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Abstract: In the wheel hub industry, the quality control of the product surface determines the
subsequent processing, which can be realized through the hub defect image recognition based on
deep learning. Although the existing methods based on deep learning have reached the level of
human beings, they rely on large-scale training sets, however, these models are completely unable to
cope with the situation without samples. Therefore, in this paper, a generalized zero-shot learning
framework for hub defect image recognition was built. First, a reverse mapping strategy was adopted
to reduce the hubness problem, then a domain adaptation measure was employed to alleviate the
projection domain shift problem, and finally, a scaling calibration strategy was used to avoid the
recognition preference of seen defects. The proposed model was validated using two data sets,
VOC2007 and the self-built hub defect data set, and the results showed that the method performed
better than the current popular methods.

Keywords: image recognition; zero-shot learning; projection domain shift; hubness problem

1. Instruction

The automobile is an indispensable means of transportation in people’s daily life, it is
also an important part of the national economy, and the wheel hub is one of the key parts
of the automobile. With the development of China’s automobile industry, the technical
level of wheel hub manufacturing enterprises is constantly improving, and product export
volume is large and continues to grow. However, due to the rapid growth of production
and the imperfection of processing technology, more than 40 defects have been found in
wheel hub products. These defects not only affect the good appearance and brand image of
products but also lead to serious traffic accidents. Therefore, researchers have done some
work, such as Li [1], in order to improve the accuracy of automobile wheel hub defect image
detection and recognition, an improved peak algorithm—the trend peak algorithm—was
proposed to extract the wheel hub defect area and combined with the BP neural network
to recognize the wheel hub defects. Zhang [2] aimed at the internal defects such as air hole
and shrinkage cavity in the process of low-pressure casting of the wheel hub, a method of
defect extraction based on mathematical morphology was employed, all of which belongs
to the traditional recognition method’s artificial design feature, so in the face of complex
samples, the robustness is poor. While deep learning technology has advantages: automatic
feature extraction, weight sharing, and needless image preprocessing. For example, Han [3]
used Faster R-CNN with ResNet-101 as the target detection algorithm to detect scratches
and points on the wheel hub. Sun [4] put forward an improved Faster R-CNN recognition
model for multiple types of wheel hub defects, that is, by improving the shared network
ZFNet to two revised branches (RPN and Fast R-CNN), and then four typical wheel hub
defects are identified. Although the methods based on deep learning have made some
progress, we find that existing supervised learning strategies rely on a large amount of
labeled data. However, some defect samples are scarce or none at all, so they cannot meet
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the requirements of the deep network training, which leads to the performance breakdown.
At present, there are some different solutions, such as transfer learning [5], self-taught
learning [6], and few-shot learning [7]. However, these methods are unable to cope with
the condition of zero samples. When the test samples are never seen during training, which
is called zero-shot learning (ZSL) [8], as shown in Figure 1.
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Figure 1. Zero-shot learning process. In training, there are seen classes with a large number of labeled
images, but unseen classes with no labeled images, however, semantic descriptors for both seen and
unseen classes are available, through which unseen classes are identified.

As we know, humans have the ability to retain knowledge from past learning tasks
and use that knowledge to quickly integrate and solve new recognition tasks. Specifically,
humans can easily identify these rare categories by using semantic description and their
relationship to the seen classes. For example, a person could identify a new species “pen-
guin” by the semantic description, “a flightless bird living in the Antarctic”, or “kangaroo”
by the portrayal, “an Australian animal with a pouch on its body”, inspired by which we
try to empower machines with the same intelligence, in the process of achieving this goal,
zero-shot learning is essential to the realization of machine intelligence.

ZSL has broad prospects in the fields of autonomous driving [9], medical imaging
analysis [10], intelligent manufacturing [11], robotics [12], etc. In these fields, although it is
difficult to obtain new labeled images, advanced semantic descriptions of categories can be
easily obtained.

In order to identify unseen classes, usually, a large scale of labeled samples (seen
classes) is needed to train the deep model, and then the model is adapted to an unseen one.
For ZSL, the seen and unseen classes are associated through a high-dimensional vector
space of semantic descriptors. Each class corresponds to a unique semantic descriptor.
Semantic descriptors can take the form of manually defined attributes [13] or automatically
extracted word vectors [14]. Figure 1 shows the training and testing process of ZSL.

