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Abstract: In downhole drilling systems, self-excited torsional vibrations caused by the bit-rock
interactions can affect the drilling process and lead to the premature failure of components. Especially
self-excited oscillations of higher-order modes lead to critical dynamic loads. The slim drill string
design and the naturally limited drilled borehole diameter limit the installation space, power supply
and lead to numerous potentially critical self-excited torsional modes. Consequently, small and robust
passive damping concepts are required. The variety of possible downhole boundary conditions
and potential damper designs necessitates analytical solutions for effective damper design and
optimization. In this paper, two nonlinear passive damper concepts are investigated regarding
design and effectiveness to reduce self-excited high-frequency torsional oscillations in drill string
dynamics. Based on a finite element model of a drill string, a suitable minimal model based on the
identified critical mode is generated and solved analytically using the Multiple Scales Lindstedt-
Poincaré (MSLP) method. The advantages of MSLP compared to conventional MS methods are
shown for this example. On the basis of the analytical solution, parameter influences are determined,
and design equations are derived. The analytical results are transferred to self-excited drill string
vibrations and discussed using time domain simulations of the drill string model.

Keywords: self-excitation; damping; multiple scales Lindstedt-Poincaré; drill string; torsional vibration

1. Introduction

In deep drilling applications, unwanted vibrations can reduce reliability, lead to
premature failures of components, reduce the drilling efficiency and increase nonproductive
time. Around one-third of all failures in drilling applications are related to vibrations [1,2].
The occurring vibrations are divided into axial, lateral and torsional vibrations according
to their operating direction. Since the late 1960s, torsional vibrations have been the research
focus [3,4]. Torsional vibrations are divided into low- and high-frequency vibrations. Low-
frequency vibrations like stick/slip correspond to the first torsional mode of the drilling
system, with frequencies less than 1 Hz. These self-excited vibrations are distinguished
according to their origins in bit and string-induced vibrations. Bit-induced vibrations
originate from the bit-rock cutting process, while string-induced vibrations are caused
by the contact between drilling tools and formation [5]. The bit rock interaction during
drilling is a complex process with many uncertainties [6], which can be considered, in
various ways, e.g., with hybrid uncertainties [7]. It has been shown that, for the torsional
dynamic of the drill string, the energy input can be modeled using a nonlinear torque
characteristic at the bit [8]. Due to improved and new measuring tools, high-frequency
oscillations have been identified as the cause of numerous drill string failures and have
been intensively investigated over the last years with studies [9,10], simulations [8,11]
and experiments [12,13]. Especially drilling in hard and dense formations leads to high-
frequency torsional oscillations (HFTO) with frequencies between 50 Hz and 500 Hz [14,15].
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By assuming a resistance characteristic at the bit (torque characteristic) that decreases with
the angular speed (revolutions per minute RPM) (Figure 1), a predictive criterion based on
linearization at the operation point ( dTorque

dRPM )

Sc,k = −
2Dkω0,k

ϕ2
k

<
dTorque
dRPM

(1)

is derived [8], wherein Dk represents the modal damping, ω0,k the natural angular fre-
quency and ϕk the deflection of the mass normalized eigenvector of mode k.
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solutions with regard to the effective damping range of the damper are necessary for an 
effective design and optimization of dampers in drill string dynamics. Therefore, as in 
[22], analytical and semi-analytical solutions regarding the effective damping range of the 
dampers must be determined. For nonlinear dampers, various methods to approximate 

Figure 1. Nonlinear torque characteristic at the bit cf. [8].

Additionally, a maximum amplitude at the bit (ϕ̂bit) that depends on the revolutions
per minute (RPM) in the operating point

ϕ̂bitω0,k =
.
ϕbit =

.
ϕRPM =

2π
60 sec

min
RPM→ ϕ̂bit =

2π
60 sec

min
RPM

1
ω0,k

(2)

is derived in [16] and agrees with the observations in [14] that no backward rotation occurs
at the bit. This maximum amplitude is valid when one HFTO mode dominates the dynamic
of the entire drill string [17,18]. In [17], the interaction between stick/slip and HFTO is
observed and [19] analyzed in detail. Using the information about stick/slip, HFTO and
the torque characteristic (Figure 1) stability maps are derived [19] and new strategies to
reduce vibrations by adjusting operational parameters like the drilling velocity (RPM) and
the downhole force on the bit (in drilling industry: weight on bit (WOB)) are shown [5]. As
neither the parameters nor the design of the drill string can be changed arbitrarily, new
downhole tools must be developed to reduce critical vibrations. An isolator tool based
on the principle of mechanical low-pass filtering is analyzed in testing, simulation and
operation [13] and reduces the amplitude in specific areas of the BHA. As the isolator does
not mitigate the critical vibration along the entire drill string, further mitigation strategies
are necessary. Increasing the damping of a system is a common approach to reduce self-
excited vibration [20,21]. In [22], the effects of various friction dampers on the stability of
critical HFTO modes are analyzed. The derived analytical results show the importance of
damper placement regarding the multiple instable modes and multiple damper positions
within the BHA.

Due to the large number of variable parameters such as the critical mode (frequency
and mode shape), the position of the damper and the design of the damper, analytical
solutions with regard to the effective damping range of the damper are necessary for
an effective design and optimization of dampers in drill string dynamics. Therefore, as
in [22], analytical and semi-analytical solutions regarding the effective damping range of
the dampers must be determined. For nonlinear dampers, various methods to approximate
nonlinearities exist. The harmonic balance method [23–25] is one possibility to approximate
nonlinear parts of a differential equation that has been used for drill string dynamic [22].
Especially for tuned systems like nonlinear tuned mass dampers, methods like the Mul-
tiple Scales (MS) [26] or Lindstedt-Poincaré (LP) [27] are suitable approximation options.
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Multiple Scales Lindstedt-Poincaré (MSLP) is the rather new combination of MS and LP to
solve nonlinear systems [28].

In the following, the MSLP method is used to determine suitable analytical solutions
for various nonlinear tuned damper concepts to reduce high-frequency torsional vibrations
within the drill string. First, a suitable finite element (FE) model of a drill string is developed
and reduced to one modal degree of freedom representing a critical torsional mode. This
minimal model is extended by two tuned nonlinear damper concepts. Similar to a tuned
mass damper, the basic structure of both nonlinear dampers consists of an inertia mass that
is connected by a linear spring and linear damper to the structure. One nonlinear damper
has an additional cubic nonlinear stiffness, and the other, a cubic nonlinear stiffness and
a friction contact. Second, the resulting nonlinear models are solved using MSLP. It is
shown that in this specific case MSLP is more accurate than other methods, like the MS
method. Third, the parameter influences are determined, and the analytical solutions are
transferred to a self-excited drill string vibration to realize a robust and optimized design.
Finally, the analytical results are compared with time domain simulations of self-excited
drill string vibrations using a reduced FE drill string model. Furthermore, influences and
design specifications for drill string vibrations are discussed.

