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Abstract: Construction site accidents can be reduced through proactive steps using prediction
models developed based on factors that influence the safety climate. In this study, a prediction
model of the safety climate observed by construction site personnel in Saudi Arabia was developed,
identifying a set of significant safety climate predictors. The model was built with data collected
from 401 active construction site personnel using a bootstrapped multiple ordinal logistic regression
model. The model revealed five significant predictors: supervision, guidance, and inspection;
social security and health insurance; management’s commitment to safety; management’s safety
justice; and coworker influence. The model can correctly predict 67% of the safety evaluations.
The identified predictors present proof of the importance of safety support, commitment, and
interaction in construction sites and their influence on the perceived evaluations of the safety climate
by personnel. Moreover, the prediction model can help construction industry decision makers, safety
policy designers, government agencies, and stakeholders to estimate the safety climate and assess
the current situation. Furthermore, the model can help form a better understanding and determine
areas of improvement, which can translate into higher safety performance levels.

Keywords: safety climate; construction sites; prediction; ordinal logistic regression; Saudi Arabia

1. Introduction

Many occupational accidents in construction projects are triggered by human error,
inadequate supervision, and the shortage of safety facilities and equipment [1]. Most of
these accidents are related to the construction industry’s work environment. Managing
construction projects presents several challenges related to the changing work environment
and the complicated interaction between factors that affect safety [2]. The dynamic nature
of the construction industry and its risks requires dynamic solutions. Naturally, the safety
climate is dynamic and represents an organization’s safety culture, reflecting the employees’
perception and approach toward the current safety systems implemented in construction
projects [3]. The impact and influence of the safety climate on safety performance are
well recognized [4–8]. To accomplish high safety performance levels in construction
projects, several connected factors should be considered, including key safety management
factors, contextual factors, and a combination of such factors [9]. Safety management
factors, including roles and responsibilities, project management, occupational health and
safety (OHS) management and integration, safety climate, learning, site management,
staff management, and operative risk management, were identified as essential for high
safety performance [9]. A study that took place in Morocco’s construction industry, which
endures low safety performance, found that a positive safety climate appears to counteract
the negative effect that high-risk tolerance imposes on safety behavior [10]. Ethnic minority
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construction workers are vulnerable to accidents, which emphasizes the importance of
determining potential strategies to improve construction sites’ safety climate that will lead
to improved safety performance [11]. Moreover, the safety climate can assist industry
owners and contractors by providing information related to attitudes and perceptions,
which can promote enhanced safety performance [12]. Furthermore, the safety climate
has a major impact on safety compliance and participation [13,14]. There is an assumed
correlation between the safety climate and safe work behavior [15], as workplace accidents
are related to unsafe behaviors [16]. Construction sites’ top management, such as project
managers, are key players in determining site safety. Project managers must implement the
corrective actions required to decrease the probability of accidents that result from workers’
unsafe work behavior [17].

Several studies have investigated the safety climate in the construction industry from
a different perspective. A number of these studies resulted in the creation of tools, models,
and frameworks that can enhance the safety climate in the construction industry. For
instance, a study proposed and tested a theoretical cognition framework incorporating
construction workers’ safety perception in a step toward contributing to the knowledge in
the field of safety culture and safety climate [18]. It found that more experienced workers
have more reliable perceptions [18]. Moreover, a study that integrated signaling theory
with safety climate found that managers who perceived safety climate and workers who
are committed to safety interrelate to form an effective workplace safety system [19]. In
addition, a study that took place in Denmark found that an intervention with a checklist
approach can assist in improving the safety climate in small construction companies where
apprentices receive their training [20], thus preventing apprentice injuries as they are
subjected to increased risk of occupational injuries [20]. Furthermore, the safety climate is
considered to be the most effective safety factor for workers’ unsafe behaviors according to
a study that used a scoring matrix that is based on an interval-valued, intuitionistic, fuzzy-
improved score function and a weighted divergence-based approximation approach [21].
Additionally, the safety climate assessment tool allows companies to use rubric-based
descriptors for self-assessment of their safety climate maturity in a reliable manner [22].
Finally, a study was able to calculate the optimal percentage that construction companies
should invest and allocate for safety equipment and activities, which was identified to be
1% of the project scope [23].