2. Related Work

There are three key technologies in zero-shot learning. First, the extraction method of
image features: in the real world, image data is complex, redundant, and ever-changing, so
the acquisition of image features plays an important role in narrowing the gap between
image learning and high-level semantics. Second, the construction of semantic embedding
space, different semantic embedding spaces usually reflect the different semantic properties
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of object labels, therefore constructing a proper semantic embedding space and keeping its
consistency with the image feature space is crucial to solving the zero-shot learning problem.
Third, the association mode between image feature space and semantic embedding space,
in the zero-shot learning method based on semantic embedding space, the association
mode between both is the focus of most models.

2.1. Extraction Method of Image Features

In machine learning tasks, especially the classification problem, raw data need to be
converted into a format that can be efficiently processing by computer. Traditional methods
adopt artificial design features, but they require a large amount of manpower and rely
on very specialized knowledge, therefore, they are not conducive to promotion in the
whole field.

For visual applications, researchers have also proposed many distinctive feature
learning methods, such as significant visual features based on the cognitive psychology
model [15], efficient coding visual features for mobile computing platforms [16], etc. How-
ever, these methods generally have two limitations: first, they are usually unable to go
beyond the feature expression of artificial design. Second, both automatic and manual
design of image features belong to lower-level expression, lacking the ability to associate
high-level semantic meaning, which leads to a deeper semantic gap between image fea-
tures and high-level semantic attributes, that is why zero-shot learning performance was
generally lower in 2008 to 2012.

In order to improve the semantic properties of image features, a deep convolutional
neural network (CNN) [17] can be used to separate the complex and entangled factors
hidden in the image through some simple and nonlinear models, then transforming the
original image data into higher-level and more abstract feature expressions. These features
have a strong expressive ability, which can not only reflect the semantic information of
objects to a certain extent but also express the global features and context information
of images, therefore features from CNN have a higher judgment ability among different
objects. In view of the great success of deep feature in many research fields such as large-
scale object recognition [18,19] and video recognition [20], deep feature has also been widely
used in zero-shot learning [21,22] since 2012. Currently the VGG [23], GoogLeNet [23]
model, ResNet [24] models are three deep feature extraction models.

2.2. Construction of Semantic Embedding Space

As a shared intermediate semantic layer, semantic embedding space bridges the
semantic gap [25–27] between the underlying image feature space and the high-level
semantic space, transcends the class boundaries between mutually exclusive objects, which
is the key to solve the zero-shot learning problem. For zero-shot learning, semantic
embedding spaces [28,29] are usually constructed independently of visual recognition
tasks, that is an object class label, we represent an independent label as an interrelated label
embedding vector by means of knowledge that is relatively easy to obtain in other fields.

Semantic vectors must meet two basic requirements: sufficient semanticity [30] and
strong judgment ability [31], however, both are contradictory. Strong semanticity usually
means that the semantic embedding space contains more details of the object, including
information unrelated to the classification task, such as non-visual information, which
leads to weak judgment. Strong judgment ability means that visual information that can
best distinguish between different object classes are only focused on and ignore other
information, therefore reducing semanticity. How to grasp a balance between the both is
one of the concerns in the field of zero-shot learning.

Intuitively, we can manually define the attributes [32] of class labels according to expert
knowledge, or automatically learn label semantic vectors [33] using machine learning
technology. These two methods are the core routes widely used in the current zero-shot
learning problem, and they have their own advantages and disadvantages, specifically, the
artificial way can define the shared semantic expression with adjudicative and semantic
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properties, so it performs very well in zero-shot learning. However, this way requires a
lot of time and relies heavily on professional knowledge, so it is not easy to popularize for
more learning problems. The automatic method is fast to construct a semantic embedding
space, and theoretically, it can learn semantic vectors of large-scale classes, so it can be easily
extended to large scale zero-shot learning. From the point of the whole field development
situation, between 2008 and 2012, we mainly use the way of artificial building semantic
embedding space, but since 2012, with the size of the object classification tasks getting
bigger, the automated way has gradually prevailed. One of the reasons is that the rise
of deep learning technology has promoted NLP performance significantly. From the
perspective of development, considering the trend of the object classification tasks, the
main strategy in the future is still the automatic way.