2. Modeling
2.1. Extended Drill String Model

To investigate the effect of the nonlinear dampers on the torsional dynamics of the
drill string, a generic drill string model (Figure 2) was constructed using beam elements.
The resulting linear equation of motion

M
..
x + C

.
x + Kx = f (3)

consists of the mass M, damping C and stiffness K matrix, an external force vector f and the
angular deviations from the operating point x for a static twist and constant rotary speed.
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The mass and stiffness matrix are determined from the design of the generic bottom
hole assembly (BHA) using Young’s modulus, density and geometry, while the damping
matrix is unknown. Previous studies show that, in many cases, a critical mode dominates
the system behavior [17,18]. Therefore, the damping matrix can be determined by the modal
damping ratio of the modes. Using the predictive criterion derived in [8] and determining
the Sc,k value, the BHA can be reduced to a single modal degree of freedom representing
the critical high frequency mode. This modal reduction of the torsional dynamic of a drill
string is despite its complexity suitable, because when HFTO occur, mostly one critical
mode dominates the entire torsional system dynamic of the BHA. In addition, the large but
slim design of the drill string with little available installation space leads to low reactive
effects of dampers on the torsional dynamics of the drill string. In [8,16,19], a similar
reduction method was used to characterize downhole vibrations and in [5,19,22] ‘it is used
to investigate vibration reduction strategies.

2.2. Minimal Model of a Drill String and Damper

Assuming that the reactive effect of the damper on the mode is negligible due to the
limited installation space in deep drilling and the assumption that no other modes near
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the considered mode or higher harmonics are excited by the nonlinear forces [22], a modal
single degree of freedom (sdof) was derived. The modal reduction of the extended drill
string model yields to

..
qi + 2Diω0,i

.
qi + ω2

0,iqi = ϕi,j M (4)

consisting of the angular natural frequency ω0,i, the modal damping Di, the modal devia-
tion qi of the considered mode i and an external torque M acting at the j-th node (position)
with a mass normalized modal amplitude ϕi,j of the i-th mode at the j-th node. By adding
the degree of freedom representing the considered damper, the minimal model yields

..
qi + 2Diω0,i

.
qi + ω2

0,iqi = ϕi,j Mnl
J

..
x + d

( .
x− ϕi,j

.
qi
)
+ c
(
x− ϕi,jqi

)
= −Mnl

(5)

consisting of the physical degree of freedom of the damper x, the inertia of the damper J,
the linear stiffness c and linear damper d connecting the damper and the structure at the
j-th node. The nonlinear torque Mnl is

Mnl = α
(
x− ϕi,jqi

)3 (6)

with a cubic stiffness α for the cubic nonlinearity and

Mnl = α
(
x− ϕi,jqi

)3
+ FNrµ sgn

( .
x− ϕi,j

.
qi
)

(7)

for the cubic nonlinearity and the additional frictional contact consisting of a normal force
FN , friction radius r and coefficient of friction µ.

2.3. Adaption and Simplification of the Minimal Model

With the assumption that the additional damper does not influence the movement of
the drill string itself, but only the modal amplitude q̂ via the energy balance, the vibration
of the structure is assumed to be harmonic,

q = q̂ cos(ω0,it),
.
q = −q̂ω0,i sin(ω0,it),

..
q = −q̂ω2

0,i cos(ω0,it) (8)

similar to the harmonic balance. The resulting equation of motion of the damper

J
..
x + d

( .
x + ϕi,j q̂ω0,i sin(ω0,it)

)
+ c
(

x− ϕi,j q̂ cos(ω0,it)
)
= −Mnl (9)

represents a sdof-model. By introducing the difference coordinates u = x− ϕi,j q̂ cos(ω0,it)
and their derivations, the amplitude and phase of the system were directly taken into
account in the results due to the considered relative motion. The equation of motion for
the damper with cubic nonlinearity is

J
..
u− Jϕi,j q̂ω2

0,i cos(ω0,it) + d
.
u + cu = −αu3 (10)

and with cubic nonlinearity and a friction contact is

J
..
u− Jϕi,j q̂ω2

0,i cos(ω0,it) + d
.
u + cu = −αu3 − FNrµ sgn

( .
u
)
. (11)

3. Applying Multiple Scales Lindstedt-Poincarè
3.1. Multiple Scales Lindstedt-Poincarè

A quite new technique for analyzing nonlinear systems is the Multiple Scales Lindstedt-
Poincaré method was first introduced by Pakdemirli in 2009 in [28]. As the method’s name
already shows, it is a combination of both the Multiple Scales (MS) [26] and the Lindstedt-
Poincaré (LP) [26,27] method. A small parameter ε is introduced to perform the MSLP. The
modal natural angular frequency of the structure is now expressed as Ω, and, to simplify
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following equations, all parameters concerning the friction damper are expressed through
the summarizing variable µ.

In analogy to the LP method, a new time variable τ = ωt is introduced and further
divided according to the MS method in

τ0 = τ; τ1 = ετ; τ2 = ε2τ, . . . (12)

while the dividing of the replacement variable stays the same with

u(t) = u1(τ0, τ1, τ2) + εu2(τ0, τ1, τ2) + ε2u3(τ0, τ1, τ2) + . . . (13)

and is now only dependent on τ. The introduced frequency ω now has the structure

ω2 = ω2
0 + εω1 + ε2ω2 + . . . (14)

and slightly differs from those introduced in the LP method. The next step is inserting
these expressions in the nonlinear differential equation of motion and separating for the
orders of ε similar to LP, although, in contrast to LP ω0 is replaced. The secular terms in the
higher order equations have two unspecified expressions, one being the time derivative of
the complex amplitude Ac out of the MS, the other being the frequency expression out of
LP. Setting these terms follows a simple rule: Dn Ac is set to zero, giving an expression for
ωn, unless it is a complex expression; then, ωn is set to zero, giving an expression for Dn Ac.

The main goal is to make sure no complex expressions occur for the frequency ω. The
combination of the derivatives of the complex amplitude follows the same steps as those
for the MS. The same applies to the combining of the frequencies regarding LP.

