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Abstract: The increasing importance of three-dimensional (3D) city modelling is linked to these data’s
different applications and advantages in many domains. Images and Light Detection and Ranging
(LiDAR) data availability are now an evident and unavoidable prerequisite, not always verified for
past scenarios. Indeed, historical maps are often the only source of information when dealing with
historical scenarios or multi-temporal (4D) digital representations. The paper presents a methodology
to derive 4D building models in the level of detail 1 (LoD1), inferring missing height information
through machine learning techniques. The aim is to realise 4D LoD1 buildings for geospatial analyses
and visualisation, valorising historical data, and urban studies. Several machine learning regression
techniques are analysed and employed for deriving missing height data from digitised multi-temporal
maps. The implemented method relies on geometric, neighbours, and categorical attributes for height
prediction. Derived elevation data are then used for 4D building reconstructions, offering multi-
temporal versions of the considered urban scenarios. Various evaluation metrics are also presented
for tackling the common issue of lack of ground-truth information within historical data.

Keywords: machine learning; 3D building modelling; historical maps; 4D city modelling

1. Introduction

Historical maps are the most powerful source of information for understanding urban
phenomena and changes that contributed to defining our cities’ actual shape. The growth
and transformation of the urban patterns and landscapes can be analysed through these
differently accurate, symbolised, and generalised representations of reality. Historical
maps represent a graphically coded reduction of the three-dimensional (3D) world in the
2D space, which summarises the urban environment’s main features. The cities’ growth
and changes—conditioned by preferred directions of expansion, natural constraints, and
particular historical events—are impressed in these documents with several informative
levels. Nevertheless, the 2D space-reduction of the maps entails an unavoidable loss of
information, and particularly on the height of the built and natural environment.

With the advent of digital technologies, a more realistic and complete representation of
the world has become possible in its three and four dimensions (3D/4D). Several geomatic
and modelling techniques have been developed in the last years to generate 3D/4D city
models, derived with different levels of automation and input data [1–4]. 3D/4D models
can be digital copies of our cities when enriched with textural information or semantically
enhanced when the geometry is linked to other attributes. Depending on their nature, they
can be used for visualisation, simulations, geospatial analyses, planning activities, and
many other applications [5]. The undisputable advantage offered by the three dimensions
is the broader comprehension of the built spaces and relations in the urban pattern, as well
as their interaction with the natural elements. Modelling in 3D multi-temporal versions of
the same city (4D) can broaden how these relations and interactions are changed over time.
Multi-temporal analyses and modelling of urban environments is typically performed using
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image or Light Detection and Ranging (LiDAR) data, deriving building height information
from these data [6]. On the other hand, when only building footprints digitised from
historical maps are available, the main issue is to derive the missing height information.

Aims and Innovative Aspects

This work aims to explore existing machine learning solutions for inferring building
heights from historical maps. Multi-temporal versions (4D) of the same city are gener-
ated with predicted height values, expanding the space information essential for more
comprehensive geospatial analyses and 3D modelling applications. This work is part of
the TOTEM project (4D Trento Time Machine) (https://totem.fbk.eu/), focused on the
development of ICT (Information and Communications Technology) and AI (Artificial
Intelligence) solutions for the valorisation of historical data (maps and photos) preserved
in the archives of Trento (Italy).

The developed methodology was firstly tested on four different historical maps of
Trento (1851, 1887, 1908, and 1936). These maps (Section 3.1) depict many changes of the
urban structure in the last 150 years, which involved both the historical city centre and
the area outside the medieval defensive walls of Trento. The historical maps were georef-
erenced and building block shapes (“footprints”), including their partitioning, manually
digitised in a GIS environment. A set of diverse polygons was thus generated and several
attributes describing geometrical and neighbourhood features were computed for each digi-
tised polygon (Section 4.1). Finally, machine learning algorithms were tested for predicting
the block heights, using actual height values (derived from modern topographic data)
as training data. The method has been verified (Section 4.4) adopting common machine
learning quality metrics, examining in-depth the prediction performance on buildings still
existing and with the same shape, or not existing anymore but documented in the historical
photo. The replicability of the proposed methodology was also tested on the historic city
centre of Bologna, Italy (Section 3.2).

The innovative aspects of the work are:

- evaluation of multiple regressors to infer building heights from historical maps;
- introduction of the geometric, neighbourhood, and categorical features usable when

only digitised building footprints are available;
- testing and evaluation of the proposed method on two different locations and multi-

temporal historical maps; and
- the realisation of 4D level of detail 1 (LoD1) building models for the geo-visualisation

enhancement, creating a 4D cadastre, and spatial analysis purposes (e.g., volumetric
density studies.

