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Abstract: This paper presents a triple-band low-noise amplifier (LNA) fabricated using a 0.18 µm
Complementary Metal-Oxide-Semiconductor (CMOS) process. The LNA uses a double-peak load
network with a switched component to accomplish the triple-band operation. Moreover, noise
reduction using a substrate resistor to ameliorate the noise performance is presented. Noise reduction
of 1.5 dB can be achieved at 2.5 GHz without additional dc power and extra manufacturing costs.
An input matching technique is realized simultaneously using a gyrator-based feedback topology.
The triple-band LNA can be realized by using a dual-band input network with a switched matching
mechanism. The target frequencies of the triple-band LNA are 2.3–2.7 GHz, 3.4–3.8 GHz, and
5.1–5.9 GHz, covering the operating frequency bands of time-division long-term evolution (TD-
LTE), mid-band Fifth-generation (5G), LTE-unlicensed (LTE-U) band, and Wireless LAN (WLAN)
technology. The measured power gains and noise figures at 2.5, 3.5, and 5.2 GHz are 12.3, 15.3, and
13.1 dB and 2.3, 2.2, and 2.6 dB, respectively.

Keywords: low-noise amplifier; 5G; triple-band; noise reduction

1. Introduction

Fourth-generation (4G) systems, such as time division duplexing (TDD) long-term
evolution (TD-LTE), for mobile telecommunication have advanced highly. At present, the
major TD-LTE frequency bands are 2.3 GHz (Band 40), 2.6 GHz (Band 41), and 3.5 GHz
(Bands 42 and 43) [1]. To further boost the performance of LTE and provide faster and
more secure mobile services, using LTE-unlicensed (LTE-U) band in the unlicensed 5-GHz
spectrum with a cost-effective method is considered a favorable solution for achieving a
larger bandwidth [2]. To further increase the traffic capacity, 5G communication technology
has been proposed, and the Radio Spectrum Policy Group (RSPG) adopts the 3.6 GHz band
for 5G communication in Europe [3,4].

IEEE 802.11ac, with an operating frequency of 5 GHz, has been dubbed and specified
as a Wi-Fi standard that is three times faster than IEEE 802.11n. Therefore, several coexis-
tence schemes have been developed to allow efficient and fair spectrum sharing between
LTE-U and WLAN [5–7]. WLAN standards [8] (IEEE 802.11a/b/g/n/ac) cover 2.4 and
5 GHz frequency bands, and different countries usually adopt different frequency bands
for the limited bandwidth. Thus, highly integrated radio-frequency integrated circuits
with multiple bands are becoming critical for use in TD-LTE, LTE-U, 5G, and WLAN
applications. Moreover, owing to increasing demands of these new frequency bands in
practical applications, compatibility with 2-, 3-, and 5-GHz bands operation has become
challenging for low-noise amplifier (LNA) designers.

Conventional design strategies for multiband communication have adopted different
single-band transceiver circuits in parallel for achieving different frequency bands [9,10];
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however, this has increased the implementation cost and current dissipation. To overcome
the aforementioned drawbacks, topologies of wideband LNA have been designed and
demonstrated for multiband applications [11,12]. The broadband gain response causes
undesired interference, thereby impairing the linearity of the receiver. A dual-resonant
transformer-based matching network was analyzed and capable of two different frequen-
cies [13], but a dual-band operation is insufficient to cover the latest triple-band wire-
less standard.

Furthermore, a lossy silicon substrate lowers the quality factor of the spiral induc-
tor, which limits the reliability of the LNA. Several papers have proposed methods for
ameliorating the noise of LNAs. A flipped CMOS glass-integrated-passive-device (GIPD)
package [14] and inductively coupled plasma (ICP) deep-trench technology [15] were
utilized to improve the quality factor of off-chip and on-chip inductors. However, the
extra processes of CMOS GIPD flip-chips and ICP created excessive costs of package
and production.

To achieve a wide range of wireless communication services, with up to 400, 400, and
800 MHz bandwidths from 2.3–2.7, 3.4–3.8, and 5.1–5.9 GHz bands, respectively, which
include TD-LTE Band 40–41, Band 42–43, and the unlicensed 5-GHz band operation, with
miniaturized circuit size, and less than 3 dB noise targeted for each band, we proposed
a triple-band LNA that employs a switched narrow-band double-peak load matching
mechanism to operate on triple-band and avoid unwanted interference, and decrease
power consumption for multiband transceiver application. The input matching of the LNA
is adopted by gyrator-based feedback topology to minimize the circuit size. Moreover,
a noise cancellation technique with additional substrate resistor is presented to enhance
noise figure performance.