3.2. Applying MSLP on the Damper with Cubic Nonlinearity

In the following, the MSLP method is applied to the drill string model (Equation (10))
to find the analytical results to determine the steady-state amplitude. A small parameter ε
is introduced, and Equation (10) is normalized regarding the inertia J

..
u + ε2d∗

.
u + ω2

0u + εα∗u3 = ε2Ω2 ϕi,jq∗cos(Ωt) (15)

with d∗ = d
ε2 J , α∗ = α

εJ and q∗ = q̂
ε2 . Introducing MSLP coordinates leads to

ω2 ..
u + ε2ωd∗

.
u + ω2

0u + εα∗u3 = ε2Ω2 ϕi,jq∗cos
(

Ω
ω

τ

)
. (16)

Using the detuning parameter σ, Ω can be written as Ω = ω
(
1 + ε2σ

)
. Now, Equa-

tion (5) becomes

ω2 ..
u + ε2ωd∗

.
u + ω2

0u + εα∗u3 = ω2
(

1 + 2ε2σ + ε4σ2
)

ε2 ϕi,jq∗cos
(

Ω
ω

τ

)
(17)

and simplifies the agreement in analyzing only up to O
(
ε2) to

ω2 ..
u + ε2ωd∗

.
u + ω2

0u + εα∗u3 = ω2ε2 ϕi,jq∗cos
(

Ω
ω

τ

)
. (18)

A separation regarding the order ε leads to

O(1) : ω2D2
0u1 + ω2u1 = 0 (19)

O(ε) : ω2D2
0u2 + ω2u2 = −2ω2D0D1u1 + ω1u1 − α∗u3

1 (20)
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O
(
ε2) : ω2D2

0u3 + ω2u3
= −2ω2D0D1u2 −ω2D2

1u1 − 2ω2D0D2u1 + ω2u1 + ω1u2 − d∗ωD0u1

− 3α∗u2
1u2 + ω2 ϕi,jq∗cos

(
Ω
ω τ
) (21)

with Dn = ∂
∂τn

representing the nth time derivative. Equation (8) solves

u1 = Acexp(iτ0) + cc (22)

with Ac being the complex amplitude with its complex conjugates Ac and +cc denote the
complex conjugate of the previous expression. The secular terms of the equation of O(ε) are

− 2ω2iD1 Acexp(iτ0) + ω1 Acexp(iτ0)− 3α∗A2
c Acexp(iτ0) = 0 (23)

and the same for the complex conjugate expression. For secular terms in MSLP, D1 Ac is set
to zero, giving

ω1 = 3α∗Ac Ac. (24)

Now, Equation (20) results in the particular solution

u2p =
α∗

8ω2 A3
c exp(3iτ0) + cc (25)

recalling again that the homogenous solution is already compensated by the result Equa-
tion (10) of Equation (8). The right-hand side of Equation (7) can be written as

ϕi,jq∗cos
(

Ω
ω

τ

)
=

ϕi,jq∗

2
exp(i(στ2 + τ0)) + cc (26)

using the detuning parameter to express Ω. By that, the secular terms of O
(
ε2) are

−2iω2D2 Acexp(iτ0) + ω2 Acexp(iτ0)− d∗iωAcexp(iτ0)− 3α∗2

8ω2 A3
c Ac

2exp(iτ0)

+
ω2 ϕi,jq∗

2 exp(i(στ2 + τ0)) = 0.
(27)

Setting D2 A equal to zero leads to a complex expression for ωn, as described above in
this case, ω2 is set to zero, leading to

2iD2 Ac = −
id∗Ac

ω
− 3α∗2 A3

c Ac
2

8ω4 +
ϕi,jq∗

2
exp(iστ2). (28)

Using the Nayfehs method of recombination [27]:

d
dt

Ac =
∂

∂τ0

dτ0

dt
Ac +

∂

∂τ1

dτ1

dt
Ac +

∂

∂τ2

dτ2

dt
Ac = 0 + εD1 Ac + ε2D2 Ac (29)

the time derivative of the complex amplitude Ac =
û
2 exp(iγ) is

2i
(

û′
2 exp(iγ) + iγ′ û

2 exp(iγ)
)

= ε2
(
− id∗ û

2ω exp(iγ)− 3α∗2û5

256ω4 exp(iγ) +
ϕi,jq∗

2 exp(iστ2)
) (30)

and introducing β = στ2 − γ can rearrange the equation after a little manipulation

û′ − γ′û = ε2
(
− id∗û

2ω
− 3α∗2û5

256ω4 +
ϕi,jq∗

2
exp(iβ)

)
(31)
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where a split into real and imaginary parts conducted for the steady state

Im : û′ = ε2
(
− d∗

2ω
û +

ϕi,jq∗

2
sin(β)

)
= 0 (32)

Re : β′ = ε2
(

σ− 3α∗2û4

256ω4 +
ϕi,jq∗

2û
cos(β)

)
= 0. (33)

By using mathematical identities:

sin(β) =
d∗û

ϕi,jq∗ω
(34)

σ =
3α∗2û4

256ω4 −
ϕi,jq∗

2û
cos(β) =

3α∗2û4

256ω4 ±

√
(ϕi,jq∗)

2

4û2 − d∗2

4ω2 (35)

is obtained and yields the frequency-response curve.

Ω = ω
(

1 + ε2σ
)
= ω

1 + ε2

3α∗2û4

256ω4 ±

√(
ϕi,jq∗

)2

4û2 − d∗2

4ω2

 (36)

with

ω2 = ω2
0 + εω1 → ω =

√
ω2

0 + ε
3α∗û2

4
. (37)

Without ε the frequency-response curve is

Ω = ω
(

1 + ε2σ
)
= ω

1 +
3α2û4

256ω4 J2 ±

√(
ϕi,j q̂

)2

4û2 − d2

4ω2 J2

; ω =

√
ω2

0 +
3αû2

4J
. (38)

The solution of the equation of motion is obtained by using the solutions of the
differential equations of O(1) and O(ε).

u(t) = û cos(Ωt− β) +
αû3

32ω2 J
cos(3(Ωt− β)). (39)

3.3. Including Friction in MSLP

Including friction damping in the analysis creates the needs for approaching the sign
function that changes the sign regarding the relative angular velocity, which characterizes
the friction damping, by, e.g., polynomial expressions. Many ways of this are shown
in the literature—for example, by Nayfeh in [26]. One way is to use a Fourier series to
approximate the friction term sgn

( .
u
)
.