The safety climate perceptions of managers, supervisors, and workers were also
investigated by a group of researchers due to their differences. It was found that the
highest safety climate scores were achieved by managers, followed by supervisors and
workers [24]. A study concluded that when a change in the supervisor safety climate
was done from low to higher levels, the effect of risk perception on safety motivation
altered from positive to negative [25]. Furthermore, workers who were working in their
positive coworkers’ safety climate changed their negative effect of risk perception into
a positive effect concerning motivation and behavior [25]. Another study concluded
that for supervisors, the safety climate is negatively correlated with injuries, whereas for
workers, the safety climate is negatively associated with unsafe events [26]. In addition, a
study observed that workers with a positive safety climate show higher levels of hazard
realization and safety risk perception [27]. Furthermore, it was found that construction
workers’ risk-taking behavior is negatively correlated with the safety climate [28].

The relationship between the safety climate and safety training programs was also
explored. For example, in Hong Kong and China, it was found that safety programs
can improve construction workers’ prosociality and the safety climate [29]. Generally,
safety management programs are used in construction projects to avoid workplace injuries
and provide a safety climate [30]. In addition, the safety climate can be strengthened at
construction sites through specific training programs, such as the 2.5-h Foundation for
Safety Leadership, given to supervisors [31]. Furthermore, a foundational safety leadership
training program can assist the majority of construction companies in empowering their
leaders to be able to create a sound construction site safety climate [32]. Leadership skills
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are required to establish a sound job site safety climate, which is a skill some construction
foreman may lack. Specialized safety training could be used to develop the skills of
personnel in the area of leadership to promote a safety climate. The foundation for the
safety leadership training module is a useful approach that could assist in solving this
issue, as it has been widely recognized by the construction industry [33].

Generally, communication influences safety in the construction industry. A study that
used information and communication technology to investigate the relationship between
safety and quality has found that this technology could lead to a 30% improvement in qual-
ity and a 90% reduction in unsafe activities [34]. The safety climate can have a major impact
on the safety outcome of a project if team members practice effective communication with
each other [35]. Moreover, hazard recognition skills can be experienced by maintaining a
positive safety climate. Furthermore, hazard recognition skills are also positively associated
with social network safety communication patterns [36].

To achieve exceptional safety performance, it is essential to implement proactive safety
management and identify a project’s risk level before it begins [37]. This prediction process
should include all types of risks and hazards, including those that might happen to workers.
The emerging field of construction safety prediction allows predicting the likelihood and
severity of future injuries by using data and analytical techniques [38]. For the past 30
years, safety literature has concentrated on the safety climate’s role in predicting injuries
and accidents [39]. Past studies have confirmed that the safety climate is a strong predictor
of safety-related results [40], emphasizing the safety climate’s importance in raising safety
performance through prediction techniques. Accident prediction can help managers apply
protective actions by identifying hazards early [41]. Although avoiding safety accidents
is significant for construction safety, limited studies have created a system framework
or model that enables construction safety experts to perform decisions before beginning
work [42]. Thus, this area of research deserves more focus.

Machine learning can be used to predict safety outcomes in the construction industry.
For instance, one study used two machine learning models, random forest and stochastic
gradient tree boosting, to predict construction injury details, including injury type, energy
type, and body part [43]. Another study used logistic regression, decision tree, random
forest, and AdaBoost analysis machine learning methods to develop a predictive model to
help prevent construction accidents [44]. To predict the safety climate in a construction site,
another study developed a model based on an artificial neural network that assists clients
and contractors in safely managing their construction sites by evaluating and predicting
the safety climate [3]. Furthermore, in the context of the safety climate and its influence
on safety behavior and safety performance, a study developed a prediction model by
employing an artificial neural network to predict and evaluate workers’ work behavior in
construction sites using safety climate constructs [17].

The safety climate prediction model presented in this study is based on multiple
factors that influence the safety climate in the context of Saudi Arabia. The model is in-
tended to help industry stakeholders identify the overall safety climate level at a particular
construction site. The model creates an opportunity to enhance safety levels by identify-
ing areas of weakness and improvement based on employees’ perceptions. This paper
will contribute to safety climate research in the construction industry, specifically to the
development of accident prediction models.

2. Materials and Methods

This study aims to develop a prediction model of observed safety climate levels by
construction site personnel in the construction industry of Saudi Arabia. This includes
exploring the set of predictors that can explain variations in construction sites’ safety
climates. Mosly and Makki [45] identified 13 safety-climate-influencing factors in Saudi
Arabian construction sites (Table 1). Subsequently, Makki and Mosly conducted an ex-
ploratory study [46] that revealed that those influencing factors act as determinants of
the safety climate under three key components (safety commitment, safety interaction,
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and safety support). This study builds upon these previous studies, using their safety
climate determinants to explore the set of factors capable of predicting safety climate
levels. Figure 1 presents the followed research framework and explains the association
between the indicated previous studies (Phases I and II), respectively, and the study herein
(Phase III). Furthermore, Figure 2 presents the general methodology flowchart used to
attain the objective of this study, which is the development of the prediction model.

