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Abstract: Adapting a car for a disable person involves adding additional equipment to compensate
for the driver’s disability. During this process, the change in the driver’s position and kinematics
and their impact on safety levels during crash is not considered. There is also a lack of studies in
the literature on this problem. This paper describes a methodology for conducting a study of the
behavior of a disabled driver during a crash using the finite element method, based on an explicit time
integration method. A validated car model and a commercial dummy model were used. The results
show that the use of a handle on the steering wheel and a hand control unit causes dangerous lateral
displacements relative to the seat. Amputation of the left leg or right arm causes significant shoulder
rotations, amputation of the left leg causes increased thoracic loads. Amputation or additional
equipment have no significant impact on head injuries.

Keywords: finite element method; numerical simulation; biomechanics; head injury; safety; injury
criteria; disability; driver

1. Introduction

Over a billion people live with some form of disability, which represents 15% of the
world’s population [1]. Between 110–190 million adults have very significant difficulties in
functioning. Rate of disability is increasing. According to [2], approximately 2% of road
accidents in Spain result in moderate, serious or total disability. The authors of [2] point
out that the acquisition of a disability is associated with a reduced ability to work, greater
functional dependence, greater need for assistance, and the need for family support.

Technological and medical developments make it possible to extend and improve
quality of life. A great deal of attention has been paid in recent years to activating older
people and people with disabilities (DP—disabled persons). Researchers from all over the
world carry out research related to different aspects of DPs’ lives, looking, for example,
at how they spend their leisure time [3], how well the infrastructure fits their needs [4–6],
or their preferences when making choices [7]. These people in many cases possess valuable
skills. Understanding the specific requirements of this social group allows the development
of technical solutions that remove barriers that prevent them from active functioning,
socially and professionally. This will enable the public to benefit from these skills.

Among the many factors influencing the professional and social activation of people
with disabilities, aspects related to the mobility of DPs and the adaptation of existing sys-
tems of transportation to the needs of older and disabled people are often mentioned [5,8].
While in large cities, DPs can count on public transport adapted to their needs, in smaller
towns and villages DPs are practically dependent on having individual means of transport
or on third parties to provide them. One possible solution of this problem is the individual
adaptation of a car to the needs of the particular person with disabilities [9]. However,
it should be considered to ensure that any structural changes made do not result in reduced
road safety, other people, and disabled driver.
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Among many causes of road accidents, the human factor is indicated as one of the
main ones [10]. It is difficult to eliminate all the imperfections and limitations of the physical
driver, but thanks to technological developments, the driver has more and more systems to
support his actions. Among these are constantly developed active safety systems. Their use,
combined with appropriate training of drivers to operate them, can significantly reduce
the number of road accidents [11,12].

New solutions for use in the automotive industry must be tested in accordance with
product standards. The most extensive testing applies to new vehicles, as each must pass
very stringent tests before it can be put into road traffic. Of course, cars on the market have
varying levels of safety (depending, among other things, on the number of active driver
assistance systems), but any new car that does not meet the minimum requirements cannot
be put on the road. Another point worth noting is that new cars are designed with the
average consumer in mind, and tests are carried out for the chosen body configuration and
weight of the occupants. Therefore, modification of the vehicle by changing the steering
equipment or adjusting the car for a person with a physique significantly different from
the one assumed during design, requires additional tests [13].

There are now very many methods in use for analysing dangerous situations that
may occur on the road. Experimental research is undoubtedly the most important of these.
Their disadvantage is the very high unit cost of each test and restrictions on carrying
out certain measurements. Therefore, a very popular method of verifying the operation
of technical objects is the numerical analysis [14–18]. Testing in virtual space allows for
evaluating the structure in a short period of time in order to check the compliance with
many standards [19,20], and for predicting the structure’s behaviour in different load
scenarios. The lack of the need to physically build new prototypes and prepare experi-
mental research also allows for significant financial savings. An additional advantage of
computer simulations is the possibility to record more data than in the case of experimental
studies [21].