Regarding the analysis, only multiples of the angular natural frequency are considered
so that the expression can be simplified using only exp(inω0τ0). The term

2iDx Ac =
ω0

2π

2π/ω0∫
0

f exp(−iω0τ0)dτ0 (40)

with n = 1 is of interest for the secular terms. Introducing a new variable φ = ω0τ0
shortens Equation (40) to

ω0

2π

2π/ω0∫
0

f exp(−iω0τ0)dτ0 =
1

2π

2π∫
0

f exp(−iφ)
1

ω0
dφ. (41)
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This expression can now be placed in the term of the corresponding order of ε. This
way of approximating the sign function also shows that considering analyzing higher
orders of ε makes the analysis much more complicated, as then higher terms of the Fourier
series are needed. The MSLP analysis of the combination of cubic stiffness and the friction
contact (Equation (1)) lead to

..
u + ε2d∗

.
u + ω2

0u + εα∗u3 + ε2µ∗sgn
( .
u
)
= ε2Ω2 ϕi,jq∗cos(Ωt) (42)

with µ∗ = µ

ε2 J . By using Ω = ω
(
1 + ε2σ

)
and MSLP coordinates,

ω2 ..
u + ε2ωd∗

.
u + ω2

0u + εα∗u3 + ε2µ∗sgn
(
ω

.
u
)
= ω2ε2 ϕi,jq∗cos

(
Ω
ω

τ

)
(43)

result in the same for O(1) and O(ε) as the MSLP analysis for the damper with cubic
stiffness (Equations (8) and (20)) and the friction damping terms affect solutions of O

(
ε2)

and higher. Solving O
(
ε2) yields the secular terms

−2iω2D2 Acexp(iτ0) + ω2 Acexp(iτ0)− d∗iωAcexp(iτ0)− 3α∗2

8ω2 A3
c Ac

2exp(iτ0)

− 1
2π

2π∫
0

f exp(−iφ) 1
ω0

dφexp(iτ0) +
ϕi,jq∗ω2

2 exp(i(στ2 + τ0)) = 0
(44)

where ω2 is set to zero; otherwise, it would be complex, giving an expression for D2 Ac

2iD2 Ac = −
id∗Ac

ω
− 3α∗2 A3

c Ac
2

8ω4 − 1
2πω2ω0

2π∫
0

f exp(−iφ)dφ +
ϕi,jq∗

2
exp(iστ2). (45)

The term resulting from the Fourier series must now be further analyzed. Therefore, it
needs to be considered that

f
( .
u
)
=

{
µ∗,

.
u > 0

−µ∗,
.
u < 0

(46)

by which
2π∫
0

f exp(−iφ)dφ (47)

can be separated into its real and imaginary parts, leading towards

Im :
2π∫
0

−sin(φ) f dφ =

π∫
0

sin(φ)µ∗ dφ−
2π∫

π

sin(φ)µ∗ dφ = 4µ∗ (48)

Re :
2π∫
0

cos(φ) f dφ =

π∫
0

cos(φ)(−µ∗) dφ +

2π∫
π

cos(φ)µ∗ dφ = 0 (49)

so that the whole expression can be written as i4µ∗. This yields, similar to obtaining
Equation (30) in the earlier MSLP, the combined derivative of the complex amplitude by

2i
(

û′
2 exp(iγ) + iγ′ û

2 exp(iγ)
)

= ε2
(
− id∗ û

2ω exp(iγ)− i 2µ∗

πω2ω0
− 3α∗2û5

256ω4 exp(iγ) +
ϕi,jq∗

2 exp(iστ2)
) (50)

where splitting into real and imaginary parts results for the steady state in

sin(β) =
πd∗ûωω0 + 4µ∗

πϕi,jq∗ω2ω0
(51)
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σ =
3α∗2û4

256ω4 −
ϕi,jq∗

2û
cos(β) =

3α∗2û4

256ω4 ±
ϕi,jq∗

2û

√√√√1− (πd∗ûωω0 + 4µ∗)2(
πϕi,jq∗ω2ω0

)2 . (52)

In general, the frequency-response curve now turns out to be

Ω = ω

1 + ε2

3α∗2û4

256ω4 ±
ϕi,jq∗

2û

√√√√1− (πd∗ûωω0 + 4µ∗)2(
πϕi,jq∗ω2ω0

)2

 (53)

with Equation (22) for ω or without ε

Ω = ω

1 +
3α2û4

256ω4 J2 ±
ϕi,j q̂
2û

√√√√1− (πdûωω0 + 4µ)2(
πϕi,jqω2ω0 J

)2

; ω =

√
ω2

0 +
3αû2

4J
(54)

and
u(t) = Acexp(iτ0) + ε α∗

8ω2 A3
c exp(3iτ0) + cc

= û cos(Ωt− β) + αû3

32ω2 J cos(3(Ωt− β))
(55)

being the same as for the MSLP of the viscous damper. When using the solutions, including
a friction damper, special attention should be paid to the stick and stick-slip areas of the
friction damper. The friction damper can also be included in the analysis by using its
equivalent viscous damping. However, the equivalent damping ratio

deq =
4µ

πω0 A
(56)

must be used after the MSLP coordinates are introduced with respect to the different
characteristics of friction damping.

4. Advantages and Limitations of MSLP
4.1. Comparing MSLP and MS

Pakdemirli [28,29] has shown that there are minor differences between MS and MSLP
solutions for normally excited damped systems with cubic nonlinearities. In this specific
example with difference coordinates and an excitation that is dependent on the frequency,
the MSLP method is more precise. However, not only the method can affect the accuracy
of the solutions, the exponent of the small parameter ε also affects the feasibility of the
analysis and, thus, the accuracy. Comparing the results obtained by MS using ε in the first
power for the damping and excitation term, in the second power and MSLP with ε in the
second power leads in the typical Multiple Scales analysis to

Ω = ω0 +
3αû2

8ω0 J
− 15α2

256ω3
0 J2

û4 ±
ω0 ϕi,jq

2û

√√√√1−
(

dû
ω0 ϕi,jqJ

)2

. (57)

Using
..
u + εd∼

.
u + ω2

0u + εα∼u3 = εω2
0 ϕi,jq∼cos(Ωt) (58)

and now analyzing only up to O(ε) due to the very complex expressions for O
(
ε2); the

function for the frequency-response curve is

Ω = ω0 +
3αû2

8ω0 J
±

ω0 ϕi,jq
2û

√√√√1−
(

dû
ω0 ϕi,jqJ

)2

. (59)

It is important to recognize that, according to the power of ε in the equation describing
the system, the expression for calculating the excitation frequency out of the detuning
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parameter and the angular natural frequency also changes according to Ω = ω0 + εnσ for
MS methods or Ω = ω(1 + εnσ) for MSLP.

