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Abstract: The 2030 climate and energy framework includes EU-wide targets and policy objectives
for the period 2021–2030 of (1) at least 55% cuts in greenhouse gas emissions (from 1990 levels);
(2) at least 32% share for renewable energy; and (3) at least 32.5% improvement in energy efficiency.
In this context, the methodology of the cost-optimal level from the life-cycle cost approach has
been applied to calculate the cost of renovating the existing building stock in Europe. The aim of
this research is to analyze a pilot building using the cost-optimal methodology to determine the
renovation measures that lead to the lowest life-cycle cost during the estimated economic life of the
building. The case under study is an apartment building located in a mild Mediterranean climate
(Castellon, SP). A package of 12 optimal solutions has been obtained to show the importance of the
choice of the elements and systems for renovating building envelopes and how energy and economic
aspects influence this choice. Simulations have shown that these packages of optimal solutions
(different configurations for the building envelope, thermal bridges, airtightness and ventilation,
and domestic hot water production systems) can provide savings in the primary energy consumption
of up to 60%.

Keywords: life-cycle cost analysis; energy efficiency; renovation measures; optimal solutions;
pilot building

1. Introduction

The proportion of the global energy consumed by the existing building stock has risen
from 20% to 40% since 2008 [1], partially influenced by global climate change [2]. For this
reason, institutions such as The International Energy Agency have highlighted the need for
significant increases in the number of existing buildings being renovated [3,4].

In this context, some studies already state that “the highest potential for energy
reduction through building renovation lies in specific residential typologies, apartment
buildings and single-family homes” [5], while others show that it is possible to reduce
greenhouse gas emissions by approximate 40% by deploying the technology already
available in the market [6]. Therefore, buildings are considered one of the strategic sectors
for reducing greenhouse gas emission to the 2030 target of values 55% below those in 1990,
for improving energy efficiency to 32.5% and reaching the 32% share of renewable energy
as a part of the European Green Deal [7].

In projects involving the in-depth renovation of buildings, especially those aiming to
meet nearly zero energy (nZEBs) requirements, cost–benefit analysis should be accurately
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developed [8]. These analysis methods include the net present value (NPV), investment cost
(IC), payback (PB) or life cycle cost (LCC) as key indexes. However, most of the stakeholders
involved in building renovation projects do not have the skills or qualifications to do so
correctly [9]. To this end, the HAPPEN project has developed a specific Mediterranean zero
energy buildings (MediZEBs) approach [10], aimed at fostering the renovation of existing
residential buildings. This holistic approach is based on the following project pillars:

1. Engagement and training: targets final users (owners and inhabitants) through
knowledge transfer and behavioural upgrades, as well as building professionals,
entrepreneurs, workers, and policy makers.

2. Optimal solutions: an extensive optimization project based on LCC analysis of the ren-
ovated buildings has been performed to compose cost-optimal packages of solutions
(POSs) to be applied to different residential typologies according to a one-stop-shop
and a step-by-step intervention logic.

3. Finance and Regulations: regards the testing of available innovative financial solu-
tions (e.g., guarantee and solidarity funds, credit transfer mechanisms, etc.) and the
development of the HAPPEN financial solution, fully integrated with the POS.

The study presented in this paper is based on the requirements already stated in the
EPBD [11] from the EU where, applying cost optimality and LCC of the most optimized
energy renovation measures becomes mandatory (articles 5, 7, 9). Moreover, in annex III
of said directive, the methodology framework to identify the cost optimal level of energy
performance is explained. The instructions described there are illustrated through the case
of a pilot building located in Castellon de la Plana (Spain), the main results and conclusions
of which are presented below.

State of the Art

Corrado and Ballarini [12] illustrate the Italian pilot action in the IEE-EPISCOPE
project [13], focusing on the analysis of energy refurbishment trends of the Piedmont
region residential building stock. Three realistic scenarios are investigated by the authors.
The first one considers the annual current refurbishment trend and the most common
energy efficiency renovation measures. The second scenario applies the measures resulting
from a cost-optimal analysis. The third scenario considers the mean annual refurbished
floor area necessary to meet the climate protection targets. The main conclusion reached is
the need to perform major refurbishments, rather than tighten the requirements.

