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Abstract: To reduce the impact of congestion, it is necessary to improve our overall understanding
of the influence of the autonomous vehicle. Recently, deep reinforcement learning has become
an effective means of solving complex control tasks. Accordingly, we show an advanced deep
reinforcement learning that investigates how the leading autonomous vehicles affect the urban
network under a mixed-traffic environment. We also suggest a set of hyperparameters for achieving
better performance. Firstly, we feed a set of hyperparameters into our deep reinforcement learning
agents. Secondly, we investigate the leading autonomous vehicle experiment in the urban network
with different autonomous vehicle penetration rates. Thirdly, the advantage of leading autonomous
vehicles is evaluated using entire manual vehicle and leading manual vehicle experiments. Finally, the
proximal policy optimization with a clipped objective is compared to the proximal policy optimization
with an adaptive Kullback–Leibler penalty to verify the superiority of the proposed hyperparameter.
We demonstrate that full automation traffic increased the average speed 1.27 times greater compared
with the entire manual vehicle experiment. Our proposed method becomes significantly more
effective at a higher autonomous vehicle penetration rate. Furthermore, the leading autonomous
vehicles could help to mitigate traffic congestion.

Keywords: urban network simulation; deep reinforcement learning; proximal policy optimization;
artificial neural network; autonomous vehicles

1. Introduction

Creating a smoother and safer road network is a crucial purpose of traffic management
agencies and researchers that has led to various studies about different transport aspects.
According to a road safety report in Korea, urban roads made up 51.1% of traffic-related
deaths in 2019. In addition, intersection collision is a complicated type of road accident,
comprising 49.8% of junction collisions in Korea in 2019 [1]. Furthermore, the number
of collisions at an un-signalized junction is higher than that at a signalized intersection
due to a higher collision rate and more complex interactions. The traffic rules of signal-
ized intersections are usually disrupted by careless drivers. Autonomous vehicles (AVs)
can operate with less human intervention or without human drivers through integrated
sensors—namely, radar, lidar, and three-dimensional (3D) cameras, etc. They have become
a promising approach to prevent human error and enhance traffic quality, and full automa-
tion vehicles are expected as quickly as 2050 [2]. Intersections are also the main issue in
applying autonomous driving technologies, especially for non-signalized intersections.
The autonomous vehicle (AV) classification defines six levels ranging from level zero (no
automation) to level five (full automation) according to the Society of Automotive Engi-
neers [3]. To push AVs into the real world, the Cooperative Intelligent Transport Systems
(C-ITS) were designed to communicate information between transportation means and
road infrastructures. Furthermore, advanced driver assistance systems (ADAS) that can
help vehicles detect numerous dangerous situations, activate autonomous driving mode,
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or alert drivers have been applied to connected and automated vehicles (CAVs). The
ultimate purpose of ADAS is the full automation of technology. For example, Wu et al. [4]
applied vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications to the
improvement of intersection movement assistance. Additionally, Philip et al. [5] applied the
internet-of-things (IoT) to smart traffic control. This helped AVs automatically collaborate
with the roadside unit and independently decide their speeds. Soon, AVs will share the
road with human-driven vehicles (HVs). Hence, this study focuses on the mixed-traffic
environment that interacts between HVs and AVs in an urban network with multiple
un-signalized intersections.

Motivated by the challenges of the self-driving controller, the training and validation
of autonomous driving has become the most complex issue. A promising approach is
the simulation of autonomous driving in a physical environment. Numerous simulation
programs have been introduced to represent AVs in the real world—namely, an open racing
car simulator (TORCS), car learning to act (CARLA), and a simulation of urban mobility
(SUMO). Xu et al. [6] used reinforcement learning (RL)-based image semantic segmentation,
adopting the TORCS simulator. Nevertheless, TORCS did not support the factors of urban
simulation, such as intersections and traffic rules. The CARLA simulator was applied to
train and evaluate the autonomous driving model with respect to perception and control [7].
However, CARLA only focused on an individual autonomous agent. SUMO, which was
introduced by the German Aerospace Center, is capable of simulating multi-agents for
an urban-scale network [8]. The SUMO simulator can integrate with the third program
(i.e., Python, MATLAB) by adopting a traffic control interface (TraCI). Furthermore, Flow,
which is a Python-based tool, integrates a simulator (i.e., SUMO, Aimsum) and RL library
(i.e., RLlib, Rllab) [9]. Thus, the integration of a SUMO and Flow has become a hopeful
approach to control multi-autonomous agents in mixed-traffic environments. Various
studies have applied the integration of Flow and a SUMO to mixed-traffic conditions.
For example, Wu et al. [10] applied a SUMO and Flow to figure eights and roundabouts.
Kreidieh et al. [11] used a SUMO and Flow for highway simulation. They evaluated the
simulation performance with a time-space diagram and reward values. Koh et al. [12] used
a SUMO and Middleware for vehicle navigation in an urban network. Furthermore, the
reduction in delay time, fuel consumption, and emissions could happen with a higher
average speed. Hence, the average speed has become a promising metric to verify a training
policy in the real environment.

