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Abstract: Rapid freehand drawings are of great importance in the early years of university studies of
architecture, because both the physical characteristics of spaces and their sensory characteristics can
be communicated through them. In order to draw architectural spaces, it is necessary to have the
ability to visualize and manipulate them mentally, which leads us to the concept of spatial skills; but
it also requires a development of spatial perception to express them in the drawings. The purpose
of this research is to analyze the improvement of spatial skills through the full-scale sketching of
architectural spaces in virtual immersive environments and to analyze spatial perception in reference
to the capture of spatial sensations in virtual immersive environments. Spatial skills training was
created based on the freehand drawing of architectural spaces using Head Mounted Displays (HMD)
and registered the spatial sensations experienced also using HMD, but only in previously modeled
realistic spaces. It was found that the training significantly improved orientation, rotation and
visualization, and that the sensory journey and experimentation of architectural spaces realistically
modeled in immersive virtual reality environments allows for the same sensations that the designer
initially sought to convey.
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1. Introduction

Architectural professionals must efficiently communicate their ideas; therefore, they
must master graphic representation as it is the natural method of communication for the
dissemination of their architectural designs. Among the various techniques of graphic
representation, freehand drawing or sketching are the most used by architects and designers
to quickly capture and communicate the instant wave of ideas as they appear in their
mind [1]. In a design process, ideas develop incrementally from an abstract level to a
concrete level by moving from a schematic level to a detailed level [2], hence the need for
rapid freehand sketches. The architecture student must learn in the first few months of
university this important communication tool, which is essential for the traditional process
of teaching architectural design and fundamental in the initial and conceptual phases
of design. Sketches continue to be the most significant tools [3], even above models or
physical scale models, which are difficult to modify during the stages of communication or
while debating the design. These scaled models pose a couple of serious complications:
they do not lend themselves to the observation of interior spaces [4], and their assemblage
is unnecessarily time-consuming.

In addition to the communicative function, rapid freehand drawings allow us, through
the lens of perception, to imagine how the designed architectural space might ultimately
function [5]. It can even allow us to directly experience an architectural space despite
not being physically inside or in front it. Spaces based on the observation of sketches
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can be keenly perceived due to their ability to stimulate the observer into experiencing
new spatial realities. They allow the observer to perceive the represented space as if it
were real, permitting them to be able to walk around, observe the environment, enter
and exit at will, feel temperatures and textures, smell, etc. [6]. Although architecture
is perceived predominantly with our sense of sight, it is through all our senses that the
experience comes to complete fruition. It is represented through drawings that put a special
emphasis on form with parameters like measurements, proportion and scale, materials,
color, and so on. In the field of ephemeral architecture, it has taken a huge dimension
in the world of design in recent years. Currently, the representation of architecture has
reached its simplest and most effective expression calling on the senses and emotions
through forms and materiality, always seeking maximum expressiveness with a minimum
of space. In architectural education, the student must be able to perceive and interpret
sketches, not only in their exact forms, but also in sensory-based forms which respond
to a vital imperative in architectural studies: a special sensitivity to both the natural and
constructed environment.

In contrast to technical drawing, there is the act of drawing that is linked to natural
abilities and special skills, which complement the creative and design processes. The act of
drawing is not only about exteriorizing the pre-existing mental models [7], but it also deals
with the development of ideas while drawing and searching for new spatial relationships.
Fundamentally, this happens in the initial phases of the product’s creation process [3].

The technique of manual drawing is the essential catalyst for an action which involves
not only sight but also other senses that are found in the individual’s corporeal and uncon-
scious memory. This additionally allows for the reflection of past experiences [6] as well as
various mental, cognitive and imaginative processes, which are aimed at the draftsperson
so they are able to develop the skills required to manipulate the three dimensions.

Consequently, in order to draw architectural spaces, it is necessary to have the ability
to mentally visualize and manipulate them in any position and to know the techniques of
representation systems, which directly leads to the concept of spatial skills. Furthermore,
it is also necessary to develop one’s own spatial perception to capture the sensations
expressed in the drawings and express them in the designs.

1.1. The Spatial Skills and the Spatial Perception

Spatial skills have been the subject of extensive research for more than a century and
are an important line of research in cognitive and educational psychology. Researchers in
the field of human intelligence agree that our intelligence is not unique and that it consists
of several different components. All the theories and studies carried out in this field concur
that one of the components of intelligence is directly related to our visual and spatial
capacities as they function within the mental representation of two- and three-dimensional
spaces, as well as facilitate the resolution of spatial problems, whether real or imaginary.

Spatial skill is a component of human intelligence. It is understood as the ability to
generate, retain, retrieve, and transform well-structured visual images [8]. However, as
seen in the definition itself, there is no clear agreement about the subskills or components
that shape this ability [9]. For example, McGee [10] distinguishes five components of spatial
skills: spatial perception, spatial visualization, mental rotation, mental relationships, and
spatial orientation.