In the field of zero-shot learning, there are two ways to construct semantic embedded
space: manually defined semantic attributes and automatically learned semantic word
vectors. The former is the most commonly used and very effective way to construct
semantic embedded space. It uses artificially defined, shared natural language attributes,
which can be used to annotate object classes. In view of the shared nature of semantic
attributes among object classes, we can learn attribute classifiers from the training data
and then use this classifier to predict unseen classes. To be specific, for any unseen class
image, we can first judge what attributes it has, and then compare it with the attribute
annotation defined in advance, so as to determine that it belongs to the object class with
the most similar attribute annotation.

The latter uses large, more readily available unsupervised text documents (store
rich semantic information about object classes), and automatically constructs semantic
embedding spaces for object classes based on machine learning techniques. Based on text
documents, we usually convert object class tags to vector form. In NLP, the most intuitive
expression form of a word vector is one-hot encoding, that is, the 0/1 vector containing
only one 1 [0, 0, ..., 1, 0, ..., 0], where the vector length represents the size of the entire
lexicon of the text documents.

The reason why early NLP tasks adopted one-hot encoding [34] is that it has a simple
form, robustness, and a simple model based on a large amount of training data is superior
to a complex model based on a small amount of training data. However, this approach has
two disadvantages: (1) it is easy to cause dimensional disasters [35]. We know that large
documents (billions of words, millions of words) are becoming more and more common
in NLP tasks, which makes the length of word vectors in this form in millions, and it
seriously troubles the development of the NLP algorithm, especially when it is applied
to deep learning technology. (2) Semantic gap, which cannot describe the correlation
between words. One-hot encoding considers that any two words are isolated from each
other without semantic correlation.

2.3. Visual-Semantic Association Mapping Learning

Semantic embedding space is a bridge between image feature space and tag semantic
space, and the establishment of vision-semantic association is an essential cornerstone of
zero-shot learning, as shown in Figure 2.

In general, once the vision-semantic association is established, we can calculate the
similarity between any unseen class and the unseen class prototype and classify the sample
x based on the similarity. Among them, the quality of the vision-semantic relationship
directly affects the performance of zero-shot learning. On the one hand, the vision-semantic
relationship learned from the training data should have sufficient generalization ability, so
that it can be applied to the unseen mutually exclusive data to the greatest extent. On the
other hand, it should also have a strong judgment ability, so as to have a positive impact
on the subsequent recognition process based on similarity.

We can model the vision-semantic relationship in the following three ways (as shown
in Figure 2). The first one is to map image features to the semantic embedding space (we
call it forward mapping, as shown in Figure 2a), and to identify unseen classes within the
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semantic embedding space. In the second way, image features and class semantics are
embedded and simultaneously mapped to a common space (known as a common mapping,
as shown in Figure 2b), and modeled in a common space. The third one is to map the
semantic embedding vector to the image feature space (called reverse mapping, as shown
in Figure 2c) and identify unseen classes in the image feature space.
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Among them, forward mapping has been a mainstream mapping method since the
zero-shot learning problem was first applied in computer vision in 2009. In addition,
common mapping first appeared in the form of a bilinear equation in 2013, and it has
been widely adopted by researchers due to its good judgment and generalization ability.
However, reverse mapping appeared in 2015 and has been on the rise. One of the reasons is
that the image features extracted with deep learning technology have a good structure, and
the same type of data are usually distributed in clusters, with stronger judgment ability. In
contrast, the application time of reverse mapping in zero-shot learning is relatively short,
and there is still a certain development space in the future.

Both forward mapping and common space mapping methods employ the embedding
function of samples and semantic descriptors, which learn embedding by minimizing the
similarity function between the sample and the corresponding semantic descriptor, with
differences only in the embedding method and the selection of the similarity function.
These methods, after embedding, are typically categorized using a nearest neighbor search.

However, in the high-dimensional space, the nearest neighbor search will suffer from
the “hubness” problem (a certain number of data points will become the nearest neighbor
or center of almost all test points), resulting in misclassification [36]. However, if the inverse
mapping strategy [37] is adopted, namely mapping from the semantic space to the visual
space, the hubness problem can be effectively avoided. Inspired by this article, we adopt
the inverse mapping strategy in this paper. We further introduce the concept of relative
features using pair relationships between data points. This not only provides additional
structural information about the data but also reduces the dimension of the feature space,
thereby reducing the hubness problem.