Considering longitudinal vehicle motion modeling, the car-following models were
applied to a microscopic traffic simulation in order to explain the vehicle following behavior.
Adaptive cruise control (ACC), an advanced car-following model, was applied to set the
relative distance between vehicles. Previous studies have used an automotive system
to enhance safety and smooth traffic. Rajamani and Zhu [13] used the ACC system in
a semi-autonomous vehicle. However, ACC relies upon constant spacing. Recently, the
car-following model was conducted for AVs according to discrete following interval in
order to improve the traffic flow stability [14]. The intelligent driver model (IDM), which
was proposed by Treiber and Helbing [15], showed a principal superiority against other
ACC models. This means that the parameters of the IDM are available and intuitive to
improve real capacity. The IDM was also conducted by the BMW vehicle manufacturer.
Additionally, the advantage of the IDM was embedded in the SUMO simulator [15]. For
example, the IDM was applied to instability in a traffic congestion flow [16]. Therefore, the
IDM can take effective control of HVs in a simulation environment.

Furthermore, recent breakthroughs in artificial intelligence (AI) have been designed
to enhance autonomous driving domains. For example, the policy search guidance was
conducted by deep convolutional neural networks (CNNs) [17]. The convolutional long
short-term memory (Conv-LSTM) was designed for AV’s motion planning [18]. Addi-
tionally, the NVIDIA drive is one of the leading AI platforms for automated driving
applications [19]. The MobilEye EyeQ5 could be advantageous in complex tasks thanks
to four parallel optimized machine learning paradigms [20]. However, these approaches
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need a large number of datasets or a commercial platform. Recently, numerous studies
have focused on RL-based driving tasks in dynamic conditions. RL, which is a subset of
machine learning, is significantly different from unsupervised learning and supervised
learning. It tries to maximize a reward from state and observation instead of finding a
hidden structure in the input data. The traditional RL is the Markovian decision process
(MDP) initiated by Bellman [21]. MDP relies on discrete stochastic algorithms to optimize
the policy. Nevertheless, AVs operate in an uncertain condition due to the intentions of
human drivers and the noise of the sensor. To overcome this issue, a partially observable
MDP (POMDP) was applied to keep a probability distribution through a set of obser-
vations [22]. Recent studies have used RL for transportation issues—namely, adaptive
traffic signal control [23,24] and autonomous vehicle agents in roundabouts [25]. Further-
more, the development of a deep neural network (DNN) can enhance feature extraction
representations for complex tasks based on multi-hidden layers. By integrating RL and
DNN, which is named deep reinforcement learning (DRL), the training policy has achieved
a more reliable performance. For example, Tan et al. [26] used the DRL for large-scale
adaptive traffic signal control (ATSC). Chen et al. [27] applied DRL to left turn CAVs at a
signalized intersection. Kim and Jeong [28] applied DRL to control multiple signalized
intersections. Additionally, Capasso et al. [29] used DRL for an intelligent roundabout.
More importantly, policy optimization can help to enhance the DRL performance. Numer-
ous studies have used neural network function approximators—namely, asynchronous
advantage actor-critic (A3C) [30], deep Q-learning [31], trust region policy optimization
(TRPO) [32], and proximal policy optimization (PPO) [33]. Deep Q-learning is badly under-
stood and has failed in various simple tasks. Additionally, TRPO has a higher complexity.
In contrast, PPO has become an effective method that uses multiple epoch updates along
a minibatch. Hence, the DRL-based PPO framework has become the dominant means
to control multiple autonomous vehicles. PPO-based DRL was applied to a lane-change
decision controller in terms of safety, efficiency, and comfort [34]. Nevertheless, research
on hyperparameters within the real traffic volume has been lacking. More recently, the
DRL-based PPO algorithm was applied to evaluate the efficiency of multiple autonomous
agents at a non-signalized intersection through the AV penetration rate [35]. We showed
that the efficiency became more obvious as the AV penetration rate became higher within
the real traffic volume. However, we did not consider the efficiency of an urban network
with multiple non-signalized intersections. Hence, it is necessary to research multiple
autonomous vehicles in an urban network with multiple non-signalized intersections by
adopting a DRL-based PPO algorithm.