Recent research such as the Cattell–Horn–Carroll Model of Intelligence [11] shows
eleven spatial skills that constitute Spatial Cognition, while even more recent studies, based
on the previous model and new contemporary theories, conceptualize the Spatial Cognition
or Visual Processing consisting of 25 factors [12]. Many of these factors are interrelated
yet psychometrically measurable, thus rendering them highly important as they relate to
university educational success.

Some researchers, like Carroll [13], recognize only two components: spatial visual-
ization, understood as the ability to mentally handle complex forms, and mental rotation,
defined as the mental speed to rotate simple forms and recognize them whilst in another



Appl. Sci. 2021, 11, 1475 3 of 23

position. The simplification of the components of spatial skills responds in general to the
relationship that researchers seek with the possibility of training these skills in the field of
engineering, and looks to generate a positive impact [14].

For the methodological and practical effects of this research we will consider the two
components proposed by both Tartre [15] and supported by Sorby [16]: spatial visualization
and spatial orientation. The spatial visualization component entails mentally moving an
object, whereas the spatial orientation component requires the ability to mentally move
a given viewpoint while the object remains fixed in space. The spatial visualization
component is subdivided in two categories, Mental Rotation and Mental Transformation,
the difference being that with Mental Rotation, the whole object is transformed by rotating
it in a given space, while with Mental Transformation, only a specific part of the object
undergoes some kind of transformation (Figure 1). We consider that this scheme is better
adapted for the research concerning the exploration of architectural spaces. This is due
to the fact that the objects that must be mentally manipulated and understood are objects
or spaces in which the user can enter and even (mentally) travel through, thus obtaining
perceptions or sensations within them as opposed to other objects in which the observer
does not have that possibility.
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On the other hand, the perception of extrapersonal space, or simply spatial perception,
involves not one but many specific skills. For example, within the visual domain, they
include locating points in space, determining the orientation of lines and objects, evaluating
the location in depth, observing the geometric relationships between objects and processing
movement among many others [17]. Although there are proposals that consider spatial
perception as a component of spatial skills [8,18], mainly due to simplified or different
definitions of perception, in this research we will consider perception as an independent
aspect of spatial skills because we want to notice how students know and understand the
architectural space through the senses and emotions where, among others, the shapes,
colors, and design materials influence.

1.2. The Importance of Spatial Skills and Perception in the Field of Architecture

For the design of three-dimensional spaces in real and virtual and interactive envi-
ronment, a balanced combination of spatial skills and spatial perception must be achieved.
Regarding spatial skills, it is suitable to have a good level in each of the components
because benefit the designer to draw in 3D. These components provide the designer the
ability to manipulate “mentally” the positions of the object and their parts, the relation-
ships between them and their volumetric properties which help the designer to draw in
3D, giving coherence and cohesion to the projected space. As for spatial perception in
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the field of architecture, the experience of space by means of the senses is given special
consideration so that the qualities which are not considered in the drawing, such as color,
texture, lighting and sounds, become fundamental, thus allowing for the development of
a spatial sensitivity. This type of sensitivity is understood as the unconscious awareness
of the body in the world as a result of intersubjective interactions, and the receptiveness
to the transitory amalgamation of sensory signals that make up the sense of place at a
given time [19].

About the balance between spatial skills and spatial perception (including spatial
sensibility and emotions) in the architectural field, it is given a human and poetic dimension
that can guide students towards the creation of spaces as embodied experiences, rather
than abstract constructions, therefore, the teaching of architecture issues should focus on
developing both skills equally, on the one hand the spatial skills and on the other the
spatial perception and sensitivity, especially at the beginning of the student’s education,
skills that should be consistent with the competences covered in the current architectural
pedagogy [20].

There are some studies that also link spatial skills with spatial creativity, a necessary
component to undergo architectural design, such as the research of Suh and Cho [21]. Their
research found a correlation between spatial visualization and mental rotation as three-
dimensional volumetric design is creatively generated, and in terms of spatial strategies,
individuals with high spatial skills show strengths in the formation of shapes, while those
with medium and low spatial skills show strengths in additional approaches of a simpler
nature. However, this research, like many others, has failed to establish a real and direct link
of spatial skills with spatial creativity and this is because the complexity of architectural
designs requires the interaction of multiple cognitive skills and not just one or two of
them [21]. The truth is that learning spatial skills is an important supporting strategy in
the pedagogy and teaching of architecture at the beginning of the student’s university
studies, such that it can then provide a basis on which to build more complex skills for
solving complex real-world problems. Nevertheless, they are not necessarily predictive of
academic success towards the end of a degree plan [20] due to the different cognitive skills
required, but they are definitely at the beginning stages of their studies when the student is
first learning to express their ideas through drawing.