Many different numerical tools are currently available for analyzing dangerous traffic
situations [22]. One of the fastest are calculations using analytical formulae that take
into account, among other things, the velocity, weight and stiffness of vehicles [23–25].
They allow many scenarios to be analyzed in a very short time and, when supplemented
with a reliable vehicle database, make it possible to assess a real accident. An additional
advantage of analytical methods is the possibility of transferring the loads acting on the
driver to 3D models and further local analysis of his behavior.

Another fast and accurate method based on Reduced Order Dynamic Model [26],
in which discretization of vehicle’s perimeter takes place only in a 2D environment. It re-
duces the number of equation and thus reduce time calculation.

Analytical and 2D models do not allow an accurate analysis of driver behavior. There-
fore, if the aim of the study is to determine e.g., injuries to the driver, methods based on
multibody analyzes [19] or FEM are used [27]. The big disadvantage of these methods
is the long calculation time. To reduce it, it is possible to use different strategies. One of
them is an approach in which a global collision is analyzed using analytical or 2D models
and the results are transferred to 3D models and further analysis of only a selected area.
A second solution is to use multi-stage analyses, in which selected aspects of a hazardous
road event are investigated independently.

2. Materials and Methods
2.1. Numerical Research Strategy

The main objective of this article is to examine the impact of the change in the position
of the driver’s mass, caused by various types of disabilities or the use of specialist equip-
ment, on the driver’s biomechanical parameters. Additional objectives are to show how to
model selected elements of car safety systems and to draw attention to possible changes in
the driver’s biomechanics related to the adaptation of the car to the needs of the disabled.
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This article is a continuation and development of models described in the work [28].
The paper uses a three-stage scheme of numerical tests (Figure 1), in which the first stage is
to carry out an analysis of the frontal impact of the validated full car model [28]. Based on
these analyses, the change of velocity of the vehicle interior, which is used in the third
stage, is determined. The second stage involves subsidence a dummy on the seat while
resting its limbs on the floor, the steering wheel or a special handle mounted on the steering
wheel and the manual gas and brake control unit. The subsidence is a very important
process. It involves the dummy falling under the gravity load on the interior elements of
the vehicle. This deforms the structure of e.g., the seat and causes forces between them,
which are transferred to the third stage. The magnitude of these forces directly affects the
magnitude of the friction forces and thus the behaviour of the dummy during the impact.
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For numerical simulations carried out using the LS-Dyna system, two approaches to the
realisation of this stage are popular. The former involves positioning the dummy in a roughly
approximate position, positioning the belts and performing dynamic relaxation [18,29]. The ad-
vantage of this approach is its low numerical cost and rather low level of complexity. During
the analysis, additional damping is added, which facilitates and shortens the subsidence
process (oscillations of the manikin’s position are dampened much faster). The dynamic
relaxation is performed immediately before the actual numerical analysis, and the analysis
time after the relaxation is 0.0 s, so there is no need to define appropriate shifts in numerical
procedures defined later. Strains and deformations from dynamic relaxation are transferred
automatically to the target analysis.

The second approach involves carrying out a full analysis of the subsidence process
of the dummy (using an explicit or implicit time integration) [30,31]. In such analysis
the dummy, under the influence of gravity, falls on the interior elements of the vehicle.
The result is a file containing, for the time corresponding (termination time), the state
of deformation, stresses and forces acting between the individual elements. Starting the
collision analysis requires a full restart, which includes the procedure of loading the
state from the end of the subsidence analysis (as an external file with the option stress
initialisation), changing the initial (boundary change, etc.), boundary and inducement
conditions by defining appropriate cards (preparing a new model file).

A simpler and less demanding method in terms of computer power is one that uses
dynamic relaxation. However, it is limited by the problems with the safety belt retractor.
During dynamic relaxation it is performed to a limited extent, which may result in a lack
of adequate belt tension at the beginning of the final crash analysis. Therefore, the authors
decided on an approach involving the performance of a full subsidence analysis using
explicit time integration (stage 2 in Figure 1).
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2.2. Numerical Model Description

In the numerical models developed by the authors, great emphasis has been placed on
considering key elements of safety systems that can influence the behaviour of the driver’s
body during a frontal collision, while at the same time applying simplifications that do not
significantly affect his behaviour. Therefore, on the basis of previously conducted research,
it was decided to model only a section of the vehicle and give it the properties of a rigid
body [28]. Deformable seat, steering wheel handle, airbag and seat belts were modelled
inside the vehicle [28] (Figure 2).
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Figure 2. Numerical model used in simulations.