In this study, we show an advanced DRL method to evaluate the efficiency of leading
autonomous vehicles in mixed-traffic conditions in an urban network. Our proposed
method connects DRL agents and the traffic simulator through the Flow tool to consider
the efficiency of the leading autonomous vehicles. Furthermore, we propose a set of hyper-
parameters to improve the DRL performance. Firstly, we configure the initial simulation
experiment and feed a set of hyperparameters into the DRL agents. Secondly, we perform
the leading autonomous vehicle experiment in an urban network with different AV penetra-
tion rates that range from 20% to 100% in 20% increments. Thirdly, manual leading vehicle
and entire manual vehicle experiments are applied for the evaluation of the advantages of
the proposed method. Finally, the PPO with a clipped objective is compared to the PPO
with an adaptive Kullback–Leibler (KL) penalty to verify the advantage of our proposed
hyperparameter. The main contributions of our study can be highlighted as follows.

• An advanced DRL-based PPO method shows the integration of multilayer perceptron
(MLP) and RL through the PPO algorithm to optimize the DRL policy and evaluate
the efficiency of the leading autonomous vehicles in the urban network within the real
traffic volume over AV penetration rates. The leading autonomous vehicle experiment
outperformed other experiments regarding the DRL policy, mobility, and energy.

• The hyperparameters of the PPO with a clipped object are suggested to enhance the
autonomous extraction feature and to yield a better performance in the urban network.
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• The meaningful development of traffic congestion in the urban network relies upon
AV penetration rates. The proposed method becomes more effective with a higher AV
penetration rate.

The remainder of our work is constituted as follows. The car-following model, the
proximal policy optimization, and the deep reinforcement learning method’s architecture
are presented in Section 2. Section 3 presents the hyperparameter tuning and performance
evaluation metrics. Section 4 presents the experiments and results. Section 5 consists of our
conclusion.

2. Research Methodology
2.1. Car-Following Model

A basic car-following model expresses the human-driven vehicle’s longitudinal dy-
namics through observations of the vehicle and its corresponding leading vehicles—namely,
its velocity, its relative distance, and the headway between vehicles. A basic car-following
model is described as follows:

ai = f (hi,
.
hi, vi), (1)

where ai indicates the vehicle’s acceleration, f () indicates the nonlinear approximation, vi

indicates the leading vehicle’s speed,
.
hi indicates the relative speed, and hi expresses the

headway between vehicles.
To improve the realistic driver modeling, the IDM that is a subset of the ACC system

conducts human-driven behavior through the longitudinal dynamic. In this study, the “get”
function sets the vehicle speed, the leading vehicle’s identification (ID), and the headway
between vehicles. Accordingly, the vehicle acceleration command is expressed as follows:

aIDM = a

[
1−

(
v
v0

)δ

−
(

s∗(v, ∆v)
s

)2
]

, (2)

where aIDM indicates the vehicle acceleration, v0 indicates the desired velocity, δ indi-
cates the acceleration exponent, s indicates the headway between vehicles, and s∗(v, ∆v)
expresses the desired headway. In particular, the desired headway is shown as follows:

s∗(v, ∆v) = s0 + max
(

0, vT+
v∆v

2
√

ab

)
, (3)

where S0 indicates the minimum gap, T indicates the time gap, ∆v, indicates the difference
between the current velocity and the lead velocity, a indicates the acceleration term, and b
indicates the comfortable deceleration.

Based on Treiber and Kesting [36], the typical IDM parameters in the context of city
traffic are expressed in Table 1.

Table 1. Typical intelligent driver model (IDM) parameters in the context of city traffic.

Parameters Value

Desired speed (m/s) 15
Time gap (s) 1.0

Minimum gap (m) 2.0
Acceleration exponent 4.0

Acceleration (m/s2) 1.0
Comfortable acceleration (m/s2) 1.5

2.2. Proximal Policy Optimization (PPO)

Policy gradient methods try to repeatedly estimate the parameterized policy function
to maximize the expected reward. They are able to enhance convergence that is affected
by partial observation and nonlinear function. In this work, the MLP policy is applied for
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the maximization of the acceleration policy in the urban network. The policy gradient is
illustrated as follows:

g = E[∇θ log πθ(at|st)Aπ,γ(at|st)], (4)

where E[.] denotes the expectation operator, log πθ denotes the policy probabilities, πθ

denotes a stochastic policy, Aπ,γ indicates the advantage function, at denotes the specific
action, and st indicates the specific state.

In addition, the advantage function is defined by the state–action value function (Qπ,γ)
and the state value function (Vπ,γ).