2. Related Works

3D city models are simplified digital replicas of the urban environments, mainly de-
fined by the building blocks’ geometry, mutual relations, and the interaction with natural
elements. 3D city modelling is a vast research area, centred on developing solutions to
create models with several techniques, source data, and automation levels [7–9]. The
application fields have extraordinarily increased in the last decades, bringing signifi-
cant advantages in many domains (e.g., urban planning, crises and risks management,
simulation studies) [10–12]. 3D city models are generally obtained from 3D surveyed
reality-based data [13,14], employing SAR (Synthetic-Aperture Radar) techniques [15],
extruding 2D building footprints [16], through procedural modelling [17], or volunteered
geoinformation [18]. Elevation data are mostly derived from LiDAR airborne scanning or
image-based procedures and are differently used for modelling purposes. Based on the
available source data, employed approach, and the field of application, buildings can be
represented with five levels of detail (LoD) [19] and stored with well-defined standards,
such as CityGML [20,21] or CityJSON [22]. For visualisation and simple data analyses, the
LoD1 (i.e., prismatic block with flat roofs) is sufficient and preferred. According to the avail-
able elevation data, the simplest and most common approach for generating LoD1 models
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is the extrusion of building footprints, generally considering the median or maximum
height value [23,24]. When elevation data are missing, a rough building height estimation
can be performed with other methods, e.g., counting the number of storeys, considering
local regulations and related construction restrictions, or measuring the shadows’ length in
imagery data [25–28]. The derived height values’ quality is rarely verified and out of scope
in many applications with these approaches.

AI-based procedures were recently used to infer buildings’ features and character-
istics. Machine and deep learning methods were increasingly employed for predicting
3D urban geometries and semantics [29–32], for energy performances [33–35], for models
generalisation [36], or to infer some missing information, such as buildings’ age [37–40]
and height [28,41–44]. Prediction algorithms are generally trained using satellite or aerial
images [43,44], LiDAR data [37,42], or 2D data (such as photographs, maps, footprints, and
attributes) available from historical archives, cadastre datasets, or volunteered geographic
information databases [28,38,39,45].

For the 3D reconstruction of historical urban scenarios, buildings’ footprints and some
neighbours or categorical features are the only information usable for the prediction. In [28]
and [46], buildings’ heights are inferred exploiting some machine learning techniques,
relying on cadastral and statistical data, as well as some geometrical information extracted
from the footprints. We hereafter present a similar approach, based only on geometric,
neighbour, and categorical features computable from the digitised historical buildings.
With respect to other methods, the proposed approach does not include the number of
storeys [28] (not always available and which could significantly vary in each regional
contexts), and it only relies only on a set of features (“predictors”—Section 4.2) derived
from the available building footprints, combined with data augmentation methods to
derive accurate results over multiple years and locations.

3. Data and Case Studies
3.1. Trento (Italy) Historic City Centre

As a part of the TOTEM project, maps from four different years (1851, 1887, 1908, and
1936—Figure 1) were employed for this study. Throughout these years, the more significant
changes in the city’s structure have been related to (i) the alteration of the river’s course,
which conditioned the urban sprawl of the city and (ii) the progressive demolition of most
of the defensive medieval walls. These changes in the urban pattern and the expansion
of man-made structures are visible throughout the maps, whereas building functions or
planned urban interventions are differently coded.

While in the oldest map (the year 1851), the buildings’ aggregation in blocks and
their relation with the cultivated areas are quite detailed, the 1887 map features a more
draft representation of the urban landscape (Figure 1), with buildings aggregated in large
footprints. In this case, only a few significant civil and religious buildings are sufficiently
mapped, while other structures can be identified only by comparing historical data. The
informative level of the last two maps (years 1908 and 1936) is instead suitable enough for
highlighting the main features and transformation of the built urban environment (Table 1).

Table 1. The number of polygons and their average area in the four digitised historical maps and in
the actual topographic data (2016).

Dataset Total n. of Polygons Average Polygons Area (m2)

1851 1274 197.18
1887 632 499.97
1908 1685 238.24
1936 3112 236.62

Actual 4537 149.87
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Figure 1. The four digitised historical maps of Trento (1851, 1887, 1908, and 1936). Please note the different levels of detail
of building footprints, e.g., between 1851 and 1887: in the latter case, footprints are bigger and include multiple buildings
with regard to the other maps.

After the manual digitisation of building footprints and each historical map’s geo-
referencing, several attributes (predictors—Section 4.2) were computed. For training the
predictive models, footprints and their respective height values derived from the actual
topographic data (2016) were employed (Table 2). From this data set (Figure 2), some
temporally inconsistent constructions, as recent and industrial structures, were removed to
avoid erroneous predictions.

Table 2. The actual (2016) topographic data of man-made structures available for Trento.