The differences in the obtained solutions are shown in Figure 3a,b in comparison to
the results simulated in the time domain. MSLP results are accurate even for such large
nonlinearities and excitations that subharmonic resonance occurs, MS solutions meanwhile
show spurious peaks that are bend to much or in the wrong direction.
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s , ϕi,j = 0.5, J = 1 kgm2 and q̂ = 0.3 rad with different order in ε (a) for small nonlinearities α = 0.1 Nm and (b) for strong

nonlinearities α = 1 Nm. The green points represent the numerical obtained steady-state amplitudes.

In Figure 3a, the solutions of MS do not cover the whole excitation branch in contrast
to the MSLP solution, which matches the point representing the numerically obtained
solution very accurate. For the strong excitation in Figure 3b, MS solutions even show
very differently bended curves than the numerical solution or MSLP. Furthermore, the
MS solution for O

(
ε2) is bent backwards and, therefore, not just quantitatively but, also,

qualitatively inaccurate. Due to the dependency of the excitation force on the excitation
frequency in this case, the MSLP method is more suitable to approximate the equation of
motion.

4.2. Limits of the Operating Range

The deviation of analytical and numerical solutions beyond the effective frequency
range of the nonlinear damper, frequencies much higher or lower than the natural frequency
of the damper (Figure 3b), are rather high. This is caused in the step of expressing the
excitation frequency through the detuning parameter and then sorting the terms for ε only
up to O

(
ε2). Thereby, no attention is payed to the Ω2-characteristic of the excitation and it

becomes the same as a normally excited system. This happens when the right-hand side of
Equation (5) is rewritten by

ε2Ω2 ϕi,jq∗cos
(

Ω
ω

τ

)
= ω2

(
1 + 2ε2σ + ε4σ2

)
ε2 ϕi,jq∗cos

(
Ω
ω

τ

)
(60)

with the use of the detuning parameter. When analyzing only up to O
(
ε2), this becomes

ω2ε2 ϕi,jq∗cos
(

Ω
ω

τ

)
(61)

where ω2, as being independent from the excitation, can simply be treated like another
parameter among the others, and a “normal” excitation develops. However, as the damper
has no significant effect outside the resonance area and, therefore, only the results for the
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resonance are of special interest; there is no such limiting factor, in this case. Furthermore,
negative values for the nonlinearity parameter α can cause problematic results in the
case of weakening nonlinearities by bending the peaks of the frequency-response curve
unphysically. Again, this is irrelevant for the considered cases.

4.3. Parameter Dependency of the Operating Range

For engineering purposes, it might be interesting to know the maximum amplitude
of the system xmax = ûmax + qmax to set the parameters respective to the available space.
The maximum difference amplitude can be calculated by looking at the square root of the
frequency-response Equation (36) in question. Since the maximum point is the point where
the expression containing the negative square root goes over into the expression with the
positive square root, the maximum point is where both expressions are equal. This means
that the square root is zero. Thereby√

ϕ2
i,jq
∗2

4û2
max
− d∗2

4ω2 =

√√√√ ϕ2
i,jq
∗2

4û2
max
− d∗2

4
(
ω2

0 +
3
4 α∗û2

max
) = 0 (62)

solves to

ûmax =

√√√√√√
4ω2

0

d∗2(
4

ϕ2
i,jq
∗2 − 3α∗

d∗2

) (63)

wherein only the positive square roots are being used. An additional friction element yields
to a much larger expression for the maximum amplitude:

ûmax =

√√√√− B− D
2(A− E)

+

√(
B− D

2(A− E)

)2
− C

A− E
(64)

with
A =

( 3
4 α∗ϕi,jq∗πω0

)2

B = 3
2 α∗ϕi,jq∗πω0

(
πϕi,jq∗ω3

0 − 4µ∗
)

C =
(
πϕi,jq∗ω3

0 − 4µ∗
)2

D =
(
πd∗ω2

0
)2

E = 3
4 α∗(πd∗ω0)

2

(65)

which is again obtained by analyzing the square root expression of the frequency-response
equation in question. Using these techniques, a three-dimensional plot can be created,
showing how the damping parameter d∗ and the coefficient of the nonlinearity α∗ affected
the maximum amplitude ûmax for a given excitation.

As the point of the maximum amplitude is characterized by the square root in Equa-
tion (36) being zero, the frequency of the maximum amplitude can be described by

f (ûmax) = ω

(
1 +

3α∗2ûmax
4

256ω4

)
; ω =

√
ω2

0 +
3α∗ûmax2

4
(66)

which, by the use of Equation (45), can be further simplified to

f (ûmax) = ω0
256d∗

4
+ 3α∗

2(
ϕi,jq∗

)4

128d3
√

4d∗2 − 3α∗ϕ2
i,jq
∗2

(67)
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or

∂ f = f (ûmax)− f (û0) = ω0

 256d∗
4
+ 3α∗

2(
ϕi,jq∗

)4

128d3
√

4d∗2 − 3α∗
(

ϕi,jq∗
)2
− 1

 (68)

as an expression for the frequency shift ∂ f of the viscous damper (see Figure 4a).
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s , ϕi,j q̂ = 0.0001 rad) (b).

Figure 4b shows again that a higher nonlinearity coefficient and a lower damping
coefficient result in a higher maximum amplitude. According to the imagination, a higher
nonlinearity coefficient α leads to a higher frequency shift. However, an increase of
the damping coefficient d∗ decreases this frequency shift as it decreases the maximum
amplitude. Thereby, the combination of a very small maximum amplitude and a very large
frequency shift can be a mutual contradiction.

5. Parameter Influences
5.1. Influence and Normalization of the Angular Natural Frequency

Changing the angular natural frequency ω0 has a huge effect on the frequency-
response curve, because its center changes to another excitation frequency Ω, depending on
ω0. This has a large impact due to the Ω2 characteristic of the right-hand side and its appear-
ance in the argument of the cosine. Wanting to apply an obtained frequency-response curve
to another excitation frequency requires not only a simple introduction of a frequency ratio
but, also, an adjustment of the other parameters. Therefore, it is necessary to have a system
that leads to the same resulting equation. In this angular frequency normalization, the units
are used similar to Section 4. The units were considered during normalization; however,
note that we omitted the unit label in the following for readability. Using Equation (4) with
a new natural frequency according to ω0,new = nω0,old, the excitation frequency to achieve
the same plot is Ωnew = nΩold. Inserting this and equalizing Equation (4) yields

..
unew + ε2d∗n

.
unew + ω2

0,newunew + εα∗n2u3
new = ε2Ω2

new ϕi,jq∗cos(Ωnewt) (69)

with u being some kind of response related to cos(Ωoldnt) as discussed above. Therefore,
..
unew =

..
un2,

.
unew =

.
un and unew = u. So α∗new = α∗ω2

0,new and d∗new = d∗ω0,new can give
the same structure as the original differential equation and, therefore, the same frequency-
response curve as for ω0 = 1s−1. This way of adapting the parameters can also be used
when varying one of the others and wanting to achieve the same frequency-response curve.