Aπ,γ(at|st) = Qπ,γ(at|st)−Vπ,γ(st), (5)

Subject to Qπ,γ(at|st) := E St+1:∞,
at+1:∞

[
∑∞

l=0 γlrt+l

]
, (6)

Vπ,γ(st) = E St+1:∞,
at:∞

[
∑∞

l=0 γlrt+l

]
. (7)

PPO, which is provided by the RLlib library, was initiated by Schulman et al. [33].
In other words, PPO’s objective utilizes a trust region constraint to consolidate that the
updated policy is not too remote from the old policy. There are two categories of the PPO
algorithm—namely, clipped objective and adaptive KL penalty. The PPO makes an updated
policy based on a surrogate loss function to improve performance during the DRL process.
Comparing PPO with an adaptive KL penalty, the PPO with a clipped objective can perform
better in continuous tasks in a complex environment. For continuous tasks, the output of
the PPO policy conforms to the Gaussian distribution and then creates a continuous output
with respect to this distribution. In this work, PPO with a clipped objective is conducted
to generate a new objective function by adopting a minibatch stochastic gradient descent
(SGD) as follows.

LCLIP
θk

(θ) = E
[
∑T

t=0

[
min(rt(θ))Aπk

t , clip(rt(θ), 1− ε, 1 + ε)Aπk
t
]]

, (8)

where θ is the policy parameter and ε is the clipping threshold. If the probability ratio
between the old and updated policies is outside its variation between (1− ε) and (1 + ε),
the advantage function will be cut.

Monte Carlo-based policy gradient methods are more popular than value-function-
based policy gradient methods. In this study, the generalized advantage estimation (GAE)
calculates the advantage function to obtain a better policy gradient [37]. In addition, the
GAE significantly achieves faster policy improvement due to an explicit tradeoff between
bias and variance through a timescale parameter. The GAE is expressed as follows:

AGAE(γ,λ)
t := ∑∞

l=0(γλ)lδV
t+l . (9)

The clipped PPO is like the original PPO with small, simplistic changes. First, the
training process includes both the value and policy networks using a single loss function
(the sum of each loss function). The back-propagation gradients are executed only once
based on their unified loss function. Second, the adaptive moment estimation (Adam) is
applied to the unified network’s optimizer. Third, value targets are calculated according to
GAE. Finally, the likelihood ratio is clipped through the standard surrogate loss and the
epsilon clipped surrogate loss. PPO tries to address this by only making small updates
to the model in an updated step, thereby stabilizing the DRL process. The complete PPO
with a clipped objective algorithm (namely Algorithm 1) is presented in pseudocode as
follows [38]:
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Algorithm 1 PPO with a Clipped Objective Algorithm.

1: An initial policy parameters θ0, clipping threshold ε

2: For k = 0, 1, 2 . . . do
3: Gather set of trajectories on stochastic policy πk = π(θk)
4: Estimate GAE advantages Aπk

t using GAE technique
5: Compute policy update θk+1 = argmax

θ

LCLIP
θk

(θ)

6: by talking K steps of minibatch SGD (via Adam)

LCLIP
θk

(θ) = E
[

T
∑

t=0

[
min(rt(θ))Aπk

t , clip(rt(θ), 1− ε, 1 + ε)Aπk
t
]]

7: End for

2.3. Deep Reinforcement Learning Method Architecture

RL, which is a subset of machine learning, learns to optimize a policy based on
the trial-and-error method. The traditional type of RL is the MDP algorithm, and it is
well-suited for full observations. Nevertheless, AVs operate in mixed-traffic conditions in
which a dynamic environment consists of human-driven intentions and sensor noise. To
address the limitations of MDP, a POMDP is well-suited for partial observations. The agent
keeps a probability distribution in the possible states through a set of observations. The
objective learning of the POMDP algorithm is to maximize the expected reward regarding
the stochastic policy. A POMDP algorithm is a tuple (B, A, T, R, Z, O, γ), where B indicates
the set of belief states, A expresses the set of actions, T indicates the belief state transition,
R defines the reward function through executing action, Z indicates the set of observations,
O defines the observable function, and γ indicates the discount factor.

DNN, which is a generalization of an artificial neural network (ANN), is able to
extract features autonomously with respect to the representations of multi-hidden layers.
To enhance the continuous tasks, the MLP, which was proposed by Rumelhart et al. [39],
is applied to create the set of acceleration actions based on the updated states (the output
of the SUMO simulation over every time step). Additionally, the PPO is used to improve
the DRL performance. In this work, the advanced DRL method, which is the integration
of RL and MLP, is used to evaluate the efficiency of leading AVs in the urban network
along with nine non-signalized intersections. Firstly, the SUMO simulator conducts one
time step. Secondly, the RL library (RLlib) trains and generates the set of acceleration
policies according to the updated states of the SUMO simulator through the Flow tool. The
objective learning of the MLP policy is to optimize the acceleration policy in terms of the
set of observations. Figure 1 shows the DRL-based multi-agents in the urban network [35].
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In the DRL method, the policy is designed to communicate between perceptions and
actions in a partial environment. Our proposed method refers to the MLP policy with
multi-hidden layers as the controller of DRL agents. Based on the observations and states
from the SUMO output, the controller iteratively updates parameters to maximize the
discounted return. The expected cumulative discounted return is expressed as follows:

η(π0) = ∑T
i=0 γiri, (10)

where γi indicates the discount factor and the r indicates the reward.
The objective learning of the DRL agents is to optimize the stochastic policy, which is

shown as follows.
θ∗ := argmaxθη(π0). (11)

In this work, we apply the DRL method for closed-loop online optimization. This
method integrates the SUMO simulator with DRL agents (RLlib library) by adopting the
Flow framework. As shown in Figure 2, the advanced method’s architecture consists of
three parts: First, the SUMO is the environment simulator that executes realistic exper-
iments in time steps. Second, the Flow tool integrates the SUMO environment and the
DRL agents. Third, the RLlib library optimizes the cumulative reward based on the SUMO
simulator’s state. Finally, the simulation resets and iterates the DRL processing [35].
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Figure 2. The advanced method’s architecture.

The SUMO simulator can apply DRL through TraCI, which is a python-based ap-
plication programming interface (API). It can enable DRL agents to integrate with the
traffic simulator. In this study, the SUMO simulator is applied to the urban network along
with nine non-signalized intersections. A simulation of the urban network is expressed
in Figure 3. Furthermore, the Flow tool, which was introduced by UC Berkeley, is the
API for DRL agents and custom traffic simulators. The superiority of Flow consists of the
easy implementation of numerous road types. In the proposed method’s architecture, an
environment simulation consists of six parts—namely, initialized simulation, state, action,
observation, reward function, and controller—for the urban network, along with nine
non-signalized intersections. This method accesses the state information of entire vehicles
in an urban network and gives the state’s advantage features for the DRL agents to obtain
the appropriate policy. More details about these parts are shown in the following.
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Figure 3. A simulation of urban mobility (SUMO) simulator for the urban network.

Firstly, the initialized simulation presents the initial environment settings—namely,
the velocity, position, acceleration, deceleration, trajectories, the number of vehicles, and
the PPO hyperparameters. In these trajectories, the SUMO simulator configures the number
of points (nodes), the number of links (edges), and the directions of entire vehicles (routes).
In addition, the SUMO also controls human-driven actions (e.g., accelerations). The RLlib
library is applied to control the actions of AVs based on the MLP policy.

Secondly, a state expresses the capable representation of AVs and their surrounding
vehicles in terms of the current traffic condition. The state representation that exactly
depicts its complex condition consists of multiple parameters—namely, the positions
and speeds of the AVs, as well as the positions and relative distances of the leading and
following AVs. In the state, the identifications of entire vehicles are obtained in the urban
network, and the positions and speeds of entire vehicles are acquired to create the state.
The state is illustrated as follows:

S =



x0
v0
vl
dl
v f
d f

, (12)

where S indicates the specific state, x0 indicates the autonomous vehicle’s coordinates,
v0 indicates the autonomous vehicle’s velocity, vl indicates the leading autonomous ve-
hicle’s velocity, vf indicates the following autonomous vehicle’s velocity, dl indicates the
leading autonomous vehicle’s bumper-to-bumper headway, and df denotes the following
autonomous vehicle’s bumper-to-bumper headway.

Thirdly, the action that is provided by the OpenAI gym indicates the acceleration
actions of the AVs in the simulation environment. The actions are discrete decisions
corresponding to the specific autonomous agent. In this work, the bounds of acceleration
actions are a variation between maximum deceleration and maximum acceleration. In
the action, the specific action command is transferred to the actual control by using the
apply_RL_actions function.

Fourthly, the observation, which relies upon the output of the SUMO simulator,
presents the features of observations, such as the velocity of the autonomous vehicles,
the position of the autonomous vehicles, as well as the velocities and bumper-to-bumper
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headways of the corresponding leading and following autonomous vehicles, as expressed
in Figure 4. The observations are used as the updated state to train and choose the best
action in the RLlib library.
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Fifthly, there is the reward function, which is the most critical factor of DRL, to
converge the optimal policy. The purpose of the reward is to maximize discount returns. In
addition, the higher average speed leads to reducing traffic congestion in an urban network.
Thus, the average speed is used as a dominant metric to verify the expected reward. In
this study, the DRL agent tried to achieve a higher average velocity while penalizing traffic
collisions between vehicles in an urban network. The current speeds of entire vehicles
were acquired by the get_speed function and then the average velocity was converted
as the return. For the reward function, the L2 norm was applied to the measurement of
the positive distance with respect to the entire desired speed in an urban network. The
expected reward is illustrated as follows [40]:

rt := max
(
||vdes·lk||2 − ||vdes − v||2, 0

)
/||vdes·lk||2, (13)

where vdes indicates the arbitrary desired speed and v ∈ Rk indicates the velocities of entire
vehicles in the urban network.