Several authors mention that there is a direct relationship between academic perfor-
mance, motivation, and self-regulated learning. They state that the ability to effectively
visualize graphics in university drawing courses can affect academic performance [21–23].
A study conducted by Burton and Dowling [24] with high school students determined that
the ability to visualize, understood as the ability to understand spatial shapes and mentally
rotate them in two dimensions in relation to a model, was a predictor for determining a
student’s academic success. This was further supported by Potter, Potter, van Der Merwe,
Kaufman and Delacour [25], who concluded that the student’s ability to understand spatial
relationships in three dimensions influenced academic success. Both studies show that
there is a direct relationship between academic performance in engineering studies and
spatial abilities. In the specific case of a university degree in architecture, because it is
within the set of science, technology, engineering, arts and math (STEAM) disciplines and
because it has several subjects related to drawing and descriptive geometry, there is also the
same relationship in which spatial skills are fundamental to success in the initial courses
of design and drawing [26], although most research has focused largely on the field of
engineering and its relationship with spatial skills [27–29].

1.3. Training of the Spacial Abilities

Further research has demonstrated effective training methods to improve spatial skills
in real open environments [30,31]. However, given the rise of emerging technologies such
as virtual reality, an increasing body of research is seeking to develop spatial skills in virtual
worlds [32,33], in immersive and interactive environments [34], and in virtual navigation
experiences [35–37].
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Different courses, training exercises and different technologies have been developed
in the last decades to address the low levels of spatial skills available to students with
technical degrees. Numerous and specific remedial trainings are widely available. We
will mention those based on virtual technologies to improve spatial skills and knowledge
of architecture issue [38] and trainings focused on the improvement of visualization and
rotation components through human–computer interaction with screens [39–41].

In the specific field of architecture and spatial skills research, it is known that there
are three areas that require further study. The first is the relationship between spatial
skills and design performance. The second is the development of domain-specific tools
that measure spatial skills. The third is the use of virtual reality technology in spatial
skills training [42]. In the search of this last deficiency, we do not have any evidence of
training methods (designed) through the drawing of architectural spaces which propose
the interactivity and immersion of the student, and that allow us to know if the experience
that the student acquires in virtual environments, induces them to have a similar behavior
in the real world and in similar circumstances. In our research we have proposed to create
a training system based on immersive virtual reality in which the student can interact to
perform sketches of architectural elements that promote the development of mental actions
of rotation, visualization, perception and orientation in order to improve their spatial skills
and, therefore, receive the necessary training to perform the action of drawing.

1.4. The Immersive Virtual Reality

Virtual reality (VR) is a synthetic environment created by computer technologies
that allow the user to see realistic scenes or objects. In its most primitive mode, the user
can see these scenes or objects on a screen and can interact with them through different
control devices (mouse, keyboard, joysticks, knobs, controllers, etc.). Currently, the user
can visualize the virtual environments through devices known as glasses or “virtual reality
helmets” (Figure 2) with immersion characteristics that can even be accompanied by other
devices, such as gloves or special suits. The combination of these devices allows for a much
greater interactive experiences with the environment as well as an increased sensorial
perception that intensifies the sensation of reality. The user, while immersed in the VR
system, cannot see the real world around them due to their entire perceived environment
is synthetic and simulated; nevertheless, meaningful interaction can still be achieved.
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In the fields of engineering and architecture, virtual reality technology is applied and
supported by the use of 3D modeling tools and visualization techniques as part of the
design process. VR allows architects and engineers to see their project in 3D and to gain a
better understanding of how it works. In addition, they are able to detect any potential
defects or risks prior to implementation. This also allows the design team to observe
their project within a safe environment, make operational simulations and make all the
necessary changes.

Virtual reality has been integrated into the work routines of architects and engineers
and is therefore used from the beginning stages of the design life cycle. For example, VR
is implemented from the initial concept stage to the construction and execution stages,
positioning itself as an important tool to be incorporated into the work routines in order
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to review each stage of the project and check for flaws, structural weaknesses or other
design issues.

1.5. Drawing and Immersive Virtual Reality

Since its emergence, virtual reality has shown significant potential in architectural
design especially during early design activities. In the last decade, the facility and acces-
sibility of equipment and software has caused innumerable investigations but not with
enough attention to the results and possibilities of architectural design and drawing in
immersive virtual environments [43].

Some investigations have probed that immersive virtual reality allows designers to
create new points of view by means of an immersive experience and the possibility to walk
around the three-dimensional sketches [44]. Other studies have highlighted the positive
effect of VR-based design that makes a significant leap forward allowing for a development
of design solutions in the same creative process [45]. Other researchers have successfully
integrated key attributes of hand drawing into a new virtual reality medium for design
development. Yang and Lee [46] have shown that three-dimensional drawings in immersive
virtual reality help designers reduce their dependence on external representations while
improving their mental processes for the transformation and consolidation of their ideas.
Furthermore, the application of immersive virtual reality extends to solution spaces and
has an overall positive effect on the problem-solving process as a whole.

In the field of perception of spaces, virtual environments have demonstrated to
maintain the feeling of presence within the digital 3D models which causes the important
advantage of conveying overall design intentions similar to physical models, constructed to
improve the perception of designs developed by drawings, giving the users an immediate
feedback not possible within CAD or traditional design media, helping them to explore
and express ideas unlike traditional methods [43].