The seat belts were modelled on the basis of previously conducted experimental
research [18,28,29]. Their arrangement was carried out using the seatbelt fitting procedure,
available in the LS-Prepost pre-processor. Belts were modelled as 2D elements (for parts
where their contact with the dummy is important) and as 1D elements for parts near
attachment points (Figure 3). The lower belt is rigidly attached to the vehicle body on
the right-hand side of the driver and to the ear connected to the seat base on the right.
The function of the ear is performed by a special seatbelt slipring numerical element [30,31],
thanks to which the shortening of one 1D element can be transformed into an extension
of the other 1D element. The relation between the displacements of the ends of the two
connected belts (Figure 3) is described using the following equation:

x1 = x2 + ∆l1 + ∆l2 (1)

∆l1 = (F1·l1)/(A1·E1) (2)

∆l2 = (F2·l2)/(A2·E2) (3)

x1 = x2 + (F1·l1)/(A1· E1) + (F2·l2)/(A2·E2) (4)

F1 = F2 + Ft = F2 + F1·µ = F2/(1 − µ) (5)

where: x1, x2—displacement of the ends of 1D seat belts elements, ∆l1, ∆l1—elongation
and shortening of connected elements, F1, F2—tensioning force, A1, A2—cross section of
elements, E1, E2—Young modulus of elements, Ft—friction force in slipring, µ—coefficient
of friction.
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If both belts (bottom and top) are made of the same material, the final formula is
as follows.

x1 = x2 + ((F2/(1 − µ))·l1 + F2·l2)/ (A·E) = x2 + (F2·(l1/(1 − µ) + l2))/(A·E) (6)

Thanks to the use of this type of numerical element, the “shortening” of the lower
belt can be turned into the “lengthening” of the upper belt, i.e., it is possible to implement
the rewinding of the belt through the assembly eye. In the developed numerical models,
the upper belt starts and ends with the slipring elements. In the upper attachment, the belt
changes direction and is connected to the attachment point in the lower part of the vehicle
body, in which the elements representing the pretensioner and retractor are modelled.
When modelling seat belts, the position of the attachment points should not be changed in
relation to the points in the actual car, as this changes the length of the belt, which in turn
affects its global deformation under the influence of force.

In numerical models, the pretensioner has been modelled using the SEATBELT_
RETRACTOR [30,31] type element that generates constant belt tension up to the pull-
out force limit above which the retractor locks. The retractor is also locked when the
pretensioner (SEATBELT_PRETENSIONER [30,31]) is activated, which retracts the belt
until it reaches the user-defined belt tension limit. In these cases, the belt was activated
by an acceleration sensor (SEATBELT_SENSOR) which registers the front acceleration
of the vehicle. When the acceleration of 25.0 m/s2 was exceeded, the sensor activated
the pretensioner. The retractor and the pretensioner operate numerically similarly to the
rewinder, with the difference that the shortening of the belt is not converted into the
lengthening of another belt but is recorded as the retracted length of the belt.

2.3. Analysed Cases

During the research, three main groups of drivers were analysed: without disabilities
(RD-reference driver), with disabilities requiring the use of a special steering wheel handle
(H—group, HB—handle basic) and with a steering wheel handle and a manual gas and
brake control unit (C—group, CB—control unit basic) (Figure 4). The use of specialist
equipment may be required by various disabilities, such as paralysis or lack of a limb.
Therefore, the HB and CB dummies have been modified so that it is possible to perform
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analyses for limbless dummies (Figure 5). The limb amputation, when compared to the
paralysis, from the frontal impact analysis point of view primarily changes the position
of the body’s centre of gravity and reduces the areas of contact between the body and the
vehicle interior. Figures 4 and 5 show the changes in the driver’s mass (dm) and centre of
gravity position for each of the analysed cases in the global coordinate system (dx, dy, dz).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 17 
 

centre of gravity position for each of the analysed cases in the global coordinate system 

(dx, dy, dz).  

 

Figure 4. First stage of dummy model modifications. 

 

Figure 5. Second stage of dummy model modifications. 