The rest of this paper is organized as follows. Section 2 introduces the design principle
and analysis of the matching network and noise reduction technique used in this switched
LNA. Section 3 details the triple-band LNA. The experimental results and conclusions are
summarized in Sections 4 and 5, respectively.

2. Circuit Design and Analysis

The proposed LNA was designed based on the operating frequencies of TD-LTE, mid-
band 5G, LTE-U, and IEEE 802.11 a/b/g/n/ac standards. To achieve high compatibility,
Band 40 and Band 41 range from 2.3 to 2.4 GHz and 2.5 to 2.7 GHz, respectively. Band
42 and Band 43 range from 3.4 to 3.6 GHz and 3.6 to 3.8 GHz, respectively [16]. More-
over, 3.4–3.8 GHz is also the range for mid-band 5G communications for the EU licensed
band [17]. The shared 5-GHz LTE-U band ranges from 5.150 to 5.925 GHz [2]. Furthermore,
WLAN (IEEE 802.11a/b/g/n/ac) covers a frequency range of 2.4–2.5 and 5.1–5.9 GHz.
Therefore, the target bands are the operating frequencies covering 2.3–2.7, 3.4–3.8, and
5.1–5.9 GHz for TD-LTE/LTE-U and WLAN applications.

2.1. Proposed Switched-Resonator Triple-Band Load Network

We designed an LNA that utilizes a double-peak single-notch network with a switch
as the load impedance to have the same characteristics of the input network. The schematic
of a load network controlled by a switched transistor Msw1 is shown in Figure 1a. The
simplified single-band and dual-band network are shown in Figure 1b,c, respectively. The
single-band load impedance ZL_sw(off ) is simplified to an LC tank operated at ω3 = 3.5 GHz
when the switch is off. Similarly, when the switch is on, the dual-band load impedance
ZL_sw(on) operated at ω1 = 2.5 GHz and ω2 = 5.2 GHz is chosen. The load impedance
ZL_sw(on) and ZL_sw(off ) can be expressed as shown in Equations (1) and (2), respectively:

ZL_sw(on) =
jωLd

(
1−ω2L1C1

)
ω4LdCdL1C1 −ω2(LdCd + L1C1 + LdC1) + 1

, (1)

ZLsw(o f f )
=

−jωLd
ω2LdCd − 1

(2)
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Figure 1. Schematic of the load network. (a) The proposed triple-band load network with an addi-

tional switched component, (b) single-band network, (c) and dual-band network. 
Figure 1. Schematic of the load network. (a) The proposed triple-band load network with an
additional switched component, (b) single-band network, (c) and dual-band network.

Equation (1) shows that the two poles ω1 and ω2 and one zero ZL_sw(on) can be obtained
by letting the denominator equal null. ω1 and ω2 can be written as

ω1
2, ω2

2 =
L1C1 + LdCd + LdC1

2L1C1LdCd
±

√
(L1C1 + LdCd + LdC1)

2 − 4L1C1LdCd

2L1C1LdCd
(3)

and ωz_sw(on) can be written as

ωz_sw(on) =
1√

L1C1
(4)

From Equation (2), ωp_sw(off ) can be written as

ωp_sw(o f f ) =
1√

LdCd
= ω3 (5)

The proposed triple-band load network has three given target frequencies for the four
load components, implying that there is one degree of freedom, say Cd, left for the circuit
design. Figure 2 shows the load impedance versus frequency with different Cd parameters.
As shown in Figure 2a, the dual-band network provides double-peak amplitudes of load
impedance when the switch is on. Figure 2b shows the load impedance of a single-band
network when the switch is off.