The main differences with the methodology proposed in this paper are:

1. It was performed for one region, studying the most typical kind of building.
2. The type of refurbishment measures and thermal performance parameters of the

elements of the envelope and systems are always an input for the model and as a
consequence they are not calculated following a cost-optimal methodology, although
one scenario is called “cost-optimal analysis”.

In this paper we will analyze the renovation measures of a pilot building under the
scope of a cost-optimal methodology in order to determine the best energy-saving solutions
following the recommendations of the Directive 2010/31/EC [11] and the amending EPBD
2018/844/EU [14].

In this sense, the present study is similar to that of other authors who have focused
their research on pilot buildings studies, which will be analysed below, highlighting the
updates of the present paper.

Wralsen et al. [15] performed an LCC analysis to determine the optimal renovation
of a pilot apartment building in Norway. The authors performed an inventory analysis
in a similar way to this study, although they do not show the renovation alternatives.
As an innovation, the present paper presents the different renovation measures that were
considered for the sake of clarity and comprehensibility.

Guardigli et al. [16] show a cost-optimal analysis following the suggestions by the
EPBD recast EU directive. Three pilot apartment buildings in Italy were considered. In the
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LCC methodology assessed by the authors, the alternatives and the optimal renovation
measures selected were not explicitly shown in terms of their thermal parameters (U-values
of envelope elements) and thermal systems or equipment were not considered. Global
alternatives to interventions and results in terms of payback period, net present value and
global cost are shown in a very similar way to the Packages of Optimal Solutions in the
present study.

Brambilla et al. [17] analysed the renovation of a pilot office building in a warm climate
following an LCA methodology. The main difference with the present study is that the
building was for office use rather than residential. Nevertheless, the methodology and
the main points of interest for the renovation are the same. In this sense, Brambilla et al.
considered 10 different measures for the renovation of the external walls and the effect of
thermal bridges in the roof and window joints. The present paper differentiates because it
also presents the alternatives considered for roofs, floors, windows, ventilation system and
other thermal bridges.

Fotopoulou et al. [18] showed how the renovation of an existing apartment building
in Bologna (Italy) affected its energy performance and indoor temperatures. The study
focused mainly on improvements to the façade, which comprised adding insulation and
other features (winter gardens, sunspaces, and buffer zones). Ventilation, infiltration and
the different U-values of glazing units are considered. The renovation of thermal bridges,
roofs, slabs/floor, or active air conditioning systems were out of the scope of the study. This,
together with the absence of a LCC calculation, an economic approach and the fact that
only one apartment was simulated constitute the main differences with the present work.

Salvalai et al. [19] illustrated the Italian pilot action of the Envelope Approach to im-
prove Sustainability and Energy Efficiency in existing multi-storey multi owner residential
buildings (EASEE) project, focusing on the analysis of energy refurbishment trends of the
Lombardy region residential building stock. The paper focuses on precast multilayer panel
outer solutions that basically add insulation to the outdoor façades without decreasing the
useful surface of the building. On the contrary that in the present paper, the authors did
not consider the renovation of other elements of the envelope; thus, the main difference
with this article is that the renovation solutions were not selected following a cost–benefit
analysis. Finally, the renovation solution was installed in a pilot apartment building in
Milan, thereby assessing its effects on energy saving.

After analyzing the current state of the art, we can determine the main novelties
proposed in this paper:

- LCC approach showing the different alternatives for the renovation.
- Renovation measures comprising of façades, windows, roofs, slabs, ventilation system,

infiltration improvement, thermal bridges, and domestic hot water production.
- The price of the renovation measures was taken from a national official database of

construction which includes the installation costs.
- Identification of the cost optimal combination of measures that minimize the LCC

over a 30 year period for a pilot building in a given climate.
- Definition of a package of optimal solutions that are remarkably close to the optimum

set of renovation measures that could be used for similar buildings in the same
climate region.