Dataset Total n. of Polygons Average Polygons Area (m2) Average Height (m) Median Height (m) St. Deviation (m)

Actual 4537 149.87 12.26 12.41 5.36

As reported in Section 5.1, two buildings’ classes proved to be an under-represented
category in the training data, namely religious structures and civil towers. A data aug-
mentation approach was therefore applied to reach a more balanced class representation
and more accurate reconstructions of these few but relevant buildings, describing the
city-skyline and aspect.
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Figure 2. A view of the level of detail 1 (LoD1) buildings in Trento generated from the actual (2016) topographic data
available as open data. Height values are referred to as the mean level of the pitched roofs.

3.2. Bologna (Italy) Historic City Centre

As a further case study, the historic city centre of Bologna was considered. Two
historical maps describing the city in 1884 and 1945 were selected and manually digitised
in GIS Environment (Figure 3). In the older case, medieval defensive walls surrounding the
city are still clearly visible, while in the 1945 map, damages of the Second World War and
planned building reconstruction interventions are reported. Moreover, in this case, the two
historical maps’ level of information is quite different. In the oldest representation (1884),
few details on the building blocks partitioning are provided with respect to the more recent
map (Table 3).

Table 3. The number of polygons and their average area in the two digitised maps and in the actual
topographic data (2017).

Dataset Total n. of Polygons Average Polygons Area (m2)

1884 482 1750.35
1945 1174 738.62

Actual 3241 215.04

Some characteristics of the actual topographic data (Figure 4) used for training the
regression models are reported in Table 4. Results of building heights prediction are
presented in Section 5.3.

Table 4. The actual topographic data (2017) for Bologna, used as training data and ground-truth.

Dataset Total n. of Polygons Average Polygons Area (m2) Average Height (m) Median Height (m) St. Deviation (m)

Actual 3241 215.04 14.71 14.00 6.43
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Figure 4. A view of the LoD1 buildings in Bologna generated from the actual (2017) topographic data available as open
data.

4. Methodology

This section introduces the tested regression methods for inferring buildings’ heights
from digitised historical maps (Section 4.1). Predictors (Section 4.2), data augmentation
(Section 4.3), and evaluation metrics (Section 4.4) are then presented. Heights values,
predicted with some machine and deep learning techniques, are thus used for obtaining
multi-temporal 3D models of the case studies in LoD1. The method is based on the
construction of regression models (Figure 5), able to predict the values of a target variable
based on some predictor variables.
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4.1. Machine and Deep Learning for Regression Models

Within the machine and deep learning applications, the regression problem is a com-
mon task. Regression analysis is a predictive modelling technique that predicts numerical
variables y, typically called target, based on one or multiple variables x (predictors) [47].
Thus, a regression model aims to build a mathematical equation that defines the target
y as a function of the predictor x. Once the model is trained, it can use new predictor
values to infer y. In this work, several and common regression models, mainly available
in the scikit-learn library [48], were tested for inferring the building heights from a set of
predictor variables (Section 4.2), in particular:

(a). Ordinary Least Squares Linear regressor: this model minimises the residual sum of
squares between the observed and target variables. It assumes a linear connection
between outputs and predictor variables, and it is sensitive to random errors when
variables are not independent [49].

(b). Random Forest regressor: it is a supervised learning algorithm based on ensemble
learning. Random Forest combines multiple decision trees (reducing the variance
and overfitting) resulting in an averaged prediction of the individual classifiers. It
also provides straightforward methods for the features’ importance analysis and
selection [50].

(c). CatBoost regressor: it uses gradient boosting on decision trees. The decision tree is
used as a weak base learner, while gradient boosting iteratively fits a sequence of
these trees [51].

(d). Support Vector regressor with the Radius Basis Function (RBF) kernel: it produces a
model depending only on a subset of the training data. The employed cost function
ignores samples whose prediction is close to their target [52].

(e). Multilayer Perceptron regressor: it is a neural network model where neurons are
arranged in different layers, connected by differently weighted joints [53]. The model
optimises the squared loss using, e.g., stochastic gradient descent.
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4.2. Predictors

A predictor is a variable used to train a specific learning model to predict something.
According to their informative level and reported details, historical maps are the only
source for deriving information about building footprints and their spatial distribution in
the past. Aside from the building’s shape, some blocks’ designated use is generally the
only additional information obtained from these documents. Data on building heights can
be exclusively derived comparing blocks still existing in the same shape, or, approximately,
from available photos in the other cases. When data are only derived by historical maps,
the selection of the predictors is conditioned by the lack of further cadastral information
(e.g., the number of storeys) or aerial views. Therefore, geometric properties and position
of the digitised blocks, as well as data from neighbourhood analyses, are the only features
usable for the prediction. In this work, three different types of attributes were computed
for each digitised building footprint and used as predictors for inferring building heights:

- Geometric predictors:

(1). Area: defined as the building footprint area;
(2). Perimeter: defined as the footprint perimeter;
(3). NPI: the normalised perimeter index, an indicator of the polygon shape com-

plexity. It is computed as the ratio of the perimeter of the equal-area circle and
the perimeter of the shape (1):

NPI = 2 ∑
πA

p
(1)

(4). Vertices: the number of vertices of a digitised polygon (Figure 6a);
(5). Length MBR: the length of the minimum bounding rectangle (MBR) of a footprint;
(6). Width MBR: the width of the minimum bounding rectangle (MBR) of a footprint;
(7). Area MBR: the area of the minimum bounding rectangle (MBR) of a footprint;
(8). Ratio: the ratio between the area of a footprint and the area of the correspond-

ing minimum boundary rectangle (MBR).

- Neighbourhood predictors:

(9). Neighbours: defined as the number of adjacent polygons;
(10). Distance: the distance of a polygon’s centroid from the nearest centroid

(Figure 6b);
(11). Density: the kernel density values (Figure 6c), considering four different esti-

mation radii (50 m, 100 m, 150 m, 200 m), defined as (2):

Density =
1

(radius)2

n

∑
i=1

√
[

3
π

pop (1− (
dist

radius2 )
2
)] (2)

where i = 1 . . . ,n, are the input points, pop is the population field of the point i,
and dist is the distance between point i and the (x, y) location.

- Positional and categorical predictors:

(12). Position (X, Y): the planar position of each polygon centroid within the map;
(13). Group: the aggregation of polygons in building blocks (Figure 6d). A “group”

value is assigned to each polygon belonging to the same building block, while
isolated buildings are grouped;

(14). Class: defines a building of specific historical value, such as churches, palaces,
castle, and tower;

(15). Function: defines the civil or religious function of the buildings. In our cases,
civil buildings were also grouped considering their approximative period of
construction, derived by comparing multi-temporal historical maps;
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(16). Towers: includes a shape-based classification of the civil and religious towers,
i.e., circular, rectangular, or octagonal shape. In our cases, we noticed that
towers with similar shapes featured similar heights.
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The computed predictor values, especially for the geometric and neighbour attributes,
are strongly conditioned by the historical maps’ level of detail and the consequent digiti-
sation (Figure 1). Based on the quality of the building footprints (i.e., depicting a single
building or a group), attribute values can significantly vary. Their combination with further
attributes has been introduced to support the predictions, especially when the digitised
maps suffer from a poor representation of man-made structures.

4.3. Data Augmentation

Data augmentation is a technique used to increase the quantity of data and is based on
generating either altered versions of the existing data or artificial data. It is most commonly
used for dealing with overfitting as well as creating more sample data, e.g., in deep learning
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processes [54–57]. In data augmentation, sample sets are expanded, generating synthetic
data through any geometric or colorimetric transformation [58,59].

When dealing with urban data and modelling applications, some building classes
are commonly under-represented. In historical centres, this condition occurs with two
main categories of buildings, i.e., religious structures and civil towers, both strongly
typifying the shape and skyline of the cities. In similar situations, the learning process
could be affected by under-represented classes. Hence, re-sampling classes distribution and
randomly adding geometrically modified copies of the weakly represented structures could
be necessary to process more balanced datasets and improve the model performances.

In this work, augmented buildings are positioned outside the city without overlap-
ping existing ones. The feature extraction is then handled together with all buildings.
The augmentation is based on the existing buildings’ data, with modifications on their
geometrical properties, including dimensions and orientation. The augmented data is used
for only training.

4.4. Heights Prediction Metrics

Three different approaches are proposed for evaluating the quality of the inferred
building heights.

4.4.1. Evaluation of the RMSE, MAE, and R2 on Randomly Split Training and Test Data

In machine learning applications, the prediction quality considers how well a model
performs on data not used when fitting the model. Therefore, data are commonly split
into training and test datasets (typically 70% and 30%, respectively), where the training is
used to estimate parameters of the predictive method and the test dataset for evaluating
its accuracy. When data augmentation (Section 4.3) is used, those data falling in the test
dataset are moved to the training dataset. Most used metrics for evaluating the quality of
the models are the root mean square error (RMSE) (3), the mean absolute error (MAE) (4),
and R2 (coefficient of determination) (5). They are respectively defined as:

RMSE =

√√√√ 1
n

n

∑
j=1

(
yj − ŷj

)2 (3)

MAE =
1
n

n

∑
j=1
|yj − ŷj| (4)

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (5)

Median of the height differences (ground truth vs. predicted) and standard deviation
are also used and reported as evaluation metrics.

