between the ANSPs and the generation of
SMIs from predictors that represent the main local differences.

The four models generally demonstrate good behavior. Model 4 is the most efficient
and Model 2 the least efficient. For small values of SMIs, the Poisson model (Model 1) is
more efficient, while for high values of SMIs the normal model (Model 4) is more accurate.
For intermediate values, all models behave in a similar manner. The DIC values for Models
1 and 3 are similar.

The original pieces of knowledge provided by this research can be summarized as:

• The development of explanatory and predictive models for the number of SMIs as a
function of the “number of flight hours”, “complexity score”, “adjusted density”, and
“structural index”.

• The models quantify the underlying safety level of European ATM and how much
each of the European ANSPs deviates from this general value.

• The contribution of the European ATM regulation to a reduced number of SMIs has
been quantified as an overall EU ATM system performance.

• The models explain and predict SMIs for 29 European ATM systems with common
regulations and work procedures, but with different local circumstances.

• The models are compatible with a very reduced set of data and able to integrate
available expert prior information.

• The models prove to be able to capture hierarchical dependences between parameters.

The models developed have been found to be useful in explaining and predicting
the safety performance of 29 European ATM systems with common regulations and work
procedures, but with different circumstances and numbers of aircraft, each managing traffic
of differing complexity.

This study shows the usefulness of hierarchical structures when it comes to obtaining
parameters that enable risk to be quantified effectively. We can identify the parameters that
are characteristic of the safe operation of each ATM system and of the entire European sys-
tem. These parameters allow us to identify and quantify trends and establish benchmarks
to compare the current year’s performance with that of previous years.
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