Again, a consideration of a friction damper requires a deeper understanding of the
method. The way as shown above would lead to µ∗new = µ∗ω2

0,new, whereas the correct
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solution is µ∗new = µ∗ω3
0,new, because the approach via Fourier series or equivalent damping

ration includes an additional division by ω0. This must be observed to get the same
frequency-response curve.

5.2. Influence of the Normalized Parameters on the Dynamic Response of the Damper

Changing the system parameters affects the frequency-response curve and, thereby,
the dynamic of the system in different ways. Changing the nonlinear stiffness of the cubic
nonlinearity, for example, not only modifies the bending angle of the curve but, also, the
length of the branches (Figure 5a).
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amplitude. 

The same applies when increasing the friction damping coefficient, here represented 
by ߤ∗ (Figure 6a). It might be worth mentioning that a stronger friction force not only 
shortens the frequency-response curve but, also, slims down the foot of the branches 
around the natural frequency stronger than the viscous damping. 

Figure 5. Comparison of frequency-response curves when varying (a) the nonlinearity coefficient α∗ (d∗ = 0.05ω0, µ∗ =

0, ϕi,j q̂ = 0.15) and (b) the damping coefficient d∗ (α∗ = 0.1ω2
0 , µ∗ = 0, ϕi,j q̂ = 0.15).

Changing the damping ratio d∗ affects the length of the branch (Figure 5b). A higher
damping ratio shortens the frequency-response curve and results in a smaller maximum
amplitude.

The same applies when increasing the friction damping coefficient, here represented
by µ∗ (Figure 6a). It might be worth mentioning that a stronger friction force not only
shortens the frequency-response curve but, also, slims down the foot of the branches
around the natural frequency stronger than the viscous damping.
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Looking at the frequency-response curve in relation to the excitation, there are two
parameters that can change. The one is the excitation frequency, and the other is the
excitation amplitude. For the excitation amplitude, an increase results in an increase of the
maximum amplitude; hence, the length of the curve (Figure 6b).

The variation of the inertia J is more complex, because not only the parameters but
the natural frequency of the system itself are changed (Figure 7).
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6. Transfer to Self-Excited Drill String Vibrations

Section 4.1 shows that the analytical solutions derived using MSLP correspond well
with the numerical simulations of the single degree of freedom system in Equation (9)
(respectively, Equations (10) and (1)). In the following, the analytical solutions derived
using MSLP are transferred to self-excited drill string vibrations using the equivalent
damping ratio and discuss using time domain simulations based on Equation (5). Based on
this, instructions for using the results in self-excited drill string systems are derived.

6.1. Energy Dissipation and Equivalent Damping

One possibility to transfer analytical solutions, based on the assumption of a constant
harmonic amplitude of the underlying structure to self-excited structures, is the energy
balance and the related equivalent damping ratio (cf. [22]). The dissipated energy of the
damper can be calculated using the frequency-response curve (Equations (23) and (37))
and the equation of the damper motion (Equations (24) and (38)). In the case of a viscous
damper with a cubic nonlinearity

Ed,dis = d
2π/Ω∫

0

.
u2 dt (70)

is the dissipated energy. When analyzing a system containing viscous and friction damping
with a cubic nonlinearity, the total dissipated energy consists of the dissipated energy of
the viscous damper Ed,dis and the dissipated energy of the friction damper E f ric,dis

E f ric,dis =

2π/Ω∫
0

µsgn
( .
u
) .
u dt =

π/Ω∫
0

−µ
.
u dt +

2π/Ω∫
π/Ω

µ
.
u dt (71)
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over one period. As described in [22] and shown in Equation (1), the modal damping
ratio is decisive for the stability and the resulting amplitude of the self-excited systems.
Therefore, the total dissipated energy of the damper Eges,dis is converted by

Deq,mod =
Eges,dis

2Ω
∫ 2π/Ω

0
.
q2 dt

(72)

in the equivalent modal damping ratio Deq,mod.

6.2. Influence of the Critical Torsional Mode

First, the effect of the modal parameters on the damping provided by the damper
is determined using the equivalent damping ratio (Equation (52)). Figure 8 shows the
relative angular displacement and equivalent damping ratio over the natural frequency of
the underlying structure (excitation frequency of the analytical system) and the angular
displacement of the structure (excitation amplitude of the analytical system). For nonlinear
systems, several possible amplitudes can occur at a single frequency (stable and unstable
solutions), only the maximum stable amplitudes and the corresponding damping ratios
are shown in Figure 8.

In contrast to a linear tuned mass damper (TMD), where a constant damping ratio
occurs over the entire amplitude range but is only significantly high for a small frequency
range, the nonlinear stiffness causes a shift of the characteristic frequency of the damper
with the amplitude. At small amplitudes and, thus, small relative displacements between
the structure and the damper, the dynamic motion of the nonlinear damper resembles
that of the linear TMD. For higher amplitudes, the motion is affected significantly by
the nonlinear stiffness and results in a frequency change. By harmonic linearization of
the nonlinear stiffness [23–25], the linearized stiffness chl is calculated as a function of
the amplitude:

chl =
1

πx̂

∫ 2π

0
f (x̂ cos(ωt)) cos(ωt)d(ωt) =

1
πx̂

∫ 2π

0
αx̂3 cos(ωt)4d(ωt) =

3
4

αx̂2 (73)

resulting in the characteristic relative displacement:

xrel,ch =

√
ω2 J − c

3
4 α

(74)

that corresponds to the effective damping range of the nonlinear damper (maximum in
Figure 8b). When the self-excitation frequency (excitation frequency of the analytical
solution) is higher than the characteristic frequency of the linear part of the damper, an
increase of the relative amplitude between the damper and structure results in a change
of the effective frequency range of the nonlinear damper. This means that the effective
frequency range of the nonlinear damper depends on the amplitude but is larger than the
frequency range of a linear damper.