Table 1. Components and determinants of the safety climate in construction sites of Saudi Arabia.

Component a Determinant b

Safety commitment

D1 Workers’ commitment to safety
D2 Appraisal of risks and hazards
D3 Management’s commitment to safety
D4 Management’s safety justice
D5 Competence

Safety interaction

D6 Workers’ involvement
D7 Coworker influences
D8 Communication
D9 Workers’ attitude toward health and safety

D10 Supportive environment

Safety support
D11 Education and training
D12 Social security and health insurance
D13 Supervision, guidance, and inspection

a Source: Makki and Mosly [46]. b Source: Mosly and Makki [45].
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A questionnaire survey was used to ask N = 401 construction site personnel working
in ongoing (July 2019–January 2020) projects in Saudi Arabia to rate the importance of
safety-climate-influencing factors, including the 13 determinants listed in Table 1. Respon-
dents’ perceptions were measured via questionnaire items on a five-point Likert scale (i.e.,
5 = extremely important, 4 = important, 3 = neither, 2 = unimportant, 1 = extremely unim-
portant). Moreover, they were also asked to evaluate the overall construction site’s safety
climate on a five-point scale (i.e., 5 = excellent, 4 = good, 3 = neither, 2 = poor, 1 = extremely
poor). However, for the purpose of this study, the construction sites’ safety climate evalu-
ations scores were reclustered into three categories (i.e., 3 = excellent/good, 2 = neither,
1 = poor/extremely poor). This ensured that the categories were mutually exclusive to
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analyze and interpret the results. More detailed information about the collected sample,
such as questionnaire survey design, sampling process, targeted sample size, response
rate, measurement scale, and descriptive statistics of the sample, including respondents’
sociodemographic information, factors rating frequencies, the overall construction site’s
safety climate evaluation, and technical contents on the safety climate in the construction
industry of Saudi Arabia, along with the used sample, can be found in a previous study
by Mosly and Makki [45]. Full ethical approval of this study and the used questionnaire
survey was granted by the Research Ethical Committee of the Center of Excellence in
Genomic Medicine Research, King Abdulaziz University, (HA-02-J003).

An inferential statistical design was employed using the 13 safety climate determi-
nants as independent variables (IVs) that predicted the construction site’s safety climate
evaluations, which served as the dependent variable (DV). Given that both the IVs and
the DV were rated on the aforementioned scales, they were treated as discrete ordinal
categorical variables. As appropriate for such a statistical design, a generalized linear
model approach using multiple ordinal logistic regression was implemented.

Ordinal logistic regression is a maximum-likelihood-estimation-based method. It mod-
els proportional odds using a logit link function that performs logarithmic transformations
of cumulative probabilities to express non-linear relationships between the IVs and DV
in a linear model [47–52]. Accordingly, the Statistical Package for Social Sciences software
(SPSS version 23.0) [53] was used to fit the following ordinal logit model in Equation (1):

logit
(
γj
)
= ln

(
γj

1 − γj

)
= θj − β1X1 + β2X2 + . . . + βkXk + ε, (1)

where
j: 1 to (number of DV categories – 1),
γj: cumulative probability for the jth category,
θj : threshold for the jth DV category,
β1 to βk: regression coefficients of IVs,
X1 to Xk: IVs,
k: number of IVs, and
ε: error term.
Thus, by finding the antilog of Equation (1), the estimated regression model will be

Equation (2) or (3):

γ̂j = eθj −(β1X1+ β2X2+...+βkXk)/
(

1 + eθj −(β1X1+ β2X2+...+βkXk)
)

, (2)

γ̂j = 1/
(

1 + e(−θj + β1X1+ β2X2+...+βkXk)
)

, (3)

where γ̂j is the estimated cumulative probability of a construction safety climate evaluation
score based on the importance ratings of safety climate determinants, included in the model
as predictors Xs and their associated βs. Moreover, the odds and the odds ratio (OR) can
be estimated by Equations (4) and (5), respectively, which also enables the estimation of the
proportional change in the odds resulting from a unit change in the predictor (i.e., one score
unit change in X).

Odds = γj/
(
1 − γj

)
, (4)

OR =
(

Oddsone score unit change

)
/
(

Oddsoriginal score

)
(5)

Accordingly, the cumulative probability of observing a particular construction site safety
climate evaluation score or a lower score can be estimated by modeling all odds following the
form in Equation (6). Thus, the probabilities for the individual construction site safety climate
evaluation scores (i.e., P (score = j)) can also be calculated using Equation (7).

odds = P(score ≤ j)/(1 − P(score ≤ j)), (6)
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P(score = j) = P(score ≤ j) − P(score < j) (7)

The decision to build the prediction model by entering the 13 IVs as predictors and
retaining the significant predictors was based on the principle of parsimony, as suggested
by [3]. The IVs were entered in a stepwise hierarchical fashion based on the theory
previously proven by Makki and Mosly [46] of their key component classifications as
determinants (Table 1).