The sense of presence created by virtual reality is an integral component of a system
that relies on automatic physiological responses. Some researchers suggest that virtual
environments generate strong emotional and physical responses and have which are
comparable to real-life tests, demonstrating the validity of this medium for psychological
assessment studies [47]. Studies related to the field of architectural design indicate the
appropriateness of using VR to simulate the sensation of presence in a corresponding
real physical space [48,49]. These studies support the idea that virtual environments,
in combination with virtual reality, could be considered as an alternative method when
investigating the impact of spatial stimuli.

2. Objectives and Hypothesis

The perception of architectural spaces and the spatial skills used to represent them and
manage their three-dimensionality are essential conditions that architecture students must
have to successfully undertake their university studies. The frequent low levels of spatial
perception and the poor development of spatial skills are not the only reason for high
dropout rates amongst architecture majors, but they can also contribute to low professional
performance in those who manage to complete their studies. This is because a fundamental
task of the architect is the creation of spaces for the development of human activities.

The aim of this research is twofold: to analyze the improvement of spatial skills in first-
year architecture students (freshmen) by training them in life-size sketching of architectural
spaces in virtual immersive environments, and to analyze the visuospatial perception in
reference to the acquisition of spatial sensations in virtual immersive environments in
last-year students in the same field of study.

The proposed general objectives are:

1. To determine if the sketching of architectural spaces in immersive 3D virtual environ-
ments using virtual reality glasses improves spatial skills.
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2. To confirm if the user immersion in architectural spaces artificially created in virtual
reality environments allows for spatial perception and sensorial awareness as if they
were performed in real spaces.

In order to verify these objectives, the following hypotheses will be addressed:

1. H1A: First-year architecture students improve the components of spatial skills (men-
tal rotation, visualization and orientation) after being trained in the sketching of
architectural spaces in immersive VR spaces.

2. H2A: First-year architecture students improve their spatial perception after being
trained in the sketching of architectural spaces in immersive VR spaces.

3. H3A: Immersive spatial reality environments allow for the capturing of user sensa-
tions by visualizing and virtually interacting with architectural spaces.

For this purpose, a pilot study has been developed with first-year architecture students
at the University of La Laguna in Spain and with students in the fifth and final year in
similar degrees at the National University of San Agustín in Arequipa, Peru.

3. Methodology

For this research, a double experiment was carried out. The first one, directed specifi-
cally at first-year architecture students, created a series of training-oriented tasks for the
development of spatial skills and required them to create three-dimensional drawings in
an immersive virtual environment using head mounted displays. The second one, directed
specifically at final-year students in the same degree, required them to visit a series of vir-
tual architectural spaces in an immersive virtual reality environment using head mounted
displays, where they were able to experience these spaces and register their perceptions
and sensations while being inside them.

3.1. Measuring Instruments

As a consequence of the different lines of research in the field of psychology, numerous
instruments have been developed to measure and evaluate the different components of
spatial skills [28]. The instruments that were chosen to measure each of the components
included in this research (see Figure 1) were the Mental Rotation Test (MRT) to measure
mental rotation, the Differential Aptitude Test (DAT-5) to measure spatial visualization, the
Perspective Taking/Spatial Orientation Test (SOT) to measure spatial orientation.

In order to detect possible problems related to visuoconstructive skills and visual
memory in the participants, the Rey–Osterrieth Complex Figure Test (ROCFT) was ad-
ministered. This test is carried out to have a neuropsychological evaluation that allows
to jointly evaluate different functions such as visuospatial capacities, memory, attention,
planning, working memory and executive functions.

All these measurement instruments are standardized and are the most widely used in
international research.

The Mental Rotation Test (MRT) created by Stephen Vandenberg [50] contains 20 items
in which the individual taking the test has a block figure in three-dimensional perspective.
They are then shown four block figures with a different orientation, from which they must
choose two that correspond to the model block (see Figure 3). The maximum score on this
instrument is 40 points.
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The Differential Aptitude Test: Spatial Rotation Subset (DAT-5) created by George
K. Bennet and Alexander G. Wesman [51] consists of 50 items that present a model or
pattern and to the right of each model are four three-dimensional figures. The student
must determine from the original figure which is the only one that is able to be formed
from the model (see Figure 4). One point is given per correct answer, and the maximum
score is 50 points.
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Figure 4. Example item in the Differential Aptitude Test: Spatial Rotation Subset (DAT-5).

The Perspective Taking/Spatial Orientation Test (SOT) created by Hegarty and Waller [52]
consists of 12 items in which the user must imagine themself located in the position of one of
the objects in a set (which will become the center of the circle) looking at another item (which
will become the top of the circle). In response, they must draw an arrow from the center
object indicating the direction to a third object from the new orientation (see Figure 5). The
score of each item is the absolute deviation in sexagesimal degrees between the individual’s
answer and the correct answer, so that a lower score in the test results in a higher score. The
ability to orient oneself in an environment and to imagine how it looks from different view-
points requires different skills than does being adept at spatial transformations of individual
objects [53] (spatial visualization).
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The Rey–Osterrieth Complex Figure Test (ROCFT) created by Rey and Osterrieth [54]
consists of drawing an exact copy of the drawing shown in Figure 6, which is always in
view. Once the user has finished drawing and after a lapse of three minutes the user must
draw the same image again, but this time without seeing the original object. This test has no
time limit, and 18 aspects are evaluated with two points each, so the maximum score is 36.
Several studies collect normative/standard data on non-clinical sample neuropsychological
measures [55–58].
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Figure 6. An abstract drawing replica in the Rey–Osterrieth Complex Figure Test (ROCFT).