However, the reverse mapping strategy is learned from the data of seen classes, so it is
inevitable to suffer from the problem of projection domain shift. Fu et al. [38] used multiple
semantic information sources to explore the projection domain shift and implemented label
transfer for unlabeled data of unseen classes to solve this problem. Recent research results,
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Debasmit [39] developed a method of unsupervised domain adaptive, taking inspiration
from which, correspondence between the projected semantic descriptors and unlabeled test
data are explored, and then put forward a kind of unsupervised domain adaptive method
based on local corresponding, this method is better than the global adaptation method.

We found that ZSL is usually an evaluation model only for unseen classes, however,
in practical applications, seen classes often appear more frequently than unseen classes.
Therefore, we expect the model to perform well for both seen and unseen classes, namely
generalized zero-shot learning (GZSL) [40], therefore a calibration mechanism is developed
to reduce the bias of seen class classification.

In this paper, aiming at the zero-shot recognition problem of wheel hub defect images,
a new model is given through a three-step strategy to improve the problems: hubness,
projection domain drift, and seen classes bias in generalized zero-shot recognition.

3. Wheel Hub Defect Dataset
3.1. Image Data

According to task requirements, we cooperated with local well-known hub manu-
facturers, collected hub defect image data on the production line, and completed defect
type labeling according to the guidance of enterprise engineers and the defect standards of
enterprises.

In order to eliminate the influence of the background and better extract the features of
hub defect images, we automatically cut the target area, and then manually checked the
segmented defect images to optimize the database. In this paper, nine kinds of hub defects
(oil pollution, grinning, scratch, block, sagging, indentation, orange peel, deformation, and
dust) were used to construct WHD-9, as shown in Figure 3.
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Figure 3. Images of wheel hub defects.

From Figure 4, we find that the distribution of classes is extremely uneven. The largest
category is oil pollution defects, and the least number is orange peels. In this case, the
machine learning algorithm finds it difficult to correctly identify the orange peel type.
It is worth mentioning that some completely unknown defect types may appear in the
future, which increases the difficulty of recognition, therefore, the study of this topic is
very necessary.
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Figure 4. Sample distribution in WHD-9. Note: D-1 = block, D-2 = grinning, D-3 = oil pollution, D-4 = scratch,
D-5 = orange peel, D-6 = sagging, D-7 = indentation, D-8 = dust, D-9 = deformation.

3.2. Domain Knowledge Base

The semantic attributes of each hub defect are different according to the product
standards of the industry. As can be seen from Table 1, block is a lump on the surface of the
paint film. Dust is white specks of soot that fall from the oven onto the surface of the wheel
hub. Oil pollution is caused by mineral oil or grease attached to the metal surface, which is
mostly round and dark in color with obvious protrusions, then 16 attributes were selected
to describe the hub defect image in the semantic attribute space. Each defect type consists
of a 16-dimension (A1, ..., A16) vector, and these vectors are encoded in one-hot [41] mode.
These 16 dimension semantic vectors will be used to build a domain knowledge base
for ZSL.

Table 1. Semantic attributes space for wheel hub defects.

Expert Defined Attribute

Color of Defects Shape of Defects Nature of Defects

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16
D-1

√ √ √ √

D-2
√ √ √ √

D-3
√ √ √ √ √

D-4
√ √ √ √

D-5
√ √ √ √ √

D-6
√ √ √ √ √

D-7
√ √ √ √ √

D-8
√ √ √ √ √

D-9
√ √ √ √

Note: A1 = white, A2 = brown, A3 = dark gray, A4 = round, A5 = droplet shape, A6 = granular, A7 = linear, A8 = irregular shape,
A9 = distinct sag, A10 = prominent protrusion A11 = obscure protrusion, A12 = dense distribution, A13 = sparse distribution, A14 = mostly
distributed on the rim of steel ring, A15 = rough texture, 16 = smooth texture.