6.3. Comparison with Time Domain Simulations

The damping diagram in Figure 9a is derived by determining the equivalent damping
ratio (Equation (52)) from the analytical solution (Equation (23)) for one natural frequency
of the underlying self-excited structure (excitation frequency of the analytical solution). The
natural frequency of the underlying structure is higher than the linear natural frequency of
the damper to show the results regarding the nonlinear stiffness damper. In addition to
the damping ratio provided by the damper, Figure 9a shows the absolute values of three
different self-excited damping ratios. For two damping ratios Di = −1% and Di = −1.6%
intersections occur between the self-excited absolute damping ratios and the damping
provided by the damper. The highest negative damping ratio (Di = −2.1%) exceeds the
maximum additional damping provided by the damper. Figure 9b shows the relative
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displacement corresponding to the damper with respect to the amplitude of the underlying
structure and the characteristic relative displacement (Equation (54)).
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Figure 8. Damper with a cubic nonlinear stiffness (α = 7·1011 Nm, d = 50 Nm
s , ω0 = 1000 1

s , Ω = 1250 1
s , J = 0.2 kgm2).

(a) Relative angular displacement and (b) equivalent damping ratio over the excitation frequency (natural frequency of the
self-excited system) and angular displacement of the underlying structure (excitation frequency of the analytical system).

For the smallest instability—thus, a linearized negative damping ratio of Di = −1%—the
self-excited oscillation is limited and, thus, stabilized by the damping effect of the nonlinear
damper. Due to the nonlinear stiffness and the frequency difference between the linear natural
frequency of the damper and the vibration frequency of the structure, the damping effect is
sufficient to stabilize the system above a certain amplitude. Therefore, at small amplitudes,
the amplitude increases exponentially, as usual in self-excited systems (Figure 10a). At a
certain amplitude, the damping ratio provided by the damper is sufficient to stabilize the
self-excited system. The vibration amplitude of the structure is similar to the amplitude of
the intersection in Figure 9a. As shown in Figure 8b the characteristic frequency and, thus,
the damping is increased near the characteristic relative displacement. Due to the small,
required damping ratio, the relative displacement does not exceed the characteristic relative
displacement (Figure 10b).
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Figure 9. Damper with a cubic nonlinear stiffness (α = 7·1011 Nm, d = 50 Nm
s , ω0 = 1000 1

s , Ω = 1250 1
s , J = 0.2 kgm2).

(a) Equivalent damping ratio regarding the angular displacement of the underlying structure. (b) Relative angular
displacement regarding the angular displacement of the underlying structure.
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Figure 10. Time domain results for an instability of Di = −1%. (a) Angular displacement of the drill string structure and
the damper. (b) Relative angular displacement between the damper and the drill string structure.

For higher self-excitations and, thus, higher negative damping ratios (Di = −1.6%),
the intersection occurs at higher damping ratios. Figure 11a shows similar to Figure 10a
at first an exponential increase of the amplitude at small relative displacements between
the damper and the structure. The characteristic frequency of the nonlinear damper for
this amplitude is below the vibration frequency of the structure. Due to the self-excitation,
the amplitude, as well as the relative displacement between the damper and structure,
increases. This increase of the relative displacement changes the characteristic frequency
of the damper and, thus, increases its damping effect. This increased damping results
in a reduction of the vibration amplitude of the structure. The smaller amplitude of the
structure results in a smaller relative displacement and, thus, in a reduced damping effect.
This repetitive increase and decrease of the amplitude and damping ratio results in a
nonperiodic attractor (Figure 11a).
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Figure 11. Time domain results for an instability of Di = −1.6%. (a) Angular displacement of the drill string structure and
the damper. (b) Relative angular displacement between the damper and the drill string structure.

As Figure 11b shows, the relative displacement amplitude occurs around the charac-
teristic relative amplitude. Similar to the self-excitation with Di = −1%, the amplitude of
the structure is similar to the amplitude of the intersection in Figure 9a. For even higher
self-excitations, e.g., Di = −2.1%, the additional damping is not sufficient to stabilize the
unstable mode. Thus, an exponential increase of the amplitude occurs (Figure 12a,b). In
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Figure 12, a change in the dynamic motion of the structure regarding the characteristic
frequency is visible at t ≈ 0.2s.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 23 
 

this amplitude is below the vibration frequency of the structure. Due to the self-excitation, 
the amplitude, as well as the relative displacement between the damper and structure, 
increases. This increase of the relative displacement changes the characteristic frequency 
of the damper and, thus, increases its damping effect. This increased damping results in a 
reduction of the vibration amplitude of the structure. The smaller amplitude of the struc-
ture results in a smaller relative displacement and, thus, in a reduced damping effect. This 
repetitive increase and decrease of the amplitude and damping ratio results in a nonperi-
odic attractor (Figure 11a). 

  
(a) (b) 

Figure 11. Time domain results for an instability of ܦ௜ = −1.6%. (a) Angular displacement of the drill string structure and 
the damper. (b) Relative angular displacement between the damper and the drill string structure. 

As Figure 11b shows, the relative displacement amplitude occurs around the charac-
teristic relative amplitude. Similar to the self-excitation with ܦ௜ = −1%, the amplitude of 
the structure is similar to the amplitude of the intersection in Figure 9a. For even higher 
self-excitations, e.g., ܦ௜ = −2.1%, the additional damping is not sufficient to stabilize the 
unstable mode. Thus, an exponential increase of the amplitude occurs (Figure 12a,b). In 
Figure 12, a change in the dynamic motion of the structure regarding the characteristic 
frequency is visible at ݐ ≈  .ݏ0.2

  
(a) (b) 

Figure 12. Time domain results for an instability of ܦ௜ = −2.1%. (a) Angular displacement of the drill string structure and 
the damper. (b) Relative angular displacement between the damper and the drill string structure. 

0 0.1 0.2 0.3 0.4 0.5 0.6
-6

-4

-2

0

2

4

6 10-4

Structure
Damper

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-4

-3

-2

-1

0

1

2

3

4

10-3

Structure
Damper
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Figure 9a shows that the analytical results can be easily applied to self-excited struc-
tures. For self-excitations near the maximum of the damping ratio provided by the damper
(e.g., −1.9% in Figure 9a), the system is unstable, although according to the analytical
solution, the system should be stabilized. Reasons for this small inaccuracy are the as-
sumptions mentioned in Sections 2 and 3, like the constant harmonic oscillation of the
structure, the negligible reactive effect of the damper on the structure and the order of
MSLP. One additional and very important reason is the combination of multiple possible
occurring solitons in combination with the energy input and, thus, change of the amplitude
in self-excited structures. This effect is shown in Figure 11. The damping effect is increased
when the relative angular displacement is close to the characteristic relative angular dis-
placement. The necessary relative displacement is achieved when the amplitude of the
structural vibration increases.