Studying emotions is a complex and subjective phenomenon. Recently psychologists
and neuroscientists have deepened their quantitative understanding of bodily reactions
using advanced biosensors [59]. Nevertheless, these studies are unable to provide guide-
lines and practical criteria so that architects and designers are able to incorporate emotions
in their designs. This reductionist approach to understanding the impact of architecture
on emotions fails to address the complex and multisensory nature of the architectural
experience [60]. This body of literature merely indicates that in order to improve the
measurement of emotions it is necessary to combine objective and subjective tests (surveys
or interviews).

For the measurement of the perceptual experience in the virtual world, an ad-hoc
survey was created for this study. It consists of 10 questions in which the participant
expressed their sensations about five dimensions that the virtually built space showed:
scale and size, construction materials, architectural style, use, and domain (Table 1).

Table 1. Table of perception of sensations.

Categories Sensations

1. Scale and size (a) Restlessness (b) Balance (c) Grandeur

2. Materials (a) Warmth/Comfort (b)
Fragility/Exposure (c) Distance/Frigitity

3. Architectural style (a) Ele-
gance/Satisfaction

(b)
Simplicity/Serenity

(c)
Eccentrism/Surprise

4. Use and related
activity (a) Joy/Theatricality (b)

Sadness/Nostalgia
(c)

Emotion/Spirituality

5. Degree of
enclosure (a) Protection (b) Calmness (c) Freedom

3.2. Training Design Based on Architectural Spaces to Draw and Perceive

For the first part of this research, six modules of ephemeral architecture (small archi-
tectural spaces) were designed. Each was grouped into three levels of difficulty according
to their complexity. Students were presented with graphic representations of each space in
paper format: top, front and side views as well as three conic perspectives with a person
drawn inside so they could analyze and observe them in detail (Figure 7). Then, the
students were placed in an immersive virtual environment where the same images were
also available. With this additional help and by using the drawing tools of Tilt Brush, the
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Google application proposed for the training (https://www.tiltbrush.com), they were able
to draw the proposed space in life-size proportions.
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Figure 7. Architectural spaces to be drawn using immersive virtual reality.

For the second part of the experimentation, the same set of six architectural spaces was
used, but on this occasion the three-dimensional virtual models were created with SketchUp
pro 2019, where various materials, textures, colors and natural lighting were assigned
(Figure 8). Then, the Enscape 3D virtual reality application (https://enscape3d.com) was
used for their respective visualization. Finally, each student, with the use of the HMDs,
underwent a virtual tour of each one of the spaces while having their perceptions and
sensations recorded.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 23 
 

 
Figure 8. Architectural spaces to be perceived using immersive virtual reality. 

4. The Experimental Study 
In order to evaluate the two objectives of this research, the experimental study was 

carried out with architecture students from two universities: first-year students at the Uni-
versity of La Laguna in Spain and final-year students at the National University of San 
Agustín in Peru. 

4.1. Participants 
The participants in this research were students enrolled in the first course of the Ar-

chitecture degree program at the University of La Laguna (ULL) in Spain. They partici-
pated in the experiment to verify the first objective of this research, which is related to the 
improvement of spatial skills as a result of specific training in 3D sketching in immersive 
VR environments. Additionally, students enrolled in the final course in the same degree 
plan from the Universidad Nacional de San Agustín de Arequipa (UNSA) in Peru, partic-
ipated in the second experiment of this study. They verified the second objective of the 
research related to the experimentation of sensory and experiential perception of architec-
tural spaces built in virtual environments. 

In both cases, students were voluntarily recruited to participate in this pilot study. In 
the ULL experience the training group consisted of 14 individuals, aged between 18 and 
20 years old, while the control group made up of 16 individuals, aged between 18 and 20 
years old, did not perform the training experiment; none of the students of the two groups 
that participated in the experiment had previous training in spatial skills or virtual reality 
management. In the UNSA experience, the experimental group consisted of 11 partici-
pants, aged between 21 and 27, and none of them had previous training in spatial skills or 
virtual reality management. 

4.2. Equipment 
The hardware used for the training of spatial skills improvement by drawing in an 

immersive virtual environment consisted of a laptop HP OMEN 15-dc1015ns Core i7 
9750H/2.6 GHz—6 cores Win 10 Home 64 bit 16 GB RAM to which the HTC VIVE Cosmos 
VR Headset was connected. The laptop was connected to a large format monitor so that 
the moderator could see how the participant was doing the experiment within the virtual 

Figure 8. Architectural spaces to be perceived using immersive virtual reality.