The overall fit of the model was tested using a –2 log-likelihood χ2 statistic (−2LL χ2)
between the intercept-only model (i.e., baseline model) and the final model including the
predictors (i.e., new model). The significance level (p < 0.05, p < 0.01, p < 0.001) of the safety
climate determinants selected as IVs in predicting the construction site’s safety climate
evaluations as the DV was assessed using Equations (8) and (9).

χ2 = 2LLnew − 2LLbaseline , (8)

d f = knew − kbaseline (9)

Moreover, a goodness-of-fit test using Pearson and deviance χ2 statistics was conducted.
If the result is not significant (i.e., p > 0.05), this test indicates that the model with the selected
predictors is a good fit. Furthermore, to measure the strength of association between the
selected set of IVs and the DV, the pseudo R2 measures Cox and Snell R2, Nagelkerke’s R2,
and McFadden’s R2 were employed following Equations (10)–(12), respectively:

R2
Cox and Snell = 1 −

(
L
(

B(0)
)

/L
(

B̂
)) 2

n , (10)

R2
Nagelkerke = R2

Cox and Snell/
(

1 − L
(

B(0)
) 2

n
)

, (11)

R2
McFadden = 1 −

(
L
(

B̂
)
/L
(

B(0)
))

, (12)

where L(B̂) is the log-likelihood function for the model with the estimated parameters,
L
(

B(0)
)

is the log-likelihood with just the thresholds, and n is the number of cases (sum of
all weights).

Moreover, to assess the significance level of each estimated regression model parame-
ter, including thresholds (i.e., θs) and predictor coefficients (i.e., βs) and their associated
standard errors (SEs) for each IV (i.e., location), the Wald χ2 statistic based on the z-statistic
was constructed following Equations (13) and (14), respectively. The significance of each
estimated parameter was measured on a 95% Wald confidence interval (CI). The same test
was performed for the parameters’ associated OR (i.e., exp(θ, β) or eθ and eβ).

Wald χ2(θj
)
= z2 =

(
θj/SEθj

)2
, (13)

Wald χ2(βk) = z2 =
(

βk/SEβk

)2 (14)

Furthermore, to ensure the validity and accuracy of the results, the assumptions of the
multiple ordinal logistic regression were checked and satisfied [47–52]. These assumptions
include that the DV is measured on an ordinal level, which is the case in this study, given
the DV measurement scale described above. Another assumption is that IVs are continuous,
ordinal, and/or categorical variables, which is the case for all IVs using this scale. Moreover,
the independence-of-observations assumption is satisfied in this study, as each data point
comes from a different respondent. Furthermore, the assumption of proportionality or
parallelism of odds for the final model was checked by conducting the test of parallel lines
using the −2LL χ2 statistic. The result was insignificant (i.e., p > 0.05), indicating that the
location parameters of the regression model coefficients were the same across all the DV
categories (in this case, DV scores). Another assumption is to ensure that there are no to low
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levels of multicollinearity between IVs. This was checked by correlation analysis between
all IVs using Kendall’s tau-b test statistics. This test reveals any signs of multicollinearity
and guides the process of entering the IVs as predictors in the model in case there are
proxy variables. Furthermore, the variance inflation factor (VIF) was calculated for each of
the predictors retained in the final model; values close to 1 indicate low multicollinearity,
while values close to 10 indicate that multicollinearity is a problem for the model [49].
Furthermore, linearity between IVs and the logit of DV was checked for the final model.
An insignificant goodness-of-fit test −2LL χ2 statistic and an overall highly significant fit
of the model based on the −2LL χ2 statistic comparing the intercept-only model and the
final model was found. Additionally, each predictor’s interactions in the final model and
their log transformations were calculated and force-entered into the model, finding them
to be insignificant. This is an indication satisfying the linearity assumption, according to
Field [49]. Finally, sample size sufficiency was calculated using the rule-of-thumb formula
in Equation (15), which is based on the concept of event per variable (EPV) [54].

NEPV = 100 + 50i, (15)

where NEPV is the estimated required sample size based on the EPV and i is the number of
IVs in the final model.