Sixthly, the controller governs the acceleration actions of entire vehicles—namely, AVs
and HVs. The sharing controller is used for entire vehicles in the simulation environment.
In this study, the HVs were conducted by the Flow tool, and the AVs were conducted by
the RLlib library.

Finally, termination is achieved when the number of iterations is finished or a collision
between vehicles happens.

3. Hyperparameter Tuning and Performance Evaluation Metrics

Previous studies have analyzed the parameter sensitivity in two ways. The first way
is that the unsureness connected with the input parameter sensitivity has been propagated
over the model. This process has a big impact on the general output change. Secondly, there
has been the most correlation between the model output and the input parameter. In other
words, the little changes in the input parameter led to noteworthy changes in the model
output [41]. In this work, we used the first approach to analyze the parameter sensitivity
for the DRL method. This means that PPO algorithm tries to address this by only making
small updates to the model in an updated step through the back-propagation gradients,
thereby stabilizing the DRL process. The sensitivity analysis in the DRL paradigm is a
complex process through the black box.
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PPO hyperparameter tuning is a principal means of selecting the proper variables for
an optimal DRL method architecture in an urban network. In particular, the time horizon
per training iteration is measured as a multiplication of the time horizon and the number of
rollouts. The time horizon value is 1500 for a single rollout. The number of rollouts value
is 4. Hence, the time horizon value is 6000 for a training iteration. The number of hidden
layers affects the training accuracy and performance. The training accuracy is higher and
the performance is lower with a higher hidden layer. The “256 × 256 × 256” indicates
that we configured three hidden layers, and each layer consists of 256 neurons. GAE
lambda (λ) defines the smoothing rate that estimates the weights of different bootstrap
lengths to ensure a stable training process. The advantage function will be cut when the
probability ratio between the old and updated policies is outside the variation between
(1 − ε) and (1 + ε). The clip parameter value is 0.2. The step size is sensitive to obtain good
results. The training process with a smaller value is short. The number of SGD iterations
represents the number of SGD epochs per optimization round. In this work, a set of PPO
hyperparameters is proposed for mixed-traffic conditions in the urban network shown in
Table 2. Furthermore, the DRL agents outperformed the iteration value of 200.

Table 2. A set of hyperparameters for the mixed-traffic conditions in the urban network. SGD:
stochastic gradient descent; GAE: generalized advantage estimation.

Parameters Value

Number of training iterations 200
Time horizon per training iteration 6000

Hidden layers 256 × 256 × 256
GAE Lambda 1.0

Clip parameter 0.2
Step size 5 × 104

Value function clip parameter 10 × 103

Number of SGD iterations 10

In our experiments, the performance of the DRL policy was proved by the average
reward curve. A flattening of the average reward curve shows that the DRL policy totally
converged. In the SUMO simulator, emissions and fuel consumption rely on the handbook
emission factors for road transport (HBEFA). These values are designed as a timeline of
speeds/accelerations for a single vehicle. Importantly, the measures of effectiveness (MOE),
which can forecast and solve traffic problems, is applied to verify the performance of this
method as follows:

• Average speed: the mean velocity values of entire vehicles in the urban network.
• Fuel consumption: the mean fuel consumption values of entire vehicles in the ur-

ban network.
• Emissions: the mean emission values of entire vehicles in the urban network—namely,

nitrogen oxide (Nox) and hydrocarbons (HC).

4. Experiments and Results
4.1. Simulation Scenarios

This method applies the DRL agents to represent entire vehicles under mixed-traffic
conditions in the urban network. In every time step simulation, the DRL agents obtain the
updated state information and respond to the new state of the simulation environment
in under 0.1 s. In addition, the right-of-way rule, which avoids traffic collisions based on
traffic regulations, is used for the vehicle controller. More importantly, DRL agents learn
to achieve a higher reward as soon as possible. Continuous routing is used to keep entire
vehicles in the urban network. The IDM model is applied to control HVs.