4. The Experimental Study

In order to evaluate the two objectives of this research, the experimental study was
carried out with architecture students from two universities: first-year students at the
University of La Laguna in Spain and final-year students at the National University of San
Agustín in Peru.

https://www.tiltbrush.com
https://enscape3d.com
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4.1. Participants

The participants in this research were students enrolled in the first course of the Archi-
tecture degree program at the University of La Laguna (ULL) in Spain. They participated
in the experiment to verify the first objective of this research, which is related to the im-
provement of spatial skills as a result of specific training in 3D sketching in immersive VR
environments. Additionally, students enrolled in the final course in the same degree plan
from the Universidad Nacional de San Agustín de Arequipa (UNSA) in Peru, participated
in the second experiment of this study. They verified the second objective of the research
related to the experimentation of sensory and experiential perception of architectural spaces
built in virtual environments.

In both cases, students were voluntarily recruited to participate in this pilot study.
In the ULL experience the training group consisted of 14 individuals, aged between 18
and 20 years old, while the control group made up of 16 individuals, aged between 18
and 20 years old, did not perform the training experiment; none of the students of the
two groups that participated in the experiment had previous training in spatial skills or
virtual reality management. In the UNSA experience, the experimental group consisted of
11 participants, aged between 21 and 27, and none of them had previous training in spatial
skills or virtual reality management.

4.2. Equipment

The hardware used for the training of spatial skills improvement by drawing in
an immersive virtual environment consisted of a laptop HP OMEN 15-dc1015ns Core
i7 9750H/2.6 GHz—6 cores Win 10 Home 64 bit 16 GB RAM to which the HTC VIVE
Cosmos VR Headset was connected. The laptop was connected to a large format monitor
so that the moderator could see how the participant was doing the experiment within the
virtual environment. The software application used to draw was Tilt Brush, a commercial
application developed by Google, as previously mentioned.

The hardware used to gather the participants’ perceptions and sensations when
experiencing the given spaces in an immersive virtual environment consisted of a PC, with
8 Gb of RAM, to which the Oculus Rift VR Headset was connected. The architectural
spaces were modeled in SketchUp Pro 2019 and visualized in the VR Enscape 3D version
2.6 app.

4.3. Study Description
4.3.1. Training for the Improvement of Spatial Skills

The first contact with all the participants of the experimental group and the control
group was made in order to administer the measurement tests. The MRT and DAT tests
were administered one day, and they were scheduled to return the following day to
administer the SOT and ROCFT measurement tests. The experimental group was informed
of the dates and times they would individually have to start the training sessions. Each
participant was assigned a specific time and day to practice and become familiar with
the immersive virtual reality environment, the HMD, and the Tilt Brush application for
freehand 3D drawing. In addition, they were assigned a specific time and day for three
sessions on different days that they would have to attend for the training.

Each session lasted a maximum of 45 min and was conducted individually with each
of the participants. In each session, the participant, using the HMD, drew in free-form
two proposed architectural spaces in three dimensions. This occurred in such a way that
in three sessions six spaces were drawn (two basic, two intermediate and two advanced)
(see Figure 9). The three sessions were held on alternate days in the same week. Once all
the participants had completed the three sessions and therefore completed the training,
both the experimental and control groups, were again called to administer the tests, except
ROCFT. In order to compare and confirm if there were significant differences, pre and post-
test data were obtained from the group that performed an activity related to visuospatial
mental processes and a group that did not perform such activities.
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Figure 9. Scenes drawing with Tilt-Brush.

4.3.2. Perceptive Experience in the Virtual World

The initial contact was made with all the participants to obtain their general informa-
tion and to inform them of the dates and times they would have to individually attend
the experiment. Only one 45-min session was required for each participant. The first
15 min were used to practice and become familiar with the HMD, the immersive virtual
reality environment and the haptic (handheld) controllers to be able to move in the virtual
space. Once inside the virtual environment, for a period between 20 and 25 min, the
participant had the possibility to take an immersive virtual tour of an open space where the
six ephemeral architecture modules were located. The participant autonomously walked
along the pedestrian path, being able to look all around, bend over, turn around and be
transported directly to some point in order to observe both the space inside and outside, as
well as the materials, shapes and dimensions (Figures 10–12).
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Once inside each space, the participant was offered to sit in a real chair to better
experience the space and answer the questions of the ad-hoc survey, which was created to
obtain information about their perceptions and sensations. The participant was then asked
to choose one sensation from a set of three in the scale and size category, then one from the
set of three in the materials category, and so on, until five sensations were chosen, one from
each category (see Table 1). Finally, the participant was asked to mention two sensations
that, according to their own perception, were the most representative of each space.

5. Results
5.1. Results and Analysis of Spatial Skills in ULL

To know the effect produced by the training in the experimental group, the gain
acquired in each of the instruments that measure the components of the spatial skills is
compared with the gain acquired by the control group. In this study, the independent vari-
able was the groups, and the dependent variable was the gain of each of the components.



Appl. Sci. 2021, 11, 1475 14 of 23

Table 2 displays the statistical description of data that was compiled for each of
the groups.

Table 2. Statistical description of data.