A more in-depth control of the machine learning prediction quality can be performed
adopting—as a test set—a small subset of still existing buildings having the same shape
and being present on different historical maps.

4.4.2. Single-View Metrology from Historical Images

Assessing the quality of the prediction of disappeared buildings is more complicated.
If historical images are available, single-view metrology [60,61] and fundamental invariants
of projective geometry [62] can be used. An essential property of projective geometry is
that some measures are invariant to projective transformations. The cross-ratio invariant
and image vanishing points can be used for deriving distance measurements from a single
image. Knowing one reference distance (H), the method (Figure 7) implies that the height
of the camera (HC) and any other distance (HU) between two planes perpendicular to the
reference direction (v3) can be derived. Two points B and T, lying on two planes P and P’
perpendicular to the reference direction v3, are represented in image space by points b and
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t lying on the two planes defined by the two vanishing points v1 and v2. The image point
lies at the intersection of the line joining the corresponding points C (the camera centre)
and C’ with the vanishing line lv1v2. The point C lies on a plane at a distance HC from the
reference plane P. Under this configuration, the image points b, t, c, and v3 are aligned
along the vertical reference direction, and therefore they define a cross-ratio. The ratio also
holds in object space with points B, T, C’, and v3. Therefore, we can derive (6):

H
HC

= 1− d (t, c)d(b, v3)

d (b, c)d(t, v3)
(6)

where d(a, b) is the Euclidean distance between points a and b, measured in image space.
Therefore, if we know a vertical reference height in the scene (e.g., a building, a person),
we can derive a building’s height and use this information to evaluate a prediction.

1 
 

 

 
 
 
 
 
 
 
 
 
 
  

Figure 7. Alignment of four points defining a cross-ratio invariant in image and object space (top). An example of height
computation, deriving first the three vanishing points and then the unknown distance HU from the known H (bottom).

4.5. Accuracy Aims

The two considered urban scenarios present similar volumetric characteristics, peculiar
to the construction techniques of northern Italy. The predominance of buildings with
numerous pitched roofs and variable slopes makes these test cases quite tricky. For the
variety of roof examples and the peculiarities of such stratified urban contexts, a mean
absolute error (MAE) of about 2 m was considered a satisfying accuracy target for this work,
in accordance with results presented in the literature [28,46]. This accuracy target considers
that higher error values can be expected with a random test set since many ground-truth
buildings could be temporally inconsistent or changed over time. More accurate results are
contemplated for a subset of buildings, unaltered in the considered time-periods.
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5. Results

In this section, regression model performances and results of the predictions on
historical data are presented (Section 5.1). A more comprehensive investigation is reported
for the Trento case study (Section 5.2). The second dataset, Bologna, shows the replicability
of the proposed method (Section 5.3).

5.1. Regressors Evaluation

The actual topographic databases of both case studies (Section 3) were used, with the
computed predictors (Section 4.2), to evaluate the performances of the selected regressor
methods (Section 4.1). Data were randomly split into training and test sets and metrics
computed. Tables 5 and 6 show the performances of the different height predictions over
Trento and Bologna, respectively.

Table 5. Accuracy evaluation of the compared regressors for the Trento dataset.

Regressor RMSE TEST (m) MAE TEST (m) R2 TEST Median (m) St. Dev. (m)

Linear 5.56 4.38 −0.08 0.68 6.13
Random Forest 3.79 2.88 0.49 −0.05 2.41

CatBoost 4.03 3.05 0.43 −0.02 3.05
Support Vector 4.88 3.81 0.16 0.00 4.69

Multilayer Perceptron 4.26 3.20 0.36 −0.09 3.64

Table 6. Accuracy evaluation of the compared regressors for the Bologna dataset.

Regressor RMSE TEST (m) MAE TEST (m) R2 TEST Median (m) St. Dev. (m)

Linear 7.64 6.06 −0.36 −0.87 7.57
Random Forest 4.67 3.64 0.49 −0.06 2.95

CatBoost 4.76 3.69 0.47 0.00 2.70
Support Vector 4.88 4.10 0.33 0.05 5.03

Multilayer Perceptron 4.94 3.18 0.43 0.07 4.31

In our tests, the Random Forest (RF) regressor proved to outperform the other algo-
rithms with respect to all chosen metrics (Section 4.4).

Although RF metrics were quite close to our target accuracy (MAE ~ 2 m), an authen-
tic look at the predicted heights of specific buildings show the presence of gross errors
in particular for the building classes with fewer samples, i.e., religious buildings and
towers (Figure 8).

A non-uniform composition of data is evident in terms of distribution, as shown
in Figure 9 left and Table 7. Therefore, a data augmentation approach was applied for
churches and towers to achieve a more balanced representation of all classes (Table 8,
Figure 9 right).