In general, the first step in the design criteria of the proposed load network is to select
a lower Cd on account of the higher load impedance (i.e., the LNA gain). However, a
drawback of the design is the high implementation cost due to the requirement of large
inductance L1 and Ld. Therefore, the trade-off between the gain and die area should be
considered [18].
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2.2. Conventional Gyrator-Based Active Inductor and Proposed Gyrator-Based Triple-Band Input
Matching Network

The conventional gyrator-based active inductor [18] is shown in Figure 3a. Transistors
M1–M3 were employed to establish a back-to-back transconductor stage, where M1 is a
common-drain stage, functioning as the feedback element, and M2–M3 comprise a cascode
stage, which is the gain element. The transistor M3 is used as a gain booster. The inductive
impedance in the Smith chart and the equivalent circuit comprising an inductor, capacitor,
and resistor are shown in Figure 3b,c, respectively. The gyrator-based circuit topology can
be simplified as shown in Figure 3d. In the proposed input matching network, the gyrator
topology comprises a feedback (Gm1) and feedforward gain (Gm2) element to convert the
capacitive impedance into inductive impedance. The impedance can be changed from
capacitive Cx to inductive Lin [19] and can be derived as

Iin = Gm2

(
Gm1Vin ×

1
sCX

)
(6)

and
Zin =

Vin

Iin
=

sCX
Gm1 × Gm2

= sLin (7)

In Equation (7), Zin is with an inductive loading Lin with an inductance Cx/(Gm1 × Gm2).
The proposed input matching network is presented with an additional switched resonator
ZL_sw between point X and Vdd. Therefore, we added a resonator ZL_sw parallel to the
capacitor Cx (here, Zc = 1/sCx), as shown in Figure 3e. The impedance Zin can be written as

Zin =
Vin

Iin
=

1
Gm1 × Gm2(Zc‖ZL_sw)

(8)

Zin will be an inductive loading with an inductance Cx/(Gm1 × Gm2) if ZL_sw is merely an
open loading.

As shown in Figure 4a, with a gyrator-based design, Zin can be inductive around
the resonant frequency ωo when the switch of ZL_sw is off. Contrarily, the impedance at
the output node X is capacitive when the operating frequency is far from the resonant
frequency. When the switch of ZL_sw is on, ZL_sw is changed to a dual resonator loading, as
shown in Figure 4b, with dual inductive points found at the resonated frequencies ω1 and
ω2. By contrast, the triple-band input matching network can be accomplished when the
feedback mechanism is provided with the proposed switched resonator.
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chart when the switch is on.

2.3. Noise Reduction with Large Substrate Resistance

Because the receiver sensitivity is determined by the thermal noise floor at input, the
noise figure (NF) of the receiver, and the signal-to-noise ratio (SNR) requirement at the
detector and NF of the receiver is dominated by the first stages of the receiver [20], a noise
reduction technique with substrate resistor is applied to decrease the noise power of LNA.

As shown in Figure 5a, RB is employed in an N-type Metal-Oxide-Semiconductor
(NMOS) device to ameliorate the noise performance of the proposed CMOS LNA. The
structure of a NMOS with RB is shown in Figure 5b. The NF can be derived as [21]

NF = NFmin +
Gn

Rs
×
∣∣Zs − Ropt − jXopt

∣∣2 (9)

Gn and NFmin can be written as

Gn =
Kgω2C

′2
gs

gm
×
(

1 +
Rd

R′ds ‖ Rsub

)
(10)

and
NFmin = 1 + 2Gn

(
Rg + Rs + Ropt

)
(11)
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resistance RB = 8 kΩ, (b) structure of a NMOS with RB, (c) noise equivalent circuit of a NMOS device
with RB.

From (10) and (11), it can be observed that the increased resistance of the equiv-
alent substrate resistor Rsub diminishes Gn, which in turn reduces the minimum noise
figure NFmin. Furthermore, the NF can also be reduced by reducing Gn and NFmin in
(9) [22]. Figure 6 presents the simulated noise factor F contributed by all MOSFET devices
with and without RB. Note that the simulated VSB approaches zero, so the body-effect
transconductance can be neglected [23].
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Figure 6. Simulated RF MOSFET noise factor F (NF = 10log10 (1 + F)) and noise reduction with and
without RB.