This is seen well at higher natural frequencies of the self-excited structure, where
the influence of the nonlinearity is high. Figure 13a shows the damping diagram when
the natural frequency of the structure is increased to 1500 1

s . Figure 13b shows that the
instabilities of Di = −0.8% still resulted in a stable attractor due to the damping provided
by the damper (similar to Figure 11). Figure 13a shows additionally to the damping diagram
a principal depiction of the “closed loop” process, resulting in the attractor (Figure 13b). For
a self-excited structure without significant shocks, the amplitude increases exponentially
from a small initial amplitude. Due to the cubic stiffness nonlinearity of the system, the
relative displacement and the corresponding damping ratio is low at small amplitudes
and, thus, leads to an increase of the amplitude (Figure 13a arrow 1). At some point,
an additional stable solution occurs, but the provided damping is low due to the initial
small relative displacement (Figure 13a arrow 1). At higher amplitudes, the solution with
small relative displacements disappears, and a rapid increase of the relative displacement
between damper and structure leads to an increase of the provided damping (Figure 13a
arrow 2). In Figure 13, the increased damping is sufficient to stabilize the instable mode
and results in a decrease of the amplitude of the structure (Figure 13a arrow 3). This
decrease of the structural amplitude leads to an increase of the provided damping and,
thus, to an even faster decrease of the amplitude. Finally, the amplitude decreases below
the amplitude of the maximum possible damping ratio, which causes the solution with
high relative displacements and damping ratios to disappear (Figure 13a arrow 4). Due to
the small relative displacement and damping ratio a repeated increase of the amplitude
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occurs (Figure 13a arrow 1). A slight increase of the instability to Di = −1.2% (Figure 14),
although significantly below the theoretical maximum damping ratio, is unstable due to
this change in amplitudes and relative displacements.

Again, beginning at the small amplitudes of the underlying structure, the relative
displacement and the resulting additional damping is small (Figure 14a arrow 1). Due to
the self-excitation, the amplitude increases similar to Figure 13a arrow 1 until the stable
solution with small relative displacements disappears. This leads to a rapid increase of the
relative displacement and provided damping (Figure 14a arrow 2). This effect is also visible
in the time domain simulations in Figure 14b (t ≈ 0.3s). However, at these amplitudes, the
maximum of the theoretically provided damping ratio is already exceeded, and the current
damping is not sufficient to stabilize the unstable mode. Similar to Figure 12, the amplitude
increases further (Figure 14a arrow 3 and Figure 14b (t > 0.3s)), while the provided
damping ratio decreases. This means that, in contrast to Figure 8, the maximum amplitude
does not correlate with the occurring additional damping but, rather, the smallest stable
amplitude.
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Figure 13. Damper with a cubic nonlinear stiffness (α = 7·1011 Nm, d = 50 Nm
s , ω0 = 1000 1

s , Ω = 1500 1
s , J = 0.2 kgm2)

and an instability of D = −0.8% (a) Equivalent damping ratio regarding the angular displacement of the drill string
structure. (b) Angular displacement of the drill string structure and the damper.
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Figure 14. Damper with a cubic nonlinear stiffness (α = 7·1011 Nm, d = 50 Nm
s , ω0 = 1000 1

s , Ω = 1500 1
s , J = 0.2 kgm2) and

an instability of D = −1.2% (a) Equivalent damping ratio regarding the angular displacement of the drill string structure.
(b) Angular displacement of the drill string structure and the damper.
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6.4. Damper Design for Self-Excited Drill String Vibrations

The analytical results in Figure 8b with the theoretical maximum damping ratio are
adjusted using the information about the stable and instable solutions and amplitude
change (Figures 13 and 14) to determine a realistic analytical solution (Figure 15).
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While Figure 8b shows the maximum theoretic damping ratio, Figure 15 shows the
damping corresponding to the smallest stable amplitude. For self-excited systems, Figure 15
is very accurate, because self-excited vibrations that are not influenced by significant shocks
or other special effects show an exponential increase of the amplitude, beginning at small
amplitudes. As shown in Figure 13, this means that there is an increase in the amplitude
and then a rapid increase from low relative displacements to high relative displacements
and, thus, from low-to-high damping ratios. Using the analytical results (Section 3), the
information on self-excited drill string vibrations (Equation (1)), the maximum amplitudes
of high frequency vibrations (Equation (2)) and the transfer to self-excited vibrations
(Figures 13–15), it is now possible to efficiently design and optimize nonlinear dampers
with respect to the critical drill string modes; the position within the drilling system
and the design of the nonlinear damper in terms of inertia, damping and stiffness. The
results obtained for the damper with cubic nonlinear stiffness are equally applicable to
the other analytical solutions of the damper with cubic stiffness and friction. In addition,
the results are transferable to other self-excited systems, where, for example, the reactive
effect of the dampers on the dynamics of the structure is negligible due to, e.g., limited
installation space.

7. Conclusions

In this paper, the Multiple Scales Lindstedt-Poincaré method was used to derive
analytical solutions for two nonlinear dampers by using a specifically adapted drill string
model. The advantages of the MSLP method compared to conventional methods like the
Multiple Scales were discussed for this specific self-excited system. In this case, MSLP
leads to exceptionally good results due to the frequency dependence of the excitation force
in self-excited structure. The derived analytical solutions were transferred to self-excited
drilling systems by analyzing the energy output and, thus, the stability of the considered
self-excited drill string modes. In contrast to time-consuming time-domain simulations, the
resulting equivalent damping ratio allows direct conclusions about the dynamic motion and
stability of modes affected by dampers. Due to the variety of potentially critical modes (e.g.,
frequency and mode shape), of drill string and damper models (e.g., design and position)
and the boundary conditions in deep drilling, such analytical solutions are essential for
the effective design and optimization of dampers in deep drilling systems. In addition to
the investigation of influencing parameters on the dynamic motion of the dampers, the
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analytical results are simulatively validated using self-excited drill string models. The
influence of the nonlinear stiffness on the stability and shape of the resulting attractors
is shown, and three representative dynamic responses of the self-excited structure were
discussed. The equations derived from the analytical solutions with the aim of mitigating
critical drill string vibrations. The procedure described above is transferable to other fields
of engineering where similar conditions, such as low reactive effects, occur. The presented
method and the derived analytical solutions will further be used for the efficient design
and optimization of nonlinear dampers. Furthermore, the complex nature of self-excitation
due to bit-rock interaction with various uncertainties can be addressed in more detail in
the future.
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