Table 7. Data distribution for the Trento and Bologna dataset.

Dataset Total n. of Polygons Towers Churches Civil Buildings

Trento 4537 30 (~1%) 53 (~1%) 4454 (~98%)
Bologna 3241 30 (~1%) 21 (~1%) 3190 (~98%)

Table 8. Data distribution after the inclusion of synthetic data for the under-represented classes.

Dataset
Data Augmentation Total n. of Polygons Towers Churches Civil Buildings

Trento 5369 379 (~7%) 531 (~10%) 4454 (~83%)
Bologna 3553 176 (~5%) 136 (~4%) 3241 (~91%)



Appl. Sci. 2021, 11, 1445 13 of 24

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 25 
 

 

A non-uniform composition of data is evident in terms of distribution, as shown in 

Figure 9 left and Table 7. Therefore, a data augmentation approach was applied for 

churches and towers to achieve a more balanced representation of all classes (Table 8, 

Figure 9 right). 

 

Figure 8. 3D view of the inferred building heights (orange) with respect to the ground truth data (white) for Trento. Despite 

metrics indicating acceptable accuracy (Table 5), a visual check highlights gross errors mainly on towers. 

 

Figure 9. Data distribution before (left) and after (right) adding synthetic data for the under-represented classes in the 

Trento dataset. 

Table 7. Data distribution for the Trento and Bologna dataset. 

Dataset 
Total n. of 

Polygons  
Towers Churches Civil Buildings 

Trento 4537  30 (~1%) 53 (~1%) 4454 (~98%) 

Bologna 3241 30 (~1%) 21 (~1%) 3190 (~98%) 

  

Figure 8. 3D view of the inferred building heights (orange) with respect to the ground truth data (white) for Trento. Despite
metrics indicating acceptable accuracy (Table 5), a visual check highlights gross errors mainly on towers. 

2 

 
Figure 9. Data distribution before (left) and after (right) adding synthetic data for the under-represented classes in the
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The evaluation of the chosen regressor method was performed again on the new
“augmented” dataset: results (Tables 9 and 10) show slight accuracy improvements and
still prove that RF performs better than the others.

Table 9. Accuracy evaluation of the regressor methods on the Trento dataset after data augmentation.

Regressor RMSE TEST (m) MAE TEST (m) R2 TEST Median (m) St. Dev. (m)

Linear 5.90 4.69 −0.15 1.15 6.66
Random Forest 3.59 2.83 0.57 0.00 2.07

CatBoost 3.76 2.95 0.53 0.00 2.61
Support Vector 5.30 4.24 0.07 −0.06 5.44

Multilayer Perceptron 4.17 3.20 0.43 −0.05 3.57
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Table 10. Accuracy evaluation of the regressor methods on the Bologna dataset after data augmentation.

Regressor RMSE TEST (m) MAE TEST (m) R2 TEST Median (m) St. Dev. (m)

Linear 8.52 6.81 0.04 −0.75 8.51
Random Forest 4.52 3.54 0.49 0.00 2.72

CatBoost 4.64 3.66 0.52 0.00 2.49
Support Vector 5.15 3.49 0.41 0.00 4.78

Multilayer Perceptron 4.83 3.79 0.48 −0.02 3.91

Aside from the slight improvement of the evaluation metrics, the adopted data
augmentation approach’s effectiveness is proven by reduced gross errors in the under-
represented classes and the more precise height predictions all over the city (Figure 10).
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5.2. Inferring Building Heights from a Historical Map—Trento Case Study

The building footprints digitised in the four historical maps (1851, 1887, 1908, and
1936) of Trento and their predictors (Section 4.2) were used to infer building heights
using the two outperforming predictor methods: Random Forest and Catboost. The
actual topographic database was used to learn heights, although some modern buildings
were removed beforehand from the input data to limit gross errors. Evaluation metrics
to check predicted heights in the historical maps were computed on a smaller test set,
including only some buildings still existing, having the same shape and recognisable in the
different maps. Tables 11 and 12 show the height difference error calculated in this case,
presenting the Random Forest and Catboost results, which demonstrated to be the best
performing algorithms (Section 5.1). Again, the Random Forest confirmed to outperform
the other algorithms.
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Table 11. Metrics evaluation of the Random Forest performance on the four historical datasets of Trento, considering twenty
unaltered buildings digitised in all the maps as the test set.