A larger Zsub by increasing the value of RB results in the reduction of the noise factor.
The noise factor F contributed by the MOS device is shown in Figure 6, and a considerable
noise power reduction in the MOS device can be demonstrated by the additional resistance
RB. A maximum of 32% noise reduction can be achieved without requiring additional chip
area and dc power because the size of the 8 kΩ High Resistance Implant (HRI) resistor is
only 2 um × 15 um [22]. Figure 7 shows the simulation results of the noise figure with and
without the additional resistance RB. A decrease of 0.71/0.67/0.64 dB noise figure was
achieved at 2.5/3.5/5.2 GHz due to the usage of the larger resistance RB = 8 kΩ.
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3. Proposed Switched Triple-Band LNA

To provide coverage for a wide range of wireless communication services, three
spectrums will be covered with up to 400, 400, and 800 MHz from 2.3–2.7, 3.4–3.8, and
5.1–5.9 GHz, respectively, which include TD-LTE Band 40–41, Band 42–43, mid-band 5G,
and the unlicensed 5-GHz band. To achieve 5 dB noise figure specifications [24], the
2 dB margin of the noise figure is appreciated when the effects of process, voltage, and
temperature (PVT) variations can be estimated by simulation [25]. Consequently, the
target noise figure of the proposed LNA is less than 3 dB with sufficient gain in 2-, 3-, and
5-GHz bands.

The triple-band LNA can reduce the chip area considerably by using a dual-band
input network with an additional switched component. As shown in Figure 8, we designed
the LNA to utilize a double-peak single-notch network with an additional switch as the
load impedance to have the same characteristics of the input network. The additional
resistance RB was adopted to simultaneously accomplish noise power reduction. The
transistor M5 with a 50 Ω resistive load R1 was employed to achieve output matching
for testing purposes. A decrease of 0.71/0.67/0.64 dB in the noise figure was attained at
2.5/3.5/5.2 GHz due to the use of RB.
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Figure 8. The proposed triple-band low-noise amplifier (LNA) with the load network design and
the noise reduction resistor, the component values RB = 8 kΩ, Rg = 5.2 kΩ, R1 = 50 Ω, C1 = 588 fF,
C2 = 3.8 pF, C3 = 3.8 pF, Cd = 388 fF.
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4. Measurement Results

The LNA chip draws 7.9 mA dc core current from the 1.8 V supply voltage. The S
parameters of the designed gain and input return loss are depicted in Figures 9 and 10. The
measured power gains at 2.5/3.5/5.2 GHz were 12.3/15.3/13.1 dB, and the input return
losses were more than 10 dB among the three operating frequencies. The noise figure was
measured using Agilent N8975A noise figure analyzer with Agilent 346C noise source. The
simulated and measured noise figures at the same bias condition are depicted in Figure 11.
The measured noise figures at 2.5/3.5/5.2 GHz were 2.3/2.2/2.6 dB. The relation between
the input third-order intercept point (IIP3) and the 1-dB compression points (P1dB) is shown
as [24].

IIP3 = P1dB + 9.6 dB (12)

The measured P1dB are −15/−16/−17 dBm at 2.5/3.5/5.2 GHz, as shown in Figure 12,
therefore, IIP3 could be calculated as −5.4/−6.4/−7.4 dBm.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
-30

-20

-10

0

10

20

S11

S21

 % (Measurement)

 % (Simulation)

 

 

S
-p

a
ra

m
e

te
rs

 (
d

B
)

Frequency (GHz)
 

Figure 9. Measured and simulated S-parameters (S21 and S11) of the proposed LNA. 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

-60

-40

-20

0

S12

S22

 Measurement

 Simulation

 

 

S
-p

a
ra

m
e
te

rs
 (

d
B

)

Frequency (GHz)
 

Figure 10. Measured and simulated S-parameters (S22 and S12) of the proposed LNA. 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

 % (Measurement)

 % (Simulation)

 

 

N
o

is
e

 F
ig

u
re

 (
d

B
)

Frequency (GHz)  

Figure 11. Measured and simulated noise figures of the proposed LNA. 

IIP3 = P1dB + 9.6  dB      (12) 

The measured P1dB are −15/−16/−17 dBm at 2.5/3.5/5.2 GHz, as shown in Figure 12, there-

fore, IIP3 could be calculated as −5.4/−6.4/−7.4 dBm. 

Figure 9. Measured and simulated S-parameters (S21 and S11) of the proposed LNA.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
-30

-20

-10

0

10

20

S11

S21

 % (Measurement)

 % (Simulation)
 

 

S
-p

a
ra

m
e

te
rs

 (
d

B
)

Frequency (GHz)
 

Figure 9. Measured and simulated S-parameters (S21 and S11) of the proposed LNA. 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

-60

-40

-20

0

S12

S22

 Measurement

 Simulation

 

 

S
-p

a
ra

m
e
te

rs
 (

d
B

)

Frequency (GHz)
 

Figure 10. Measured and simulated S-parameters (S22 and S12) of the proposed LNA. 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

 % (Measurement)

 % (Simulation)

 

 

N
o

is
e

 F
ig

u
re

 (
d

B
)

Frequency (GHz)  

Figure 11. Measured and simulated noise figures of the proposed LNA. 