2. Methods

This study focuses on minimizing the LCC of a building by applying a set of renovation
measures. Special attention has been paid to the use of LCC because its influence on the
life of an asset is widely accepted as a good indicator of the relationship between the
environmental quality and investment cost of renovation work.

Thus, the optimization process that has been followed to identify the cost-optimal ren-
ovation seeks to improve the environmental quality and reduce the energy consumption of
existing buildings. The proposed methodology optimizes the performance of the building’s
envelope and its domestic hot water (DHW) and ventilation systems taking into account
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not only energy savings but also the investment and operating costs. This methodology has
been used in studies such as those by the BPIE [20], Brandao et al. [21], Becchio et al. [22],
and offers a comprehensive analysis of the environmental impacts, while also providing
quantitative results, taking into account the costs of the building over a 30-year period [23].
The necessary calculations are presented in detail in the following sub-sections.

A total of 381,204 possible combinations could be obtained from the interactions
between the different improvement measures described for each component of the envelope
(nine walls, eight roofs, five slabs, seven windows, seven external doors, three thermal
bridges, three airtightness, three ventilation, two night ventilation and two DHW systems).
The calculation of each of these cases using the described thermal simulation engine
would take 3.8 min in a computer 8 GB RAM and a 2.4 GHz i7 Processor. Therefore,
calculating all the combinations would take 24,131.5 h. Since this calculation time was
excessive, a method was used based on the Monte Carlo approach for discriminating and
progressively obtaining the best solutions. Basically, this method consisted of calculating in
each iteration the square root of the total number of cases, in this case 650 simulations. After
these calculations were made, the most promising renovation measures were selected and
the worst discarded following the methodology described by Sánchez and Salmeron in [24].
In the next iteration, the aleatory combinations of the best measures were calculated. After
five iterations, a total of 2441 combinations were calculated, taking a total computation
time of 155 h. The results are shown in Section 4.

2.1. LCC Calculation

The LCC was calculated as the sum of the investment costs plus the operating and
maintenance costs during a certain period of time, economically updated to the present
moment following Equation (2). In the calculations performed for the present paper, the cost
of CO2 emissions produced during the years of the building’s operation were neglected
because it was not relevant when compared to other terms, and it had no influence on the
optimal solution selection process provided that they were null in all the cases taken into
consideration. This assumption was made due to the uncertainty associated with discount
rates and the price of fuel as follows:

LCC[€] = Investment[€]

+
30

∑
i=1

(
ConsumptionHeating

Year i

[
€
yr

]
+ ConsumptionCooling

Year i

[
€
yr

]
+ConsumptionDHW

Year i

[
€
yr

]
+ MaintenanceYear i

[
€
yr

])
∗ Annuity[yr]

(1)

where,

Annuity[yr] =
1 − (1 + k1/100)−30

k1/100
(2)

where k1 is the current interest rate as defined in Section 2.3.2.
Heating, or cooling, energy consumption was calculated as the ratio between the

heating, or cooling, energy needs and the respective seasonal coefficient of performance of
the default system. These coefficients were obtained from the Spanish technical building
code [25] and have been detailed in Table A1.

In this paper the calculation period was fixed to 30 years following the recommenda-
tions of the European commission delegated regulation [23].

The yearly maintenance cost of the DHW system has been considered equal to a 2% of
its initial investment.

2.2. Energy Consumption Calculation

Simulations were performed by using the mandatory calculation software for the
fulfilment of the Spanish Building Regulation and Energy Certification procedure [26].
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It complied with the BESTEST of the IEA [27] and calculated the building energy needs
dynamically on an hourly basis.

The required information to run the initial energy calculations was gathered through
on-site visits and blueprints, defining both geometric and construction parameters as
explained in Section 3. The real plan layout has been reported in the model section,
and following this layout different thermal zones were created in the pilot building.