Historical Map-Year RMSE (m) MAE (m) R2 Min Error (m) Max Error (m) Median (m) St. Dev. (m)

1851 0.96 1.13 0.97 2.95 1.75 1.09 0.74
1887 2.86 2.25 0.92 0.07 6.35 1.52 1.77
1908 1.80 1.50 0.96 −2.78 3.91 1.18 0.99
1936 1.67 1.40 0.97 −2.62 3.20 1.14 0.90

Table 12. Metrics evaluation of the Catboost performance on the four historical datasets of Trento, considering twenty
unaltered buildings as the test set.

Historical Map-Year RMSE (m) MAE (m) R2 Min Error (m) Max Error (m) Median (m) St. Dev. (m)

1851 4.91 3.22 0.83 −2.93 13.87 2.02 3.71
1887 6.09 3.93 0.67 0.24 17.15 2.31 4.65
1908 4.66 3.08 0.81 −3.12 14.38 2.11 3.49
1936 5.80 3.31 0.70 −2.72 19.02 1.38 4.76

As a further check of the prediction’s quality, single-view metrology (Section 4.4.2)
was applied to derive some ground-truth heights for disappeared buildings. Vanishing
lines and cross-ratio invariants were used with some historical photos where a known
height was measurable (Figure 11). Table 13 summarises the evaluation results adopting
the presented procedure.
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Figure 11. Two examples of single-view-metrology applied to historical photos in Trento to determine heights of buildings
not present anymore in the actual topographic database.

Table 13. Evaluation on eight disappeared buildings visible in historical photos: heights predicted
with Random Forest were compared with single-view-metrology heights and metrics derived.

Dataset RMSE (m) MAE (m) Median (m) St. Dev. (m)

Trento 1.41 1.28 −0.83 1.29

Visual results of the 4D LoD1 reconstruction of Trento are presented in Figures 12 and 13.
An example of texture mapping with a historical photo is shown in Figure 14.
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the Trento case study.
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Figure 14. An example of an historical photo used to texture a 3D building in Trento in 1887.

5.3. Inferring Building Heights from a Historical Map—Bologna Case Study

The implemented method was also tested on two historical versions of the Bologna
city centre (1884 and 1945). Among the transformations of the city in this time frame, the
almost complete destruction of the medieval defensive walls and the heavy damages of
war bombardments are the most relevant.

Starting from the city’s actual topographic database and following the regressors
evaluation (Section 5.1), Random Forest and Catboost methods were used to predict
building heights in the historical maps. The predicted heights evaluation was performed,
considering only some unchanged buildings as a test set (Tables 14 and 15). Figure 15
presents some general and detailed views of the 3D buildings reconstruction for the Bologna
city centre.

Table 14. Metric evaluation of the Random Forest prediction on the two historical datasets of Bologna, considering as a test
set ten unaltered buildings digitised in both maps.

Historical Map-Year RMSE (m) MAE (m) R2 Min Error (m) Max Error (m) Median (m) St. Dev. (m)

1884 2.67 2.35 0.97 2.10 1.09 0.73 0.54
1945 1.71 1.63 0.99 −1.66 6.35 1.52 1.89

Table 15. Metric evaluation of the Catboost prediction on the two historical datasets and ten unaltered buildings as the test set.

Historical Map-Year RMSE (m) MAE (m) R2 Min Error (m) Max Error (m) Median (m) St. Dev. (m)

1884 7.56 6.81 0.88 −2.30 10.92 8.39 3.28
1945 7.98 7.05 0.83 −1.98 12.38 7.76 3.70
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Figure 15. Multi-temporal 3D reconstruction of Bologna with building heights inferred using machine learning and
historical maps (1884 and 1945).

6. Discussion

The quality performance of several regressors for predicting height values from
historical data was presented. Several evaluation approaches were proposed for tackling
the issue of a lack of ground-truth information with historical data. The evaluation metrics
proved that the Random Forest regressor inferred better building heights with regard to
other algorithms.

Comparing the prediction results with the Random Forest algorithm in the historical
datasets (Tables 11 and 14), a general worsening of the metrics can be noticed when the
polygon’s area is much different from the training data (Tables 1 and 3). Therefore, the
prediction quality is conditioned by the informative level of the historical maps and size of
digitised polygons.

The inferring methodology relies on some twenty predictors (Section 4.2). As typical
in a machine learning application, a recursive feature elimination (RFE) approach can be
employed to select and reduce the predictors. This technique helps remove irrelevant
predictors, selecting only the most relevant ones and speeds up the overall prediction
procedure. Figure 16 reports the predictors’ importance for the Trento dataset. Some
categorical features are more significant than other attributes. Therefore, an RFE approach
was applied to optimise the algorithm’s performance and reduce the number of predictors
(Figure 17). Results and comparisons for both datasets are presented in Tables 16 and 17.