IIP3 = P1dB + 9.6  dB      (12) 

The measured P1dB are −15/−16/−17 dBm at 2.5/3.5/5.2 GHz, as shown in Figure 12, there-

fore, IIP3 could be calculated as −5.4/−6.4/−7.4 dBm. 

Figure 10. Measured and simulated S-parameters (S22 and S12) of the proposed LNA.



Appl. Sci. 2021, 11, 1477 10 of 13

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
-30

-20

-10

0

10

20

S11

S21

 % (Measurement)

 % (Simulation)

 

 

S
-p

a
ra

m
e

te
rs

 (
d

B
)

Frequency (GHz)
 

Figure 9. Measured and simulated S-parameters (S21 and S11) of the proposed LNA. 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

-60

-40

-20

0

S12

S22

 Measurement

 Simulation

 

 

S
-p

a
ra

m
e
te

rs
 (

d
B

)

Frequency (GHz)
 

Figure 10. Measured and simulated S-parameters (S22 and S12) of the proposed LNA. 

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

 % (Measurement)

 % (Simulation)

 

 

N
o

is
e
 F

ig
u

re
 (

d
B

)

Frequency (GHz)  

Figure 11. Measured and simulated noise figures of the proposed LNA. 

IIP3 = P1dB + 9.6  dB      (12) 

The measured P1dB are −15/−16/−17 dBm at 2.5/3.5/5.2 GHz, as shown in Figure 12, there-

fore, IIP3 could be calculated as −5.4/−6.4/−7.4 dBm. 

Figure 11. Measured and simulated noise figures of the proposed LNA.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 13 

-30 -25 -20 -15 -10
-20

-15

-10

-5

0  % (2.5 GHz)

 % (3.5 GHz)

 % (5.2 GHz)

 

 

O
u

tp
u

t 
P

o
w

e
r 

(d
B

m
)

Input Power (dBm)  

Figure 12. The linearity (P1dB) of the proposed LNA. 

The measurement results of the proposed LNA are summarized with recently pub-

lished information in Table 1.  

Table 1. Performance summary of the published CMOS LNAs. 

Ref. Technology Freq. (GHz) Gmax (dB) NFmin (dB) IIP3 (dBm) 
Power Con-

sumption (mW) 
FOM 5 Area (mm2) 

[26] 0.18-μm 

2.4 14.4 3.3 −7.12 

7.2 1.66 0.63 3.5 13 3.8 −6.2 

5.2 1 10 4.3 −4.34 

[27] 0.13-μm 

2.4 22.1 2.8 −18.2 

4.6 6.01 0.49 3.4 22.6 2.2 −15.3 

5.4 1 24.8 3.1 −20.4 

[28] 0.13-μm 

2.8 2 16.1 2.4 −4 

6.4 9.61 0.44 3.3 14.2 3.0 −2 

5.65 14.9 4.8 −4.2 

[29] 0.13-μm 

2.4 

15 2.7 

−12 

- 6 - 6 - 6 3.5 −13.5 

5.2 −13 

[30] 0.18-μm 2.4–11 14.8 4.1 −11.5 3.4 1.72 1.1 4 

[22] 0.18-μm 2.3–4.8 27 3 2.7 3 −3.2 3 13.1 26 0.34 

This 

work 
0.18-μm 

2.5 12.3 2.3 −5.4 

14.2 2.9 0.52 3.5 15.3 2.2 −6.4 

5.2 13.1 2.7 −7.4 
1 5 GHz band provides less than 800 MHz. 2 2 GHz band lacks for time-division long-term evolution (TD-LTE) Band 40. 3 

Simulation result. 4 Chip area is the largest in Table 1. 5 Only the best result for all operating bands is shown. 6 Full TRX 

design. IIP3: input third-order intercept point; FOM: figure of merit. 