An individual subsidence analysis was conducted for each of the cases studied, pre-

ceded by positioning the dummy in an estimated target position. In each group, the initial 

setting was identical, so that only the impact of amputation of a given limb was examined.  

3. Results 

Figure 4. First stage of dummy model modifications.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 17 
 

centre of gravity position for each of the analysed cases in the global coordinate system 

(dx, dy, dz).  

 

Figure 4. First stage of dummy model modifications. 

 

Figure 5. Second stage of dummy model modifications. 

An individual subsidence analysis was conducted for each of the cases studied, pre-

ceded by positioning the dummy in an estimated target position. In each group, the initial 

setting was identical, so that only the impact of amputation of a given limb was examined.  

3. Results 

Figure 5. Second stage of dummy model modifications.



Appl. Sci. 2021, 11, 1427 7 of 17

An individual subsidence analysis was conducted for each of the cases studied, pre-
ceded by positioning the dummy in an estimated target position. In each group, the initial
setting was identical, so that only the impact of amputation of a given limb was examined.

3. Results

The results for the first and second stage, which covers the frontal impact of the whole
car and subsidence, are presented in [28]. This study will only present the results for
stage three.

During all analysed cases, characteristic time moments presented in Figure 6 can be
distinguished. The subsidence stage ended at time t = 0.3 s and this is also the beginning of
the analysis of the third stage. After approx. 10 ms, the airbag and belt pretensioner were
activated. At t = 0.316 s the initial airbag opening is visible. After 36.0 ms, the airbag is
close to full inflation, which pushes the upper limbs out of the steering wheel or handles.
After 56.0 ms, the dummy’s head encounters the airbag. At t = 0.380 s, the head reaches
the maximum forward tilt, followed by the driver’s rebound and a rearward movement
to the seat. The contact between the driver’s head and the airbag lasts until the time
t = 0.400 s. At a time of approx. t = 0.432 s, the dummy hits the seat’s backrest. This impact
is asymmetrical to the seat.
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The maximum longitudinal displacement of the conventional centre of gravity of
the dummy (i.e., corresponding to the centre of mass without amputation) is achieved at
different times in each case (Figure 7). It is worth noting that at this moment, depending on
the equipment used, the position of the dummy differs. In the RD case, the forearms and
arms are pushed outwards while keeping the hands within the steering wheel. Knees hit
the elements of the space under the steering wheel. In cases H, the left hand is pushed
completely out of the steering wheel and the right hand hits the lower part of the central
console. In cases C, the right hand strikes higher and in a different position. In cases H and
C, the number of zones of contact between the dummy and the vehicle interior depends on
the disability under consideration.
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displacement.

The type of equipment used significantly affects the lateral displacements of the
driver’s conventional centre of gravity. In the RD case, the maximum displacement was
about 10 mm and, importantly, in the final stage of impact the pelvis almost returned to its
initial position (Figure 8). In the HB and CB cases, there is no return to the initial position
and much greater maximum lateral displacement when the dummy hits the seat (approx.
15.5 mm and 18.0 mm respectively).
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Analysing the H group, it can be seen that at the moment of the maximum longitudinal
displacement of the dummy’s centre of gravity in relation to the seat, the maximum lateral
displacement occurs for HLL (Figure 9). In turn, when the dummy hits the seat’s backrest,
the maximum lateral displacement is for HRH (about 29 mm).
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In group C the greatest lateral displacement can be observed for CLL, CRL and CBL
cases (Figure 10).
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Figure 10. Lateral displacement of dummy H-point.

Lateral movements go with shoulder rotation. When analysing the influence of the
equipment used for DP (Figure 11), there is no significant change. At the initial impact
phase, in all cases, the right shoulder extends forwards more and, after rebounding from
the airbag, the arms start to rotate in the opposite direction.
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Figure 11. Angle of rotation of the shoulders.

Analysing group H, one can see the same type of changes, but with different levels of
them (Figure 12). The highest rotation in the first impact phase is for HB and HRL cases
(about 9◦). In the second phase, for HLL and HRH (above 10◦).
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Figure 12. Angle of rotation of the shoulders.