Sample size adequacy in this study was based on the number of retained predictors
in the final model, k = 5 and NEPV = 100 + 50(5) = 350. Thus, the sample size used in this
study, N = 401 (>350), is sufficient, yielding a medium-to-large effect size [54]. In addition,
another formula in Equation (16) was used for calculating the minimum sample size for
logistic regression [50,55]:

Nmin. = 10k/q, (16)

where Nmin. is the minimum sample size for logistic regression, q is the smallest of the
proportions of negative or positive cases in the population, and k is the number of IVs.

Based on the number of retained predictors in the final model in this study (k = 5),
and the expected probability of the least frequent outcome (q = 0.2), Nmin. = 10(5)/0.2 = 250
(<N = 401). Therefore, the sample size used in this study is also considered sufficient
according to this formula.

Bootstrapping, a computer-intensive robust statistical inference approach recom-
mended in the literature [49,50,56], was used to ensure the final model’s internal validity
and the generalizability of its results. This technique empirically simulates the sample
data’s sampling distribution properties and checks whether the parameter estimates of the
model (i.e., CIs and SEs of βs) hold true after relaxing the distribution of the sample. In this
study, a minimum bootstrap sample size of B = 1000 was used by re-sampling individual
data with replacement from the initial sampled dataset, which is considered reasonable
for generating 95% bootstrap CI percentiles. However, since the IVs and the DV were all
ordinal categorical variables in this study, the stratified sampling method for re-sampling
each bootstrapped sample (i.e., each B) was used. This ensured that the simulated empirical
distribution mimicked the structure of the collected sample dataset, under the assumption
that it represents the population from which it was collected [57].

Finally, sensitivity analysis and scenario applications of the model were performed to
confirm its validity. The application of described materials and methods and the resulted
prediction model with its retained set of significant predictors are all presented and dis-
cussed below. Furthermore, to test the degree to which the probabilities predicted by the
developed ordinal logistic regression model agree with actual observations in the collected
dataset, the overall percentage of correct predictions was calculated.
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3. Results and Discussion

Data analysis was conducted using the above-described materials and methods. Be-
fore entering the 13 IVs (Table 1) in the model, Kendall’s tau-b correlation analysis was
performed between all safety climate determinants, as presented in the correlation matrix
(Table 2). As mentioned earlier, this was to guide when entering the IVs as predictors in the
model in case of proxy variables and served to reveal any violations of the multicollinearity
assumption. Despite the significant correlations, none demonstrated a high correlation
coefficient (i.e., 0.80 or higher). Therefore, no signs of multicollinearity between the IVs
were detected. Nevertheless, the highest correlation coefficient (0.449) was found between
determinants D7 (coworker influence) and D8 (communication). This indicates that these
two determinants should be treated cautiously since they might represent each other to
some extent if entered in the model as simultaneous predictors. The first criterion for
inclusion in the model was to select the predicator that demonstrated a higher significance
in explaining the variations in DV. Second, if both were significant, the predictor with a
higher partial contribution when included with other predictors in the model was chosen,
resulting in higher pseudo R2 values of the overall model.

To build the prediction model, all 13 IVs were included in the model as covariate pre-
dictors against the DV. As mentioned earlier, the process of entering IVs was conducted in
a stepwise hierarchical fashion based on the structure presented in Table 1. Through fitting
the ordinal logit model present in Equation (1), five significant safety climate determinants
(D13, D12, D3, D4, and D7, according to Table 1) were revealed as the predictors (X1, X2,
X3, X4, and X5) of the construction site’s safety climate levels, as evaluated by personnel
(Tables 3 and 4).

To further check the multicollinearity assumption for the five predictors, the VIF for
each predictor was calculated, as presented in Table 4. The VIF values ranged from 1.054 to
1.275 and were all relatively close to 1, indicating that the prediction model satisfies the multi-
collinearity assumption. The overall fit of the model was tested using the −2LL χ2 statistic.
Applying Equations (8) and (9), the difference between the baseline model and the new model
including the five predictors was statistically significant: χ2(5) = 537.804 − 475.708 = 62.096;
p < 0.001. Therefore, the model is considered a statistical fit. Moreover, the goodness-of-fit
test indicated Pearson χ2(425) = 460.452301, p = 0.114 (>0.05), and deviance χ2(425) = 402.745,
p = 0.775 (>0.05), indicating that the model is a good fit. Furthermore, the parallel lines test
was performed using the −2LL χ2 statistic to test the difference between the null hypothesis
that the model is based on proportional odds and the alternative hypothesis of nonpropor-
tional odds. The results showed that χ2(5) = 475.708 − 472.788 = 2.920, p = 0.712 (>0.05),
indicating that the location parameters of the model are the same across all response cate-
gories. Thus, the model satisfied the assumption of proportionality or parallelism of odds.
Moreover, to measure the strength of association between the five IVs and the DV using Equa-
tions (10–12), the model demonstrated acceptable levels of pseudo R2s: Cox and Snell = 0.143,
Nagelkerke = 0.178, and McFadden = 0.095, respectively.