The U values of the façade, roof and slabs were calculated considering their thermal
conductivity and thickness; the U values for windows and doors were obtained from
catalogues; and the values for ventilation and airtightness were calculated or estimated
from data of catalogues.

2.2.1. Thermal Zoning

The inside of the building was divided into thermal zones meeting the spatial needs
of specific user’s activities. It is important to bear in mind that, the greater the number
of thermal zones, the longer the calculation time. Thus, thermal zoning is a compromise
between accuracy and time.

By dividing the building into zones, it was possible to associate an activity program to
each of them, as well as defining the occupation schedule, the systems and appliances oper-
ation and the internal loads, which represented a source of thermal energy and contribute
to reducing the heating energy needs. Figure 1 shows the mean values for the internal
loads at each hour of the day:

The systems operation and their setpoint temperatures follow the schedule indicated
below (Figure 2):

The operation pattern and internal loads were fixed parameters in all the simulations
belonging to the same set. In order to analyze a different user’s behaviour two sets of
simulations were performed: in the first set previous schedules were used, while in the
second one the set point temperatures were fixed at 17 ◦C in winter and 27 ◦C in summer
for the whole day.
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Figure 2. Operation patterns of the conditioning systems and their set point temperatures.

The pilot building was divided into 20 thermal zones, corresponding to four rooms
per storey and one room per orientation. This choice allowed us to evaluate the influence of
solar radiation, different orientations and temperature gaps between each zone. Envelope
walls and internal partitions to neighbouring apartments were considered adiabatic, which
is a realistic condition, especially for a case study like this, where neighbouring buildings
had similar occupation profiles, systems, and equipment.

The first-floor slab above the retail spaces on the ground floor was considered the
bottom limit of the pilot building envelope due to the non-residential activities taking place
in the car park and retail areas.

2.2.2. Thermal Bridges

Thermal bridges were considered by the software tool as elements that contributed to
thermal heat losses or gains in steady state. Thus, the simulation software added to the
hourly heat flux a quasi-steady state value calculated as the product of the linear thermal
transmittance of the thermal bridges by their length and by the difference of temperature
between indoor and outdoor air.

2.2.3. Ventilation and Infiltration

The air change rate (ACH) in existing buildings is generally given by natural ventila-
tion and infiltration from windows. While international standards generally provide for a
minimum ACH value of 0.5 vol/h to ensure adequate indoor air quality in living areas,
the Spanish standard for existing buildings defines a calculation method that requires
both the ventilation flow rate and the airtightness at 50 Pa (n50). With these two values,
the software tool evaluates the air change rate as a function of the wind velocity following
the UNE EN 15242:2007 [28]. In Section 3, the ventilation and airtightness values for the
building before the intervention, and for the improvement measures to be considered are
described in detail.

2.3. Energy Costs/Economic Parameters
2.3.1. Energy Costs

The energy cost for heating was 0.08 €/kWh, obtained for natural gas from [29].
The electricity cost was 0.25 €/kWh, and this was the value used for the cooling energy
cost [30] as the cooling system was a heat pump.
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2.3.2. Interest Rate, Discount Rate

The interest rate (k) was assumed to be 3.5% and inflation (i) equal to 2% following
the suggestions by the delegated regulation [21]. Thus, the current interest rate (k1) was
1.47%, calculated as follows:

k1 =
k − i

1 + i/100
(3)

2.4. Definition of Package of Optimal Solutions

The package of optimal solutions (POS) is defined as the whole set of solutions near to
the optimal point with the minimum life cycle cost. To this end, the solutions with a LCC up
to 5% higher than the minimum were be determined. Then, the solutions with an increase
of 5% of Primary Energy Consumption with regards to the optimal point were determined.
Among these solutions, 12 were selected as the representative of the POS. Some studies use
different tolerance percentages, but this research determined that selecting 5% of the set
of solutions was a wide enough sample, getting 12 sets of solutions that define the POS.
In the case of the primary energy consumption, solutions with lower values compared to
the optimal were avoided because in that zone the LCC dramatically rose.