Simulation is increasingly being used in autonomous driving control as an excellent
chance for potentiality assessment. A simulation works to achieve the best interaction of
autonomous vehicles under a mixed-traffic condition, by using some assumptions to make
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the experience seem as real as possible. But in reality, they are very different scenarios
with various disturbance factors. For instance, a vehicle could suddenly brake or cut in
another lane, or aggressive drivers could cause accidents on the road. Furthermore, the
traffic flow could be affected by overcrowding on the road, violation of the traffic rules, etc.
Hence, the simulation could not fully cover the real scenarios due to the limitation of the
knowledge and software. In this work, we assumed some simulation conditions, such as
platooning vehicles only drive straight ahead to approach the urban network within the
real traffic volume. Furthermore, this study tried to achieve a higher average velocity while
penalizing traffic collisions among vehicles in the urban network. We conducted various
experiments with a time step of 0.1 s, a lane width of 3.2 m, two lanes in each direction,
a length in each direction of 3000 m, a distance between two intersections of 400 m, a
maximum acceleration of 3 m/s2, a minimum acceleration of −3 m/s2, a maximum speed
of 12 m/s, and a traffic volume of 1000 vehicles per hour in each direction. Figure 5 shows
the leading autonomous vehicle experiment in the urban network.
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To exhibit the advantage of the leading autonomous vehicle experiment (the pro-
posed experiment), other experiments are conducted to be compared with the proposed
experiment—namely, the leading manual vehicle and entire manual vehicle experiments.
Figure 6 shows a comparison of experiments in the urban network.
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To evaluate the superiority of the PPO with a clipped objective hyperparameter (the
proposed hyperparameter), the PPO with an adaptive KL penalty is compared to the
proposed hyperparameter. In particular, the PPO with an adaptive KL penalty updates
the policy through the weight control coefficient. This process bases on the difference
between the current KL divergence and the target KL divergence [38]. According to Duy
and Bae [35], the PPO with an adaptive KL penalty hyperparameter is shown in Table 3.

Table 3. Proximal policy optimization (PPO) with adaptive Kullback–Leibler (KL) penalty hyperpa-
rameters.

Parameters Value

Number of training iterations 200
Time horizon per training iteration 6000

Gamma 0.99
Hidden layers 256 × 256 × 256

Lambda 0.95
Kullback–Leibler target 0.01

Number of SGD iterations 10

4.2. Simulation Results
4.2.1. Performance of Deep Reinforcement Learning Policy

The average reward curve was applied to evaluate the DRL performance. Figure 7
presents the average reward curve over AV penetration rates. The smoothing of the curve
of entire cases illustrates that the DRL policy totally converged. Additionally, when the AV
penetration rate was higher, it obtained a superior average reward. Full autonomy traffic
performed better than other AV penetration rates. This indicates that full autonomy traffic
achieved the highest average reward of 135.611. Comparing the 20% AV penetration
rate, full autonomy traffic performed 3.1 times better than the average reward. The
results illustrate that the improvement in the average reward became much better when
the AV penetration rate increased. Therefore, the efficiency of the leading autonomous
vehicles became significantly obvious in the urban network when the AV penetration rate
was higher.
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4.2.2. Efficiency of the Leading Autonomous Vehicles Regarding the Flattening Velocity

To evaluate the efficiency of leading autonomous vehicles in terms of the flattening
velocity, the spatial–temporal diagram for the urban network over the AV penetration
rates is shown in Figure 8. The points are color-coded regarding velocity. If the points are
near the bottom, the traffic flow is more congested, whereas those near the top express a
better traffic flow. Concerning the behavior of HVs, the congestion occurs with a lower
AV penetration rate. As seen in Figure 8, almost all points approach the top as the AV
penetration rate becomes higher. This means that the leading AVs can help to mitigate
stop-and-go waves in an urban network. In contrast, almost all the points approach the
bottom with lower AV penetration rates due to human-driven behaviors. Full automation
traffic obtained a superior smoothing velocity in entire cases. Therefore, the traffic flow
was less congested and smoother with a higher AV penetration rate.
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4.2.3. Efficiency of the Leading Autonomous Vehicles Regarding Mobility and Energy

To consider the efficiency of leading autonomous vehicles regarding the MOE evaluation—
namely, average speed, fuel consumption, and emissions—the results of the MOE evaluation
are used for the urban network over AV penetration rates, as shown in Figure 9. The MOE
evaluation’s results express the fact that the efficiency of the leading autonomous vehicles was
significantly more obvious with a higher AV penetration rate. Concerning mobility, the average
speed increased when the AV penetration rate was higher. As seen in Figure 9a, comparing the
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20% AV penetration rate case, full automation traffic increased the average speed 1.07 times.
Concerning energy, fuel consumption and emissions were gradually reduced when the AV
penetration rate was higher. As seen in Figure 9b,c comparing the 20% AV penetration rate
case, full automation traffic decreased fuel consumption 1.09 times and emissions 1.23 times.
Therefore, the efficiency of leading autonomous vehicles with respect to the MOE evaluations
became much better with a higher AV penetration rate.
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4.2.4. Comparison of Leading Autonomous Vehicle Experiments