Aside from no significant changes in the evaluation metrics, a general worsening
in the predicted building heights’ quality was verified by visually checking the results
obtained after an RFE approach. Therefore, for the considered datasets, the RFE approach
proved to be ineffective, and the different contributions of all predictors (Section 4.2) were
shown to be relevant.
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Table 16. Evaluation metrics for the Trento dataset with and without a recursive feature elimination (RFE) approach.

Regressor N. of Features RMSE TEST (m) MAE TEST (m) R2 TEST St. Dev. (m)

Random Forest—without RFE 20 3.59 2.83 0.57 2.07
Random Forest—with RFE 10 3.83 2.99 0.51 2.18

Table 17. Evaluation metrics for the Bologna dataset with and without an RFE approach.

Regressor N. of Features RMSE TEST (m) MAE TEST (m) R2 TEST St. Dev. (m)

Random Forest—without RFE 20 4.52 3.54 0.49 2.72
Random Forest—with RFE 10 4.59 3.54 0.53 2.76
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The implemented method, although reliable and feasible, still presents some issues to
be tackled:

(a). data preparation (i.e., the digitisation of historical maps) is demanding and time-consuming;
(b). differences in the input data (i.e., different informative levels among the training data

and the historical datasets) can affect the quality of the prediction;
(c). the results can be influenced by the accuracy of the georeferenced maps, considering

that positional attributes are included among the predictors; and
(d). the method was tested on similar urban scenarios and using respective actual data as

training. The applicability in different regional contexts and the prediction’s quality
employing other cities’ training data need further investigations.

About the latter issue, some preliminary tests were conducted to verify if, in similar
built environments, the procedure can return satisfactory results using different cities’
training data. The Random Forest performances’ evaluation are presented in Table 18 where
a training using Trento’s data is used to predict heights of Bologna footprints, and vice-versa
(removing the positional attributes). Although quality metrics are relatively consistent (or
even better) with the results reported in Tables 5 and 6, a visual check (Figure 18) highlights
a general wrong prediction of civil towers and religious buildings. Furthermore, significant
errors can be noticed in sparse and isolated buildings outside the city centre, due to the
implemented data augmentation technique (Section 4.3). Without positional attributes, the
presence of an increased number of sparse polygons (towers and religious buildings) in the
training data, proved to negatively condition the learning method.

Table 18. Accuracy evaluation with the Random Forest regressor, training on Bologna data, and predicting on Trento dataset,
and vice-versa. In this test, positional attributes were removed, and augmented data were employed for both cases.

Dataset
Prediction

Dataset
Training RMSE TEST (m) MAE TEST (m) R2 TEST Median (m) St. Dev. (m)
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The quality of the prediction was further verified, removing augmented data with
inverted trainings. Metrics and some visual results are presented in Table 19 and Figure 19.

Table 19. Accuracy evaluation with the Random Forest regressor and inverted training data. In this case, augmented data
were removed from the training.

Dataset
Prediction

Dataset
Training

RMSE TEST
(m) MAE TEST (m) R2 TEST Median (m) St. Dev. (m)

Trento Bologna 3.90 2.98 0.47 −0.03 2.49
Bologna Trento 4.75 3.70 0.47 −0.09 2.99
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The accuracy results show an opposite trend in the two datasets. Visual outcomes
highlight an acceptable prediction for polygons inserted in building blocks and a slight
improvement for isolated constructions. These preliminary experiments are promising for
the generalisation of the method and its applicability in several contexts.

7. Conclusions

Multi-temporal (4D) versions of the same urban area are of beneficial interest for
landscape and urban analyses. This work presented a methodology for the digital recon-
struction of buildings in 4D with machine learning algorithms and historical data.

From digitised historical maps and information of the actual city situations, different
regression algorithms were compared and employed for inferring missing building heights,
using this information for the multi-temporal 3D reconstruction of two urban city centres.

The reliability of the proposed approach was verified, testing the method on different
datasets and epochs. Multiple quality evaluation methods were also proposed to tackle
the issue of missing ground-truth data. The achieved results proved to be consistent with
our accuracy targets and the complexity of such historical urban contexts. The imple-
mented method is flexible and extendable, relying mainly on geometric and neighbour
characteristics derivable from the datasets and adaptable categorical data.

In future investigations, the method will be extended to tackle the several issues
presented in the previous section, exploring:
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(a). automatic methods and deep learning techniques for replacing the time-consuming
digitisation procedure of historical maps;

(b). the use of specific training data (e.g., prepared at a building-block level rather than using
detailed cadastral maps) for historical datasets suffering from a low informative level;

(c). the prediction response assigning a lower weight to positional attributes, for avoiding
possible mismatches related to different-scale maps and georeferencing issues; and

(d). the possible generalisation of the method, expanding the training set with data
representative of different regional contexts, and applying the trained model in actual
scenarios where no elevation data are available (e.g., remote areas).
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