In this way, it was possible to define a package of optimal solutions that were around
the optimal set and, thus, an equivalent result was obtained without sticking exclusively to
a numerical solution. It was possible not to limit the renovation of the building to a unique
set of measures, and to increase the flexibility and the degree of decision on behalf of the
architect or engineer involved in the process.

This type of packages in the form of tables has already been reported by Guardigli
et al. [16] with the main difference that in latter study the different solutions to renovate
the buildings have not been detailed and related to the different solutions proposed,
but only the results are shown. In this case, it is considered a novel contribution of this
article consisting of the complete documentation and description of all combinations of the
optimal measures.

3. Case Study: Apartment Building MedZEB Renovation
3.1. Apartment Building

This section presents the current state of an apartment building by describing its
structure, envelope and building systems specifications.

The building, which has been studied and simulated in detail, is located in an area of
urban expansion in the City of Castellon de la Plana (Spain). This area is characterized by a
high-density urbanism dating back to the 1970’s and 1980’s.

The case study (Figure 3) is an apartment building built in 1979. In its current con-
figuration, the building has seven floors above ground level and a basement, with a total
built area of 3698.14 m2. It has a trapezoidal floor plan, covers a total length of 48.2 m in
the southwest façade (front elevation), and 48.6 m in the northeast (back elevation), while
the envelope wall facing southeast measures 16.7 m and the one facing northwest 12 m
(Figure 4).

The envelope for the front and back elevations is a non-insulated exposed-brick system
with an air cavity and an internal brick-lined wall rendered with plaster. The internal
partitions are made of hollow brick rendered with plaster on both sides. The roofing system
is standard for the buildings of this period, namely a non-insulated, non-ventilated roof
finished with ceramic tiles and waterproofed with bituminous membranes. The windows
and other façade openings have steel or aluminium frames and single glazing with very
low levels of airtightness and thermal performance. Therefore, roof and façades have
no insulation and, even if thermal bridges represent a high part of the thermal losses,
the building envelope itself (including the openings with single glazing) represents an
important part of the thermal losses too.
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The whole building is supported by a reinforced concrete structure. Internally, its lay-
out is divided into three entrance halls, two of which give access to 12 residential units, and
the other one to 11. In the basement there is a shared parking lot connecting the three blocks
and the ground floor has space for five retail units. This kind of apartment building has no
heating, cooling or mechanical ventilation systems. The domestic hot water is provided by
natural gas/butane boilers.

The climate of Castellon could be described by a winter severity climatic index of 1.24,
and a summer severity climatic index of 0.62 according to the methodology proposed by
Sánchez et al. [32] and Salmeron et al. [33].

The building components considered to estimate the present building’s energy perfor-
mance are the envelope (facades, roof, ground floor slabs), thermal bridges, airtightness,
and ventilation air flow rates, as well as the internal partitions, glazing system, heating,
cooling, domestic hot water production and ventilation system. Their main geometrical
and thermal properties are gathered in Table A1 in Appendix A. Key issues identified
prior to the renovation were significant thermal bridging situations, high heating and
cooling demand and a general need for maintenance. These factors opened a window of
opportunity for upgrading to a higher quality/performance level instead of renovating
to the original situation [34,35]. Indeed, the objective of the HAPPEN project is to trigger
energy savings of 60%.

In this case, the building envelope is characterized by (i) one type of opaque exterior
walls, referred to as the façade, which also includes its openings; and (ii) two different
types of horizontal elements, the external one referred to as the roof, and the one referred
to as the slab, which separates the retail units on the ground floor from the apartments on
the first floor. Six slabs creating the different levels are added to determine the thermal
zones and enclosures in the energy simulation (Figure 5).
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The openings have been poorly maintained and are composed of single-glazed units
with aluminium frames without a thermal bridge break system or low emissive coatings.
A total of 22% of the north façade is glazed and 15.33% of the south.