MRT
Mean Value (SD)

DAT-5
Mean Value (SD)

SOT
Mean Value (SD)

ROCFT
Mean Value (SD)

PRE POST PRE POST PRE POST

Experimental group
n= 14

17.21 23.29 29.29 36.29 46.52 28.03 27.00
(8.30) (11.02) (10.67) (9.10) (26.97) (19.40) (5.85)

Control group
n= 16

20.06 22.25 28.25 32.06 43.49 26.42 23.00
(10.81) (9.57) (9.64) (8.50) (27.08) (28.37) (4.98)

First, it is verified that the data collected before training follows a normal distribution.
In order to do the statistical analysis, it was necessary to establish the fact if the experimental
groups and control groups were homogeneous in terms of their spatial skills.

The Shapiro–Wilk test (used on samples of less than 50 people) were used to test the
normality of each sample. This test was run on data pretest from MRT, DAT-5SR, SOT and
ROCFT from each group (experimental and control).

Table 3 summarizes the results of the normality distribution analysis of the study
samples. The results of the normality tests for both groups indicate that in all cases the
data are distributed according to the normal.

Table 3. Normality test for samples from both groups (experimental group and control group).

Group Shapiro–Wilk

F gl Sig.

MRT Experimental 0.901 14 0.115
Control 0.968 16 0.825

DAT5-SR Experimental 0.949 14 0.548
Control 0.932 16 0.263

SOT Experimental 0.945 14 0.479
Control 0.885 16 0.052

ROCFT Experimental 0.884 14 0.055
Control 0.950 16 0.528

On the other hand, the mean values obtained in the Rey–Osterrieth complex figure
test indicate that the participants in both groups (experimental and control) do not have
any neurological/clinical problem that prevents them from training and improving the
components of spatial ability. The values are aligned with normalized values [55–58].

At this stage of analysis, the research team checked whether there is a significant dif-
ference in the level of spatial awareness between the two groups prior to receiving training.
A Student’s t-test on independent samples produced p-value > 0.05 for the components of
spatial ability (see Table 4). This means that in the three components of spatial ability that
have been measured there is no significant difference between experimental and control
groups before training, in other words both groups have the same level of spatial ability
before training.

Table 4. p-Values prior training in each of the components of Spatial Skills.

Pre MRT Pre DAT-5 Pre SOT

Control Group vs.
Experimental Group p = 0.43 p = 0.78 p = 0.89
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The objective of this study was to assess whether the students made any gains in
spatial ability components after undergoing training based on drawing using full-scale 3D
sketching techniques in VR environments.

In a controlled experiment, students’ abilities were measured prior to and following
the proposed experiment. The control group did not perform any training. The mean value
of the gain in results of the pre and posttest of the experimental group and control group
are displayed at Table 5.

Table 5. Gain in scores for each of the spatial ability components.

Gain MRT Gain DAT-5 Gain SOT *
Mean Value (SD) Mean Value (SD) Mean Value (SD)

Experimental group 6.07 7 29.72
n = 14 (4.14) −4.62 −41.72

Control group 2.19 3.81 46.4
n = 16 −3.94 −3.71 −24.38

* Percentage decrease. It is the value to be taken into account as a gain. (it is better if the percentage is lower).

The research team proceeded to explore whether there are significant differences
between the control group and the experimental group at the Universidad de La Laguna
after training.

The following research hypotheses were defined to verify the improvement of spatial
skills on students at Universidad de La Laguna:

HR1: the experimental group demonstrates an improvement in spatial visualization
measured with the DAT5- following the proposed training experiment.

HR2: the experimental group demonstrates an improvement in spatial relation mea-
sured with the MRT following the proposed training experiment.

HR3: the experimental group demonstrates an improvement in spatial orientation
measured with the SOT test following the proposed training experiment.

The T-student statistic was applied to compare the average gain values of each of the
mean components between the two groups. It was obtained p-value = 0.01 for MRT gain,
p-value = 0.04 for DAT-5 gain and p-value = 0.039 for SOT.

In each case, the measurement of the components yields a p-value less than 0.05,
which means that there is a significant difference in the improvement of mental rotation,
visualization, orientation and spatial perception. It can be stated that the experimental
group has achieved greater gains in the measurements after training than the control group,
and the research hypotheses HR1, HR2 and HR3 were all accepted.

5.2. Results of Spatial Perception in UNSA

As previously mentioned, the ephemeral architecture has taken a huge dimension in
the world of design in recent years. The architect is not only concerned with making designs
and representations of attractive spaces but must also appeal in its designs to the senses
and emotions through forms and materiality, always seeking maximum expressiveness
with a minimum of space.

The architect is not only concerned with designs and representations of attractive
spaces but must also consider in their designs the senses and emotions that users may
feel through the shapes and materiality, always seeking maximum expressiveness with a
minimum of space.

The graphs in Figure 13 identify the sensations perceived by the participants in each
of the six spaces when experiencing them in an immersive virtual reality environment.
In each column of the graphs, each of the five dimensions of the instrument discussed in
Section 3.1, Table 1, is analyzed.
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Table 6 shows the sensations that the designer expects the users to perceive from their
designs and the real sensations that the participants perceived when experiencing and
walking through such spaces in an immersive virtual reality environment. The percentage
indicates the degree of agreement of the user with the designer. The average degree of
coincidence considering the six spaces evaluated reaches 72.29%.