4. Method
4.1. Problem Description

The given training data set Dtr is composed of Ntr hub defect samples, so that
Dtr = {(xi, ai yi) , i = 1, 2, 3, . . . Ntr}. Here, xi ∈ Rm×n×c is the image sample (m × n
is the image size, c is the number of channels), ai ∈ Rs is the semantic descriptor of the
defect category. Each semantic descriptor ai is associated with a unique defect label yi ∈ Ytr.
The goal of ZSR is to predict the category label yj ∈ Yte for the jth test sample defect xj. In
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a traditional ZSL,Ytr ∩ Yte = ϕ, means that there is no overlap between seen and unseen
defects. However, in the GZSL, test sets include not only unseen classes but also seen
classes, that is Ytr ∈ Yte. During the training phase, semantic descriptors for both seen and
unseen classes can be used. Since the probability of defects in seen classes is much higher
than that of unseen classes in specific identification tasks, in this paper, a generalized ZSR
framework was come up with to realize hub defect identification, as shown in Figure 5.
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As can be seen from Figure 5, a multilayer perceptron was adopted for the mapping
of semantic descriptors to image feature space. Then the semantics were embedded into
the corresponding features by means of one-to-one pairing. The semantics of the unseen
class were then embedded to accommodate the test data of the unseen class. To avoid
the framework’s preference for seen class recognition, scaling calibration was performed
during the test.

4.2. Structure Matching Strategy

About visual-semantic mapping, both forward mapping and common mapping meth-
ods use the embedding function of samples and semantic descriptors, and embedding
processing is learned by minimizing the similarity function between the embedded sample
and the corresponding embedded semantic descriptor. It is only different in the selec-
tion of embedding methods and similarity functions. These methods usually use nearest
neighbor search for classification after embedding, however, in a high-dimensional space,
nearest neighbor search always suffers from the “hubness” phenomenon, because a certain
number of data points will become the nearest neighbors or centers of almost all test
points, leading to classification errors. However, if the reverse mapping strategy is adopted,
that is, the mapping from the semantic descriptor space to the visual feature space will
effectively avoid the “hubness” problem, therefore, reverse mapping strategy was adopted
in this paper.

We need to learn a mapping function f (·) the semantic descriptor ai to its correspond-
ing image feature ϕ(xi). Where xi is the image, and ϕ(·) refers to the CNN architecture for
extracting a high-dimensional feature map. The mapping function f (·) is a fully connected
neural network. In order to make the descriptors and image features close to each other, the
least squares loss function was employed to minimize the difference. The initial objective
function L1 is shown in Equation (1):

L1 =
1

Ntr

Ntr

∑
i=1
‖ f (ai)− ϕ(xi)‖

2

2

+ λγg( f ) (1)
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where g(·) stands for normalized loss for f (·). The loss function L1 was adopted to
minimize the point-to-point difference between semantic descriptors and image features.

In order to illustrate the structural matching between the semantic space and the
feature space, we tried to minimize the pairing relationships between classes in these two
spaces. Therefore, we constructed relational matrices Da for semantic descriptors and
image features, and each of these elements was derived from [Da]uv = ‖ f (au)− f (av)‖2

2,
where au and av represent semantic descriptors of seen class defects u and v respectively.
The image feature relationship matrix Dϕ was built, and each element was calculated by

the formula
[
Dϕ

]
uv = ‖−u

ϕ − −v
ϕ ‖

2

2. Where,
−u
ϕ and

−v
ϕ represent the mean values of class u

and v respectively, which was calculated from Equation (2)

−u
ϕ =

1
|yu

tr|
∑

yi∈yu
tr

ϕ(xi) (2)

where the ∑(·) is based on the defect type u, and |yu
tr| is the cardinality of the training set

of defect type u, and the same is true for defect v.
To achieve structure alignment, the structure alignment loss function L2 needs to

be minimized.
L2 = ‖Da − Dϕ‖2

F (3)

‖ · ‖2
F Where represents the Frobenius norm, and combined with the loss functions L1 and

L2, we get the total loss Ltotal , as Equation (4) shown.

Ltotal = L1 + ρL2 (4)

where ρ ≥ 0, is used to measure the loss weight of L2. Ltotal is to optimize the parameters
of f (·).

4.3. Domain Adaption Strategy

After training, projection domain shift may occur between the mapped semantic
descriptors and the image features of the unseen classes. This is due to data from unseen
classes not being used in the training phase, so regularized models have poor generalization
ability to unseen classes. Therefore, we have to use test data from the unseen defect to
adjust the mapping semantic descriptor to fit the unseen defects.

Given the mapping descriptors of unseen classes stack vertically in the form of a
matrix A ∈ Rnu×d, where nu stands for the number of unseen classes, and d means the
dimension of semantic descriptor space.