The retail spaces distributed on the ground floor are not considered in this renovation
study as they are not going to be renovated. The owner of the building is different to the
owners of the retail spaces, so the slab between the ground floor and the first floor is the
one considered for the thermal envelope of the building.

In conclusion, the building was built without considering limits on thermal bridges or
their impact on internal comfort or energy efficiency. Once improved, the joints between
walls and slabs, the contour of the openings (windows to wall joints), and the joints between
walls and roof will reduce the linear thermal transmittance values.

By using a specific energy simulation software that calculated the building energy
needs and consumptions dynamically on an hourly basis, the energy use of the building
was obtained. Table 1 summarizes the main results. The software tool has been described
in detail in Section 2.2 of this paper.

Table 1. Current PE consumption of case study pilot building.

Energy Use
Primary Energy Consumption

(PET)
Kwh/m2y

Heating 49.24

Cooling 17

Domestic Hot Water (DHW) 19.79

TOTAL 86.03

3.2. Renovation Measures

It is quite evident that the combination of all the design alternatives for the renovation
of the building is theoretically infinite. However, it is also true that the building components
market offers a finite set of renovation alternatives and decision-makers do not tend to
stray from commonly-used solutions. Therefore, if the initial data are correctly inserted,
identifying a fair number of feasible technical solutions does not take long [16].

Many different renovation measures are considered in this study and are presented
in Appendix A, from Tables A2–A5. The building’s renovation project had started to be
drafted when the research started. Therefore, it was a great opportunity and the architect
who was drafting the project was consulted and, the different set of renovation measures,
that were considered, fitted to the market possibilities; the existing building possibilities;
the project budget availability; and, the need to get 60% of energy savings.

The main goal is to increase the thermal performance of the envelope by increasing
thermal mass, adding insulation layers on the exterior, improving thermal bridges and
airtightness, replacing external doors and windows, and installing new DHW production
and ventilation systems. To perform the different calculations for evaluating the LCC and
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energy performance, the existing condition of the envelope, openings and building systems
have been considered. Therefore, each section includes the pre-renovation characteristics
of the building.

Regarding the technical solutions that shape the different sections, the national cost
databases commonly used in Spain have been used [36]. In this database it is possible
to establish a specific solution by its specifications [37], relating them to their estimated
construction costs. Moreover, each section has a finite number of solutions due to the
criteria followed to select them: costs, construction material adaptability, most common
skills and qualifications of the contractors in this region, building constraints, and the
energy and performance level to be achieved after renovation. Therefore, it is essential to
take into account the socio-economic context of each renovation project when choosing the
optimal solutions.

In the following sections, renovation solutions for the façade, roof, slabs, openings
and systems are described:

3.2.1. Envelope Elements

To improve the thermal performance of the façade, nine types of façade walls were
considered, maintaining in the evaluation procedure the existing façade (Table A2). As men-
tioned above and shown in Table A1 in Appendix A, the current building façade com-
position consists of an external layer made of exposed thick brick, an air cavity, hollow
brick lining and plaster render on the interior face. The construction system does not
have thermal insulation, so different solutions involving adding thermal insulation and
replacing the internal brick layer by plasterboards or different types of bricks and different
types of air chambers were evaluated.

To enhance the thermal performance of the envelope, seven types of window systems
and seven external doors were considered (Table A3). They are all aluminium or PVC
framed and double or triple-glazed, in addition to having thermal break elements and
different levels of low-emissivity coatings and solar control systems. Depending on their
location, these could be double folding leaf windows or sliding doors.

A total of eight types of flat roofing solutions for private and common areas were
studied (Table A4). The main consideration is that the existing slab has been kept and the
upper layers have been replaced to include thermal insulation.

To evaluate the LCC and thermal performance of the internal slabs that separate the
ground floor from the first floor and the different storeys, five options were considered
(Table A5). As it is part of the building´s envelope, the renovation measure considered is
to add thermal insulation to the slab soffit in different ways.