To evaluate the advantages of the proposed experiment, other experiments were
executed—namely, the entire manual vehicle and leading manual vehicle experiments,
as shown in Tables 4 and 5. Concerning mobility, the proposed experiment obtained the
development of average speed compared with the entire manual vehicle experiment. As
seen in Table 4, comparing the entire manual vehicle experiment, the 20% AV penetration
rate case increased the average speed 1.19 times. Comparing the entire manual vehicle
experiment, full automation traffic obtained an increase in the average speed of 1.27 times.
Concerning the DRL policy, the proposed experiment obtained a development of average
reward compared with the entire manual vehicle experiment. Additionally, comparing the
entire manual vehicle experiment, the 20% AV penetration rate case increased the average
reward 3.77 times. Full automation traffic obtained a development in the average reward of
11.64 times compared with the entire manual vehicle experiment. Therefore, the proposed
experiment performed better than the entire manual vehicle experiment with respect to
mobility and the DRL policy.
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Table 4. A comparison of the leading autonomous vehicle experiment and the entire manual
vehicle experiment.

AV Penetration Rate Average Speed (m/s) Average Reward

0% (entire manual vehices) 6.16 11,647.90
20% (mixed automation) 7.31 43,863.63
40% (mixed automation) 7.46 81,232.67
60% (mixed automation) 7.67 101,690.6
80% (mixed automation) 7.74 123,731.6
100% (full automation) 7.81 135,611.7

Table 5. A comparison of the leading autonomous vehicle experiment and the leading manual vehicle experiment.

AV Penetration Rate
Average Speed (m/s) Average Reward

Leading Autonomous
Vehicle Experiment

Leading Manual
Vehicle Experiment

Leading Autonomous
Vehicle Experiment

Leading Manual
Vehicle Experiment

20% 7.31 6.79 43,863.63 39,709.56
40% 7.46 6.90 81,232.67 75,080.93
60% 7.67 7.14 101,690.6 87,551.11
80% 7.74 7.51 123,731.6 116,557.88

Furthermore, the proposed experiment is also compared to the leading manual vehicle
experiment, as shown in Table 5. Concerning mobility, the proposed experiment obtained
an increase in average speed compared with the leading manual vehicle experiment. The
proposed experiment increased the average speed 1.07 times compared with the leading
manual vehicle experiment. Concerning the DRL policy, the proposed experiment obtained
a higher average reward compared with the leading manual vehicle experiment. Further-
more, the proposed experiment increased the average reward 1.10 times compared with
the leading manual vehicle experiment. Therefore, the proposed experiment performed
better than the leading manual vehicle experiment regarding mobility and the DRL policy.

4.2.5. Comparison of Deep Reinforcement Learning’s Hyperparameters

Importantly, the proposed hyperparameter was also compared with the PPO with an
adaptive KL penalty hyperparameter, as shown in Table 6. Concerning the DRL policy,
the proposed hyperparameter obtained an improvement in the average reward compared
with the PPO with an adaptive KL penalty hyperparameter. The proposed hyperparameter
increased the average reward 1.19 times compared with the PPO with an adaptive KL
penalty hyperparameter. Therefore, the proposed hyperparameter performed better than
the PPO with an adaptive KL penalty hyperparameter with respect to the DRL policy.

Table 6. A comparison of the proposed hyperparameter and the PPO with an adaptive Kullback–
Leibler (KL) penalty hyperparameter over the AV penetration rates.

AV Penetration Rate
Average Reward

Proposed Hyperparameter PPO with Adaptive KL
Penalty Hyperparameter

20% 43,863.63 36,656.48
40% 81,232.67 63,854.03
60% 101,690.6 93,752.99
80% 123,731.6 101,102.62

100% 135,611.7 113,793.09

5. Conclusions

Consequently, we showed that leading autonomous vehicles became more worthwhile
with respect to the DRL policy, mobility, and energy with their higher AV penetration
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rates. Additionally, the traffic flow performed better than with a higher AV penetration
rate. Full automation traffic performed better than other AV penetration rates. Full
automation traffic showed an improvement in the average speed by 1.27 times compared
with the entire manual vehicle experiment. Furthermore, the leading autonomous vehicle
experiment increased the average speed 1.07 times compared with the leading manual
vehicle experiment. Therefore, the leading autonomous vehicle experiment outperformed
the leading manual vehicle and entire manual vehicle experiments.

In summary, the leading autonomous vehicles performed much better compared
with the other experiments. Our major contributions are the advanced DRL-based PPO
hyperparameters that enhanced an effective performance of the mixed-traffic environment
in the urban network with different AV penetration rates. The proposed method becomes
more effective with a higher AV penetration rate. Furthermore, traffic management agencies
and researchers could apply this proposed method to mitigate traffic congestion due to
stop-and-go behavior. In our future work, we will consider the comprehensive turning
(left-turn, right-turn, and lane change) and the disturbance factors by adopting a more
hybrid deep machine learning method. Furthermore, we will try to compare with other AI
approaches to evaluate the advantages of the proposed method.
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