Suppose U ∈ Rnu×d is the test data set for the unseen class, and Ou represents the
number of test samples from the unseen class. To accommodate the mapped descriptors,
a point-to-point correspondence between the descriptors and test data is used, which is
represented as a matrix C ∈ Rnu×ou . The rows of U need to be rearranged so that each row
of the revised matrix corresponds to the row in aA, which is achieved by minimizing the
loss function Equation (5).

L3 = ‖CU − A‖2
F (5)

L3 can force CU to generate adaptive semantic descriptors. However, there is still the
problem that a sample may correspond to more than one descriptor in A, which means
that it will actually result in corresponding to more than one category of test samples. To
avoid this problem, by using group-Lasso [42], an additional group-based regularization
function L4 was conducted.

L4 = ∑
j

∑
c
‖[C]Ic j‖2 (6)

where Ic means the index corresponds to those rows in the unseen class. So [C]Ic j stands
for a vector consisting of an index of rows Ic and columns j. Since C is a correspondence
matrix, certain constraints can be applied to solve the deviation of sample number between
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semantic space and feature space for unseen classes. Therefore, the domain adaptive
optimization problem can be expressed as follows Equation (7):

min
c

{
L3 + λgL4

}
s.t. C ≥ 0, C1Ou = 1nu , CT1nu =

nu

ou
1ou (7)

where λg balances the weight of loss function L4. The above optimization problems
are all convex functions, which can be effectively settled by the conditional gradient
method [43], and the method requires solving the linear function on the constraint C ∈
D =

{
C : C ≥ 0, C1ou = 1nu , CT1nu = nu

ou
1ou

}
as an intermediate step, as shown in

Algorithm 1. using the Simplex Formulation [44] in EMD [45], the variable Cd in Algorithm
1 could be easily obtained [46].

Algorithm 1: Conditional Gradient Method

Initialize: C0 = 1
nuou

1nu×ou , t = 1
Repeat
Cd = argminTr(∇C=C0 (L3 + λgL4)

TC), s. t. C ∈ D
C1 = C0 + α(Cd − C0), f or α = 2

t+2
C0 = C1 and t = t + 1

Until Convergence
Output: C0 = argmin

C

{
L3 + λgL4

}
s. t. C ∈ D

Algorithm 1 was used to obtain the final solution of the corresponding matrix C0 and
to check it. Given a test sample, we assigned the class correspondence to the maximum
value of the corresponding variable and did the same for all test samples. The semantic
descriptors of unseen classes were acquired by averaging features of the related classes,
and then adaptive semantic descriptors were stacked vertically in the matrix A′.

4.4. Recognition Anti-Bias Mechanism for GZSL

In the GZSL [47], obviously, classification performance tends to favor seen defects. To
eliminate this phenomenon, we recommend multiplication calibration for classification
scores. In this paper, 1-nearest neighbor (1-NN) and Euclidean distance measure (EDM)
were used as classifiers. For the test sample defect x, we adjusted the classification score of
seen class as shown in Equation (8).

∧
y = argmin‖x− f (ac)‖2 · I[c ∈ ϕ] (8)

where, if c ∈ ϕ or c ∈ U, and ϕ ∪U = T, then I[·] = γ. Here, ϕ, U, T represent the
seen defects, the unseen defects, and the collection of all defects, respectively. The scaling
measure is to modify the effective variance of the seen defects. When the Euclidean distance
metric is used for nearest neighbor classification, it assumes that the variance of all classes
is equal, however unseen classes are not applied to learn the embedding space, changes in
the characteristics of unseen classes are not considered, that is why the EDM is adjusted for
seen classes only. For γ > 1, if we achieved a balance between the seen and unseen defects,
which indicates that the variance of the seen classes was overestimated. Conversely, for
γ < 1, a balance was found between seen and unseen classes, which means the variance of
seen defects was underestimated. Algorithm 2 shows process of the proposed model from
training to testing.
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Algorithm 2: Three-step Zero-shot Learning Algorithm

Input: Training Dataset {xi, ai, yi}Ntr
i=1

Parameters: λr, ρ, λg, γ

Repeat (Training)
Sample Minibatch of {(xi, ai)} pairs
Gradient descent L1 + ρL2 w.r.t. parameters of f (·)