3.2.2. Thermal Bridges

Several options were analyzed to adapt as far as possible the renovation measures to
the building construction characteristics. The weakest point, from a thermal performance
point of view, is the joint between the vertical elements of the envelope and the balcony
cantilevers on every floor. The most balanced (cost–thermal performance) solution consists
of injecting PUR into the internal hollow concrete blocks that shape the under-slab soffit.

Figure 6 shows the areas (in yellow) where the PUR insulation replaced one and a half
hollow concrete blocks of the slab, and the heat flux gradient calculated with Therm © for
this type of thermal bridge. The resulting linear thermal transmittance is 0.84 W/mK.

For calculation purposes, this linear thermal transmittance coefficient value was used
independently of other renovation measures that may interact with the thermal and energy
performance of the building in those specific areas.

The thermal bridges around the openings were improved with PUR and vapour barri-
ers. Table 2 summarizes the renovation measures for thermal bridges, their correspondent
thermal parameter and cost.
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Table 2. Proposed renovation measures for thermal bridges.

Thermal Bridges System & Location Linear Thermal
Transmittance Ψe W/mK Cost €/m

1/ Existing building envelope composition (description on Section 3.1 of
this paper)

2/ Façade to slabs joints 0.840 6

3/ Façade to slabs joints
+ openings contour 0.751 7

3.2.3. Ventilation and Infiltration Solutions

Two types of ventilation systems were considered for this renovation project. The first
one was a mechanical system that provided 0.5 ACH using an exhaust fan and self-
regulated vents located in the façade. The second option, also mechanically driven, con-
sisted of a heat recovery unit and inlet and exhaust fans. The equivalent air change rate
of this system was 0.3 ACH. The term equivalent means that this 0.3 ACH was the air
flow which entered the building at the outdoor temperature. Table 3 summarizes the
renovation measures corresponding to the ventilation system, their level of air changes per
hour and cost.

Table 3. Proposed renovation measures for the ventilation system.

Ventilation System ACH Cost (€/dwelling)

1/ Existing situation—Natural and thermal wind driven depending on
window opening

2/
Mechanical exhaust
fan + self-regulated

vents
0.5 564

3/ Exhaust and inlet fans
+ heat recovery unit 0.3 1364

In addition, a night ventilation system was analyzed and included in the evaluation
of the renovation measures to be implemented in the building. It consisted of a mechanical
exhaust fan used on summer nights that mixed colder outdoor air with indoor air to
regulate the temperature and comfort of each apartment. The air flow allowed the air in
each apartment to be renewed 10 times per hour, and the cost of this system was 150 €
per apartment.

Regarding the air infiltration, improving the window contours using expansive foam
and indoor and outdoor sealing tape was considered to increase the airtightness. Using
this renovation measure the airtightness could be quantified with the n50 value. Table 4
shows the proposed renovation measures and their corresponding infiltration rate.
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Table 4. Proposed renovation measures for airtightness.

Air Tightness System Infiltration Rate
(h–1 @ 50 Pa) Cost (€/linear m)

1/ Existing building envelope composition (description on Section 3.1 of this
paper)

2/ Window contour n50 = 6.3
(see Appendix B)

60 € per linear meter of
window perimeter

3/
window

contour+façade to
slab joint

n50 = 4.2
(see Appendix B)

60 € per linear meter of
window perimeter and

façades–slab joints

3.2.4. Domestic Hot Water Production Systems

A centralized aerothermal system, consisting in a centralized heat pump unit, was eval-
uated as an option to produce the domestic hot water with a high level of renewable energy,
quantified as 50%. The price of this system is 67,314 € for the whole building.

3.2.5. Cooling and Heating Systems

These systems were not considered since the project budget did not allow it.

4. Results and Discussion

For the pilot building (case study) described in Section 3.1, a set of different building
renovation alternatives were considered, as described in Section 3.2. Following the method-
ology explained in Sections 2.1 and 2.2, the LCC and the corresponding primary energy
consumption of several combinations of building renovation measures were assessed.
The results of these calculations are reported in the following sections.