Table 7 shows the two sensations that the participants considered the most representa-
tive and intense of each space.
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Table 6. Cont.

Space Sensations Proposed by
Designer

Predominant Sensations
That Participants Felt

3.
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6. Discussion

The first part of this research has sought to determine the effects of short training
sessions using immersive virtual reality to improve spatial skills by differentiating three
components: spatial rotation, spatial visualization and spatial orientation. Based on the
results, it has been determined that there is a positive effect on the improvement of spatial
skills in each one of its dimensions. Most of the authors consider the spatial orientation
component as part of rotation and spatial visualization, so they do not consider it a specific
and independent component. In this research, we tried to find a difference in the spatial
orientation with respect to the others, since in the proposed training tasks took into account
working with architectural spaces at real scales, which demanded navigation capabilities
and orientation in walkarounds much more related to that spatial orientation component.
However, this difference has not yet been found, which suggests that it should be followed
this tendence of specific analysis of spatial orientation in trainings related to geographic
and cartographic tasks [30,31,61,62].

We consider that this study serves as a clarifying contribution so that the analyses of
spatial skills improvement can follow the proposal of Carroll [13] and backed by numerous
authors [27,28,63] who propose two components for spatial skills: spatial relations, which
contain the spatial orientation, and spatial visualization.

In the second part of the study, six architectural spaces have been designed to gen-
erate different sensations in users, with at least two with greater intensity and clarity. By
experiencing the life-size spaces in immersive virtual reality, students reported having per-
ceived the same sensations with a very high coincidence, up to 72,29%, e.g., the sensations
experienced by the participants coincide by 72.29% with those indicated by the designers
(considering the ideal case that the designers agree 100% on the two predominant sensa-
tions per space). This is due to the sense of presence (subjective feeling of being present
elsewhere) that is determined in virtual environments by immersion and realism, which
has been an important concept in understanding and evaluating the effectiveness of virtual
environments primarily in the context of human experience [64,65] and the perception of
architectural spaces. Although the ideal measurement of sensations is the combination
of objective tests through biosensors and subjective tests through questionnaires or sur-
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veys [59], in this study we have only used the last ones to complement them with sensors
in future research.

As for the categories of sensations proposed, it has been observed that the sensa-
tions for the category of use and activity (joy/theatricality, sadness/nostalgia and emo-
tion/spirituality), provoked greater coincidences, that is to say, the experience inside and
outside virtual spaces has allowed users to feel and imagine what activities they could
carry out in those spaces. This is essential in order to evaluate the spaces before they are
occupied and to additionally check whether the final utility of an architectural space has
been achieved before its actual construction by providing qualitative information on the
performance of the buildings [66,67].

The sensations caused by the category of materials (warmth/comfort, fragility/exposure
and distance/indifference) were expected to be the ones with the most coincidences; how-
ever, it was the second one behind use and activity. The realism of the materials used in
the virtual environment is an ever-present feature of immersive virtual reality, but the
texture to the touch is a huge weakness since modifying haptic impressions in VR remains
a challenge [68] and for now a disadvantage that distances it from the sensations that
the materials cause in the real world. This may explain why the sensations caused by
the materials have not been the most coincidental, but at the same time, it is a challenge
because users want the full experience of spatial perception like “touching” the elements
of space, interacting or feeling the real physical properties and effects of the elements.

7. Conclusions

There are many studies that have developed training programs aimed at the improve-
ment of spatial skills and supported by different technological tools in engineering students,
however, there is not much evidence of experiences that have used immersive virtual reality
and three-dimensional drawing of architectural spaces to achieve positive effects in three
components of spatial skills: spatial visualization, spatial rotation and spatial orientation.
In this research the experimental group has achieved a significant improvement of the three
mentioned components, which are important in the field of architecture. No significant
difference has been found that allows us to conclude that spatial orientation has been
improved by the training in which navigation and walkarounds were required and that it
could be of help to architecture students who manage spaces to be inhabited, experienced
and walked.

On the other hand, the walk arounds and sensory experimentation in architectural
spaces realistically modeled in immersive virtual reality environments allows for the same
sensations that the designer initially sought to convey. We are able to make this conclusion
based on the coincidences expressed by the students when interacting with the six spaces
in an immersive virtual environment. This second conclusion is also useful for learning
architectural design since it is essential to determine before building, if the designs will
meet the sensory expectations initially set by the architect, which will later determine the
appropriate use of these spaces.

In immersive virtual reality environments, as it happens in the real world, the percep-
tion of the physical characteristics of an architectural space, such as dimensions, materials
and degrees of enclosure, generate sensations that allow us to perceive a specific use and
activity for that space, which is supported by the relationship between the space and
the user who perceives it. This conclusion will allow us to investigate in the future, as
is already being done [69], which characteristics or specific physical elements generate
specific sensations, so that the student of architecture will be trained in this important
aspect of their education.
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