Similarly, for group C (Figure 13). In the first phase, the highest rotation is for CB and
CRL (about 7.5◦) and in the second phase for CLL (over 12◦) and CBL (over 15◦).
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Figure 13. Angle of rotation of the shoulders.

The work also analysed the course of change of forces between the dummy and seat
belts. In cases where the dummy had all the limbs, no significant changes between the
individual runs are visible (Figure 14). The highest peak of strength occurs immediately
before the head of the dummy (and thus part of the chest) contacts the airbag. After that
time, the value drops by about 2 kN and is maintained until the maximum longitudinal
displacement of the dummy in relation to the chair is reached.
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Figure 14. Comparison of contact force between the seat belts and the dummy.

A similar character of the course of force between the belts and the dummy can be
observed for analyses from group H (Figure 15). Only in the HLL there is no decrease in
force, it remains at a constant level until the time when the maximum movement of the
longitudinal dummy in relation to the seat is reached.
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In group C (Figure 16), no loss of strength after the dummy starts to contact the airbag
is visible in two cases—CBL and CLL.
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Figure 16. Comparison of contact force between the seat belts and the dummy.

The use of additional equipment for the DP, in addition to influencing lateral dis-
placement, shoulder rotation and the course of force between the belts and the dummy,
also affects skull injuries expressed as HIC (Head Injury Criterion) (Figure 17). Compared
to RD, HB and CB have at least 6% lower HIC15 and 7% lower HIC36 values.
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In the H group (Figure 18), different HIC15 and HIC36 values were obtained for
individual cases, but no significant differences were observed. The maximum reaches
respectively 4% and 3%.
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Figure 18. Head Injury Criterion (HIC) comparison.

In group C (Figure 19) for HIC15 the difference between the maximum and minimum
result is about 4%. For HIC36 the difference increases less than 6%. The smallest value was
obtained for CLL and the largest for CB.
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4. Discussion

The main objective of the study is to examine the effect of the change in driver’s centre
of gravity due to various disabilities and the change in the points of support of the body
due to the use of additional equipment on the driver’s behaviour during a frontal collision.
Due to the inability to carry out such studies through experimental tests, it was decided
to employ a research methodology based on numerical analyses using the finite element
method, with an explicit integration step. Thanks to FE studies, it was possible, among
other things, to consider (in a virtual environment) the vulnerabilities of the car’s interior
structures, crucial from the point of view of the driver’s behaviour, and of the dummy itself.
A common approach to analyses of this type is to isolate a single phenomenon (with all
the key elements) from the global system and to conduct studies on the influence of single
parameters on the course of this phenomenon [19,21,32–34]. For frontal crash analyses
aimed at assessing the driver’s safety, this is most often a restriction of the numerical
model to the area around the driver and modelling selected safety components such as seat
belts [19,34] or an airbag. In this study the best possible reproduction of real objects and
phenomena was sought, therefore a great deal of emphasis was placed on the use of the
full characteristics of the car body delay during the collision, considering the deformation
of the seat under the influence of the weight of the dummy, the friction between them, and
the representation of the full operation of the seat belt system and the airbag. This was
made possible by dividing the whole frontal impact into three phases—frontal impact of
the car with a rigid barrier, subsidence of the dummy under the influence of gravity and
the numerical analysis of the behaviour of the dummy inside an isolated part of the vehicle.

The authors were not able to carry out a validation test for the developed numerical
models. Instead, the global model is built from smaller numerical models validated in
independent tests [18,29]. In this study, a commercially approved numerical model of the
dummy [35], an approved car model [36] and constitutive models of seat belts were used.

Frontal collisions, both full cars and selected vehicle parts, are very well documented
in the literature. Nevertheless, the authors did not find any studies on the safety of disabled
persons in the literature, so it is difficult to relate the results to other works.