As presented in Table 4, all estimated regression model parameters, including the
model thresholds (i.e., θ1 and θ2) and the location predictor coefficients (i.e., β1–β5), were
significant. This was measured using Wald χ2 statistics, which were obtained using
Equations (13) and (14). Moreover, estimated regression model parameters demonstrated
reasonable SE and bias levels on both 95% Wald CIs and 95% bootstrapped CIs.

The positive values of the location predictor coefficients (i.e., β1–β5), along with the
fact that their associated exp(β) values were greater than 1, indicates higher odds of moving
to a higher ordered category in the DV for a higher value in any of the IVs (i.e., X1, X2, X3,
X4, or X5) by one unit. The OR value of exp(β) associated with each predictor indicates the
magnitude (i.e., how many times) of the increase. Thus, in Tables 3 and 4, the predictors
are ordered on that basis.
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Table 2. Kendall’s tau-b correlation matrix of safety climate determinants.

Determinant D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

D1 1.000 0.350 ** 0.379 ** 0.380 ** 0.225 ** 0.015 −0.019 0.053 0.127 ** 0.065 0.279 ** 0.101 * 0.303 **
D2 1.000 0.286 ** 0.342 ** 0.261 ** 0.178 ** 0.094 * 0.076 0.195 ** 0.116 ** 0.256 ** 0.116 ** 0.293 **
D3 1.000 0.366 ** 0.186 ** 0.066 0.047 0.132 ** 0.079 0.134 ** 0.272 ** 0.092 * 0.294 **
D4 1.000 0.179 ** 0.007 −0.021 0.059 0.081 0.135 ** 0.284 ** 0.210 ** 0.296 **
D5 1.000 0.122 ** 0.062 0.124 ** 0.234 ** 0.178 ** 0.154 ** 0.094 * 0.189 **
D6 1.000 0.408 ** 0.318 ** 0.350 ** 0.293 ** −0.035 0.126 ** 0.052
D7 1.000 0.449 ** 0.299 ** 0.221 ** 0.050 0.166 ** 0.072
D8 1.000 0.265 ** 0.186 ** 0.071 0.159 ** 0.109 *
D9 1.000 0.221 ** 0.037 0.122 ** 0.132 **

D10 1.000 0.071 0.181 ** 0.146 **
D11 1.000 0.156 ** 0.413 **
D12 1.000 0.161 **
D13 1.000

* p < 0.05, ** p < 0.01 (2-tailed).
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Table 3. Construction site safety climate predictors retained in the prediction model.

Component Predictor

Safety support X1 Supervision, guidance, and inspection
X2 Social security and health insurance

Safety commitment X3 Management’s commitment to safety
X4 Management’s safety justice

Safety interaction X5 Coworker influences

After satisfying the assumptions of the ordinal logistic regression model and given the
statistical significance of the fit of the model, its goodness-of-fit, and the model parameter
estimations, the prediction model with the selected predictors was deemed the final model.
Therefore, using the models in Table 4 and Equation (1), the final fitted ordinal logistic
model is described by Equation (17).

logit
(

γj

)
=

 logit(γ1) = ln
(

γ1
1−γ1

)
= 3.659 − 0.387X1 + 0.340X2 + 0.314X3 + 0.282X4 + 0.269X5, f or j = 1,

logit(γ2) = ln
(

γ2
1−γ2

)
= 5.687 − 0.387X1 + 0.340X2 + 0.314X3 + 0.282X4 + 0.269X5, f or j = 2.

(17)

According to Equations (2) and (3), and given that the cumulative probability of all
three DV categories (i.e., 3 = excellent/good, 2 = neither, 1 = poor/extremely poor) is 1,
the cumulative probabilities of the first DV category (i.e., poor/extremely poor) for any
value combinations (i.e., X1, X2, X3, X4, and X5) ranging from 1 to 5 (i.e., 5 = extremely
important, 4 = important, 3 = neither, 2 = unimportant, 1 = extremely unimportant) can be
estimated using Equation (18) or (19).

γ̂1 =
(

e3.659 −(0.387X1+ 0.340X2+0.314X3+0.282X4+0.269X5)
)

/
(

1 + e3.659 −(0.387X1+ 0.340X2+0.314X3+0.282X4+0.269X5)
)

, (18)

γ̂1 = 1/
(

1 + e(−3.659 + 0.387X1+ 0.340X2+0.314X3+0.282X4+0.269X5)
)

(19)

Similarly, the cumulative probabilities of the second category of the DV (i.e., neither
or poor/extremely poor) can be estimated using Equation (20) or (21).