Until Convergence (Step 1)
Input: Test Dataset {(xi)}Nte

i=1
Apply Algorithm 1 to obtain adapted descriptors of unseen classes A' (Step 2)

Repeat for each test point x (Testing)
∧
y = argmin

c∈T
‖X− f (ac)‖2 · I[c ∈ T](Step 3)

Until all test points covered

5. Experiment and Analysis
5.1. Experiment Preparation

Based on the experimental setup, we evaluated using two data sets: aPY [48] including
20 seen classes and 12 unseen classes, and with an associated 64-dimensional semantic
descriptor. WHD-9 is a self-built data set about wheel hub defects, cover 6 seen classes and
3 unseen classes, each associated with a 16-dimensional semantic descriptor. The details of
both data sets are shown in Table 2.

Table 2. Dataset information.

Training
(Seen)

Testing
(Unseen)

Attribute
Dimension

No.
of Samples

aPY 20 10 65 15,339
WHD-9 6 3 16 6380

With respect to the evaluation criteria, we used class-wise accuracy because it can
avoid class dominance during intensive sampling. Therefore, the average precision of the
class was calculated as follows Equation (9):

acc =
1
|y|

|y|

∑
y=1

the number o f correct predictions f or class y
the total number o f samples f or class y

(9)

where |y| stands for the number of test defects. In the proposed model, the accuracy of
seen and unseen classes is acquired respectively, and the harmonic mean H is used for
processing [49] as shown in Equation (10), which aims to ensure that the performance of
the seen defect does not lead overall accuracy.

H =
2× accs × accu

accs + accu
(10)

where accs and accu are the classification accuracy of seen classes and unseen classes
respectively. In order to make a fair comparison, we experimented and recorded the results
for the training and test data sets on the common data sets and self-built data set.

5.2. Experiment Results

For the experiment, a two-layer feed-forward neural network for semantic embedding
was employed. For the aPY and WHD-9 data sets, the dimensions of the hidden layer
were selected as 1600 and 1200 respectively, and the activation function was ReLU. Image
features were acquired by ResNet-101.
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The proposed method was compared with previous ones. The first is to complete the
baseline model (DEM) [35]. Then the DEM+R model only includes structural matching
components using loss functions L2 in the training phase. DEM+RA model includes
structural loss components and domain adaptation components using loss functions L3 and
L4. The DEM+ARC model includes all strategies: structural matching, domain adaptation,
and anti-bias calibration. The parameters of the aPY, WHD-9 dataset (λr, ρ, λg, γ) were
set to (10−4, 10−1, 10−1, 1.1), and (10−3, 10−1, 10−1, 1.1), respectively. In Table 3, class-wise
accuracy results of the traditional unseen classes (TU), the generalized unseen classes (GU),
the generalized seen classes (GS), and the generalized harmonic mean (H) are recorded.

Table 3. Experiment results based on aPY and WHD-9.

aPY WHD-9

Methods TU GS GU H TU GS GU H
DAP[150] 33.6 79.6 6.3 11.7 40.0 57.7 2.7 5.2
IAP[140] 36.9 67.3 7.5 13.5 31.7 65.1 1.9 3.7

ConSE[141] 28.7 92.7 0.0 0.0 37.2 83.2 2.1 4.1
SYNC[142] 24.3 68.1 9.1 16.1 45.6 67.8 9.3 16.4

DeViSE[143] 40.6 78.0 6.7 12.3 51.3 58.0 15.7 24.7
DEM[102] 36.4 76.9 13.2 22.5 48.7 63.4 20.4 30.9

DEM+R(Our) 31.2 72.3 17.1 27.6 50.0 59.7 23.4 33.6
DEM+RA(Our) 37.7 74.0 32.2 44.8 54.9 55.1 47.2 50.8

DEM+RAC(Our) 37.8 65.4 35.9 46.4 55.1 54.6 48.6 51.4
Note: GS = accs, GU = accu, H is obtained through Equation (10).