For performance comparison, the figure of merit (FOM) is defined by [31]: 

FOM =  
Gain(abs) ×IIP3(mW)×fc(GHz)

(NF−1)(abs)×Power consumption(mW)
      (13) 

 

Comparing the performance among the three operating frequencies, in terms of 

power gain, noise figure, and cost, the proposed switched triple-band LNA is the only one 

that can cover the whole target bands and provide the lowest NFmin with adequate power 

gain among 2-, 3-, and 5-GHz frequencies. The measured power consumption of the pro-

posed design is slightly large due to the additional buffer amplifier stage for testing pur-

poses. In this study, the circuit simulation was performed using Agilent’s Advanced De-

sign System (ADS) software with a TSMC design kit. In addition, the LNA is fabricated in 

Figure 12. The linearity (P1dB) of the proposed LNA.

The measurement results of the proposed LNA are summarized with recently pub-
lished information in Table 1.

Table 1. Performance summary of the published CMOS LNAs.

Ref. Technology Freq. (GHz) Gmax (dB) NFmin (dB) IIP3 (dBm) Power Consumption
(mW) FOM 5 Area (mm2)

[26] 0.18-µm
2.4 14.4 3.3 −7.12

7.2 1.66 0.633.5 13 3.8 −6.2
5.2 1 10 4.3 −4.34

[27] 0.13-µm
2.4 22.1 2.8 −18.2

4.6 6.01 0.493.4 22.6 2.2 −15.3
5.4 1 24.8 3.1 −20.4

[28] 0.13-µm
2.8 2 16.1 2.4 −4

6.4 9.61 0.443.3 14.2 3.0 −2
5.65 14.9 4.8 −4.2

[29] 0.13-µm
2.4

15 2.7
−12

- 6 - 6 - 63.5 −13.5
5.2 −13

[30] 0.18-µm 2.4–11 14.8 4.1 −11.5 3.4 1.72 1.1 4

[22] 0.18-µm 2.3–4.8 27 3 2.7 3 −3.2 3 13.1 26 0.34

This work 0.18-µm
2.5 12.3 2.3 −5.4

14.2 2.9 0.523.5 15.3 2.2 −6.4
5.2 13.1 2.7 −7.4

1 5 GHz band provides less than 800 MHz. 2 2 GHz band lacks for time-division long-term evolution (TD-LTE) Band 40. 3 Simulation
result. 4 Chip area is the largest in Table 1. 5 Only the best result for all operating bands is shown. 6 Full TRX design. IIP3: input third-order
intercept point; FOM: figure of merit.
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For performance comparison, the figure of merit (FOM) is defined by [31]:

FOM =
Gain(abs)× IIP3(mW)× fc(GHz)

(NF− 1)(abs)× Powerconsumption(mW)
(13)

Comparing the performance among the three operating frequencies, in terms of power
gain, noise figure, and cost, the proposed switched triple-band LNA is the only one that
can cover the whole target bands and provide the lowest NFmin with adequate power gain
among 2-, 3-, and 5-GHz frequencies. The measured power consumption of the proposed
design is slightly large due to the additional buffer amplifier stage for testing purposes.
In this study, the circuit simulation was performed using Agilent’s Advanced Design
System (ADS) software with a TSMC design kit. In addition, the LNA is fabricated in an
inexpensive 0.18-µm CMOS process with a smaller chip-size, therefore, it has an advantage
in terms of lower manufacturing cost.

5. Conclusions

The die microphotograph of the fabricated LNA and the corresponding transistors and
inductor sizes are shown in Figure 13, with the die area including pads of 0.75 × 0.69 mm2.
The target frequencies of the proposed triple-band LNAs were 2.5, 3.5, and 5.2 GHz,
which can be used in TD-LTE, mid-band 5G, LTE-U, and WLAN technology. A triple-
band LNA with a switched resonator concept was fabricated using TSMC 0.18-µm CMOS
technology, and a considerable die area reduction was achieved. Furthermore, an additional
substrate resistance RB diminished the output noise power density of the MOS device, and
a 0.71/0.67/0.64-dB decrease in the noise figure was attained at 2.5/3.5/5.2 GHz by using
the triple-band LNA without additional chip area, dc power, and CMOS process steps. The
frequency range for each band are 2.3–2.7, 3.4–3.8, and 5.1–5.9 GHz, including TD-LTE
Band 40–41, Band 42–43, mid-band 5G, and the unlicensed 5-GHz band operation. The
measured 10 dB return loss can be achieved to fulfil triple-band operation with moderate
gain around 12 dB, and 2.2~2.7 dB noise figure. The measurement result agrees well with
the simulation result.
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