In personal cars, the forces exerted on the body of a non-disabled driver during a
frontal collision are asymmetrical. Excluding the asymmetrical positioning of the steering
wheel in relation to the torso in many cars, asymmetry is mainly caused by the position of
the legs and the operation of the seat belts. In the case of cars with automatic transmission,
the right leg is usually set straight ahead or more inwards on the brake pedal during a
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collision. The left leg rests on a footrest that in many cars is positioned to the left and is
closer to the seat than the fully depressed brake pedal. Seat belts, on the other hand, restrict
the movement of the left arm, which naturally causes the rotation of the driver’s shoulders
visible in Figure 11. This rotation increases until the torso rests on the airbag and the driver
rebounds from it. From now on, the arms start to rotate in the opposite direction. The lower
limbs mentioned previously also play a major role in the first stage of the collision, as the
driver moves longitudinally to the seat and hits the space under the steering wheel with
his knees. This is considered by vehicle designers at the development stage.

The introduction of additional equipment on the steering wheel or the amputation
of the driver’s limb affects the process described above. When analysing the position of
the dummy at the moment of maximum longitudinal displacement relative to the seat
(Figure 7) it can be seen that the use of additional equipment on the steering wheel or
between the seats affects the position of the driver’s body immediately before the collision.
The stiffness of these elements is so low that it does not generate significant movement
resistance for the driver. The limb amputation, however, changes the number of support
points of the driver, both immediately before the collision and during the loss of his kinetic
energy. In addition, if one of the lower limbs is amputated, the latter is automatically
more likely to suffer an injury as it will hit the components under the steering wheel with
more force.

The changes in the position of the centre of gravity, as shown in Figures 4 and 5, clearly
indicate that the sole use of a disabled person’s equipment has a slight effect on the change
in the driver’s centre of gravity. Amputation, in turn, results in a significant reduction in
the weight of the entire driver and thus in a significant shift in the driver’s centre of gravity.
On the one hand, the reduction in the driver’s weight means less kinetic energy to reduce,
on the other hand, a change in body position affects the operation of safety systems.

Figure 8 shows the lateral displacement of the driver’s H-point, which shows that the
use of a steering wheel handle or additional Hand Control Unit results in no return to the
initial position of the driver’s pelvis after a rebound from the airbag. This is particularly
evident at time t = 0.43 s when the driver hits the seat’s backrest. This is a very negative
phenomenon, as it can result in missing the headrest and suffering a serious neck injury.
This effect is even stronger in the case of amputation of any of the limbs (Figures 9 and 10).

However, the use of additional equipment does not have a significant influence on the
rotation of the arms (Figure 11). The amputation, especially of the left leg, both legs or right
hand, does influence the rotation (Figures 12 and 13). In the case of the amputation of the
right hand, the mass that causes the rotation by its inertia decreases significantly and thus
the rotation diminishes. A similar diminished rotation in the initial phase of movement can
be observed in the case of the amputation of the left leg or both legs. This is because the
left leg rests on a footrest that is closer to the seat than the brake pedal pressed to the end.
In the event of a collision, the leg pushes against its entire surface, while the right leg slides
on the brake pedal. Thus, in the case of drivers without disabilities, the left leg increases
the rotation, and in the case of a disabled driver, the lack of the limb reduces the rotation.

Lack of support for the left leg means that the belts and the airbag must carry more
load (Figures 15 and 16), which may result in increased chest injuries. The analyses carried
out showed that the other factors examined did not have a significant impact on the course
of force between the dummy and the belts. The modifications made also had no significant
impact on HICs.

To sum up, the contribution of this paper is to present a three-stage scheme for
conducting numerical analyses of the behaviour of people inside a car during a crash.
The article justifies the importance of each of the stages and the use of the results of each of
them in the analysis of the entire phenomenon. The paper also presents a method of seat
belts modelling aimed at a faithful representation of their actual operation. Describes an
approach using a combination of 2D elements (in area of contact with the driver) and 1D
elements (which enable the operation of the retractor, pretensioner and slipring). A detailed
diagram of the operation of the slipring elements is also presented. Based on the modelling
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performed, the paper presents the original results of analyses of the effect of changes in
the position of the driver’s centre of gravity caused by additional equipment for disabled
people and amputations of the limbs on his behaviour during a frontal collision. Based on
the results, it can be concluded that it is appropriate to carry out research aimed at assessing
the safety of drivers using vehicles adapted to the needs of disabled people. The position of
the driver immediately before the collision and the number of support points of the body
affects his interaction with the safety systems and may affect his injuries.

Further work will be aimed at studying the impact of prostheses on the safety of a
disabled driver.
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