γ̂2 =
(

e5.687 −(0.387X1+ 0.340X2+0.314X3+0.282X4+0.269X5)
)

/
(

1 + e3.659 −(0.387X1+ 0.340X2+0.314X3+0.282X4+0.269X5)
)

, (20)

γ̂2 = 1/
(

1 + e(−5.687 + 0.387X1+ 0.340X2+0.314X3+0.282X4+0.269X5)
)

(21)

Accordingly, the odds and odds ratio can be directly calculated using Equations (4)–
(6), respectively. The individual probabilities of each of the three DV scores following
Equation (7) can be calculated using Equations (22)–(24), respectively.

P(score = 1) = P(score ≤ 1)− P(score < 1) = P(score ≤ 1)− 0, (22)

P(score = 2) = P(score ≤ 2)− P(score < 2) = P(score = 1 or 2)− P(score = 1), (23)

P(score = 3) = P(score ≤ 3)− P(score < 3) = P(score = 1 or 2 or 3)− P(score = 1 or 2) (24)
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Table 4. Bootstrapped ordinal logistic regression model (N = 401).

Parameter θ, β SE 95% Wald CI Wald χ2 a Exp
(θ, β)

95% Wald CI for
Exp(θ, β)

Bootstrap b

VIF c
Bias SE

95% CI

Lower Upper Lower Upper Lower Upper

Threshold
θ1 3.659 0.839 2.015 5.304 19.027 *** 38.839 7.502 201.075 0.030 0.482 2.734 4.650 –
θ2 5.687 0.868 3.985 7.388 42.908 *** 294.862 53.787 1616.445 0.041 0.497 4.761 6.699 –

Location

X1 0.387 0.143 0.106 0.668 7.270 ** 1.472 1.111 1.949 0.005 0.071 0.259 0.543 1.223
X2 0.340 0.124 0.098 0.582 7.586 ** 1.405 1.103 1.790 0.001 0.062 0.218 0.464 1.128
X3 0.314 0.135 0.050 0.578 5.423 * 1.369 1.051 1.783 0.002 0.066 0.181 0.444 1.265
X4 0.282 0.122 0.043 0.521 5.353 * 1.326 1.044 1.684 0.000 0.060 0.167 0.397 1.275
X5 0.269 0.118 0.039 0.499 5.241 * 1.309 1.039 1.647 0.003 0.063 0.149 0.398 1.054

* p < 0.05, ** p < 0.01, *** p < 0.001. a Degrees-of-freedom (df) = 1. b Based on B = 1000 stratified bootstrap samples, and all bootstrapped parameter coefficients are significant (p < 0.001, 2-tailed). c Collinearity
statistic: variance inflation factor. Significance of the model: χ2(5) = 537.804 − 475.708 = 62.096; p < 0.001. Model goodness-of-fit: χ2(425) = 460.452301, p = 0.114 (>0.05), and deviance χ2(425) = 402.745, p = 0.775
(>0.05). Pseudo R2: Cox and Snell = 0.143, Nagelkerke = 0.178, and McFadden = 0.095.
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To test the model’s validity, sensitivity analysis and scenario applications were per-
formed. As presented in Table 5, five extreme scenarios were applied using the prediction
model. In the first scenario, all predictor values were set to 1, representing a scenario
in which the model user rated the importance of all five safety climate predictors to be
extremely unimportant as a safety climate determinant. The remaining four scenarios
followed the same pattern for the values 2, 3, 4, and 5, respectively; in each scenario,
all predictors were set to the same value, with the final scenario representing a model
user who rated all predicators as extremely important. This procedure tested whether the
model could assign higher probability percentages to higher scores on the DV. Accordingly,
using Equations (17)–(24), and as presented in Table 5, the model successfully predicted
the scores of the construction site’s safety climate evaluations based on the importance
ratings of safety climate determinants. This can be observed from the higher estimated
score probability percentages shown in bold font (Table 5). The model also demonstrated
the odds ratios’ proportionality, having an equal OR value of 0.132, as shown in Table 5.
Similarly, any combination of values ranging from 1 to 5 on the importance scale described
above can be substituted in the five model predictors (i.e., X1, X2, X3, X4, or X5) to estimate
the safety climate evaluations. The developed prediction model correctly predicted 67% of
the 401 safety climate evaluations of the construction site based on which it was modeled.

Table 5. Sensitivity analysis and scenario applications of the developed prediction model.