As shown in Table 3, the proposed method is more effective than previous popular
methods, and compared with the baseline model, the harmonic mean of the proposed
method was significantly increased. The performance improvement can be owed to the
three-step strategy. For both data sets, only using structural matching (DEM+R) yielded
better performance than the baseline model, with 22.7% (aPY) and 8.7% (WHD-9) im-
provements. Additional use of domain adaptation (DEM+RA) showed much better results
than DEM+R, increased by 62.3% (aPY), 51.2% (WHD-9), but DEM+RAC with calibration
components produced only marginal improvements, 3.5% (aPY), 1.2% (WHD-9). This is be-
cause the relational matrix-based component produces class-specific adaptation (DEM+RA)
to the semantic embedding of unseen classes, whereas the calibration component is not
category-specific, just distinguishing between seen classes and unseen classes, so it is
understandable that the effect of improving performance is not obvious.

5.3. Experiment Analysis

(1) Analysis of structure matching components

The effect of structure matching was analyzed by changing ρ ∈ {10−3, 10−2, 10−1, 100,
101, 102}, and the change in accuracy was recorded. We conducted experiments using the

WHD-9, the results of which are recorded in Figure 6.
It can be seen from Figure 6 that based on the WHD-9, the conventional unseen class

accuracy (Figure 6a) and the generalized seen class accuracy (Figure 6b) are better than
or similar to the baseline model DEM, while, the accuracy of the generalized unseen class
(Figure 6c) is higher than that of DEM, and the harmonic mean (Figure 6d) is significantly
better than that of DEM. It can be seen from Figure 6d that when ρ = 101, the effect of the
harmonic mean is the best.

Compared with baseline DEM, we verified that the DEM+R strategy contributes
to hubness reduction. Hubness is measured by a bias of 1 nearest neighbor histogram
(N1) [50]. A smaller skewness of the N1 histogram means less hubness prediction, and we
used test samples of unseen classes in the generalized setting, as shown in Table 4.
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Table 4. Hubness reduction using structure matching strategy.

Method/Dataset WHD-9 aPY

DEM 1.69 1.83
DEM+R 1.15 1.37

In Table 4, WHD-9 and aPY datasets are used for experiments of DEM and DEM+R.
Let ρ = 0.1, the average value of multiple experiments is recorded in the Table, as can
be seen from Table 4, the hubness of the N1 histogram generated by the DEM+R method
on both data sets is smaller. This means that the use of an additional structural matching
strategy will reduce hubness, therefore it can alleviate the trouble of dimension disaster.

(2) Domain adaptive component analysis

As can be seen from Table 3, compared with DEM+R, the unseen class accuracy of
DEM+RA increased by 88% (aPY), 101% (WHD-9), harmonic mean increased by 62.3%
(aPY), 51.2% (WHD-9). Figure 7 shows the effect of domain adaptation by using t-SNE [51]
on WHD-9. As shown in Figure 7a, the unseen class semantic embedding (purple) is very
near to the seen class feature (blue). However, through the domain adaptation step, as
shown in Figure 6b, the unseen class semantics are transformed, which is obviously close
to the center of the feature family (red) of the unseen class.

(3) Analysis of Calibration Mechanism

In Table 3, compared with the DEM+RA model, the “GU” performance of the DEM+RAC
model was improved by 11.4%(aPY), 2.9% (WHD-9), and “H” performance increased by
3.6% (aPY), 1.2% (WHD-9), the reason may be that domain adaptive steps have already
transferred the semantic embedding of unseen classes and accordingly shrunk the bias on
seen classes and made further calibration not obvious.
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Figure 7. t-SNE diagram of embedded samples. (a) Domain-free adaptation for WHD-9; (b) Domain adaptive operation is
adopted. The image features of seen and unseen classes are represented in blue and red respectively. Embedded semantic
descriptors for seen and unseen classes are represented in yellow and purple respectively.

6. Conclusions

In this paper, firstly a wheel defect data set (WHD-9) was built (image collection and
domain knowledge expression). Secondly, a generalized zero-shot recognition framework
for wheel hub defect image was proposed. This three-step recognition method is as follows:
Step 1: Structural matching strategy, Step 2: Domain adaptation, Step 3: Calibration of
classification scores. The model was validated by using the public data set aPY and the
self-built WHD-9. The experiment result shows that the proposed three-step strategy
is better than the previous method to a large extent, in that, Step 1 makes the hubness
problem significantly reduced; Step 2 makes the projection domain shift well eliminated;
Step 3 makes the bias problem of the seen class in the generalization recognition slightly
decreased. Among them, the improvement of Step 2 is the most obvious.
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