Scenario IV Scores a Type of DV Score
Probability

DV Score b

Probability
DV Estimated Score

Probability % OR

1

X1 = 1
X2 = 1
X3 = 1
X4 = 1
X5 = 1

cumulative
P (Score ≤ 1) 0.888 88.77

0.132P (Score ≤ 2) 0.984 98.36
P (Score ≤ 3) 1 100

individual
P (Score = 1) 0.888 88.77
P (Score = 2) 0.096 9.59
P (Score = 3) 0.016 1.64

2

X1 = 2
X2 = 2
X3 = 2
X4 = 2
X5 = 2

cumulative
P (Score ≤ 1) 0.617 61.67

0.132P (Score ≤ 2) 0.924 92.43
P (Score ≤ 3) 1 100

individual
P (Score = 1) 0.617 61.67
P (Score = 2) 0.308 30.76
P (Score = 3) 0.076 7.57

3

X1 = 3
X2 = 3
X3 = 3
X4 = 3
X5 = 3

cumulative
P (Score ≤ 1) 0.247 24.67

0.132P (Score ≤ 2) 0.713 71.32
P (Score ≤ 3) 1 100

individual
P (Score = 1) 0.247 24.67
P (Score = 2) 0.466 46.65
P (Score = 3) 0.287 28.68

4

X1 = 4
X2 = 4
X3 = 4
X4 = 4
X5 = 4

cumulative
P (Score ≤ 1) 0.062 6.25

0.132P (Score ≤ 2) 0.336 33.60
P (Score ≤ 3) 1 100

individual
P (Score = 1) 0.062 6.25
P (Score = 2) 0.274 27.35
P (Score = 3) 0.664 66.40

5

X1 = 5
X2 = 5
X3 = 5
X4 = 5
X5 = 5

cumulative
P (Score ≤ 1) 0.013 1.34

0.132P (Score ≤ 2) 0.093 9.34
P (Score ≤ 3) 1 100

individual
P (Score = 1) 0.013 1.34
P (Score = 2) 0.080 8.00
P (Score = 3) 0.907 90.66

a IVs scores: 5 = excellent, 4 = good, 3 = neither, 2 = poor, and 1 = extremely poor, representing importance ratings of the five safety climate
determinants retained in the prediction model as predictors (Table 3). b DV scores: 3 = excellent/good, 2 = neither, and 1 = poor/extremely poor,
representing the predicted construction site safety climate evaluation level. The italicized font represents the highest likelihood percentages.
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Finally, the novelty of the prediction model developed in this study lies in the mod-
eling process following the bootstrapped multiple ordinal logistic regression approach,
which revealed five significant predictors that are part of the most significant determi-
nants that cluster under the three main safety climate components: safety support, safety
commitment, and safety interaction (Table 3). This underlines the importance of these
three key components in construction sites and their impact on construction personnel’s
evaluations of the safety climate. Moreover, the developed prediction model provides an
instrument that can help construction industry decision makers, safety policy designers,
government agencies, and stakeholders to estimate the safety climate of construction sites
and determine areas of improvement. This is through plugging in importance rating values
by personnel at a construction site in the model using the aforementioned scale to predict
the probability of its safety climate evaluation scores. This can assist in determining and
addressing low-scoring predictors that can translate to safety performance improvements.

4. Conclusions

In this study, a model to predict observed safety climate levels by construction site
personnel working in the construction industry of Saudi Arabia was developed. Significant
predictors of the safety climate in construction sites were identified. The prediction model
was developed using the bootstrapped multiple ordinal logistic regression statistical tech-
nique. The model revealed five statistically significant predictors: supervision, guidance,
and inspection; social security and health insurance; management’s commitment to safety;
management’s safety justice; and coworker influence. These predictors were classified
under the three components of safety climate determinants: safety support, safety com-
mitment, and safety interaction. A sensitivity analysis and scenario application showed
that the model is responsive to extreme higher and lower input values and reflects them
in the predicted output. Furthermore, the developed model can generate 67% correct
predictions using the revealed set of predictors. Applications of the prediction model in-
clude assisting construction industry decision makers, safety policy designers, government
agencies, and stakeholders to estimate construction site safety climates and determine areas
of improvement. Targeting improvements for low-scoring predictors can translate to safety
performance improvements.

Collecting a larger sample size and reapplying this study’s methodology is a possible
direction for future research. This approach could confirm the revealed set of predictors
using another dataset. Other machine learning prediction or classification techniques could
also be used in future studies to confirm the set of predictors and improve prediction
accuracy. The prediction model developed in this study represents patterns within the
study’s dataset describing the construction industry of Saudi Arabia. Conducting a similar
study in other temporal and spatial contexts would also be a worthy topic of future research.
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