4.1. General Application of the Methodology and Obtaining the Optimal Solution Package

The following graphs shows the result of the combinations assessed:
Each of the points on the figure represents the possible combination of renovation mea-

sures that can be applied to renovate the building (set of renovation measures). Therefore,
each point represents the status of the building after renovation. Finally, a set of renovation
measures was selected for the renovation of the building, specifically the red dot at the right
on the “pareto front” in Figure 7. This pareto front is the curve that represents the locus of
points with the minimum LCC achievable with the defined set of renovation measures for
each primary energy consumption value. This minimum LCC was reached with a specific
combination of the renovation measures.

It is important to highlight that the vertical reference lines in Figure 7 contain the
points at which the primary energy consumption was the same but the LCC was different.
In practice, they represent different combinations of measures where the building would
have the same primary energy consumption but a different LCC. It is noteworthy that the
LCC could vary by up to 67% for two situations with the same primary energy consumption,
meaning that the investment costs plus the operating and maintenance costs may have
been 1.67 times higher in one building than in another whose renovation measures were
selected with a lower LCC, and, therefore, with a better criterion. Since the primary
energy consumption was the same, the operating energy cost was approximately the
same, except for the different prices for different energy sources, and this implies that
the fundamental difference was in the cost of the renovation measures, in other words
the initial investment costs. In short, if the set of renovation measures were not properly
chosen, the investment costs to renovate a building could have been 1.67 times higher than
another set of renovation measures that provided similar results. This is what the HAPPEN
project aims to prevent, particularly with this case study, given that this could be one of
the obstacles to the energy renovation of buildings. A high investment cost can, as shown,
be the result of the incorrect choice of a set of renovation measures for a building.



Appl. Sci. 2021, 11, 1423 13 of 25

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 25 
 

were selected with a lower LCC, and, therefore, with a better criterion. Since the primary 
energy consumption was the same, the operating energy cost was approximately the 
same, except for the different prices for different energy sources, and this implies that the 
fundamental difference was in the cost of the renovation measures, in other words the 
initial investment costs. In short, if the set of renovation measures were not properly cho-
sen, the investment costs to renovate a building could have been 1.67 times higher than 
another set of renovation measures that provided similar results. This is what the HAP-
PEN project aims to prevent, particularly with this case study, given that this could be one 
of the obstacles to the energy renovation of buildings. A high investment cost can, as 
shown, be the result of the incorrect choice of a set of renovation measures for a building. 

 
Figure 7. Life cycle cost (LCC) vs. primary energy consumption for 2441 building renovation alter-
natives. 

Other point of view is that several variants in fact had the same cost, but very differ-
ent primary energy consumption. Thus, the election of the variant with the lowest primary 
energy would mean that the building was environmentally-friendlier than the others. If 
the LCC of the renovated building was better than that of the original, it might be a win-
win situation for both the users and the environment. 

Table 5 summarizes the different packages of optimal solutions for the pilot building. 
The code in each cell corresponds to the number given in the tables of the appendix or 
Section 3.2 for the description of different renovation measures collected in the list. For 
instance, a 7 in the façade solution corresponds to the solution with this code in Table A2 
in Appendix A. 

  

Figure 7. Life cycle cost (LCC) vs. primary energy consumption for 2441 building renovation alternatives.

Other point of view is that several variants in fact had the same cost, but very different
primary energy consumption. Thus, the election of the variant with the lowest primary
energy would mean that the building was environmentally-friendlier than the others. If the
LCC of the renovated building was better than that of the original, it might be a win-win
situation for both the users and the environment.

Table 5 summarizes the different packages of optimal solutions for the pilot building.
The code in each cell corresponds to the number given in the tables of the appendix
or Section 3.2 for the description of different renovation measures collected in the list.
For instance, a 7 in the façade solution corresponds to the solution with this code in
Table A2 in Appendix A.

Table 5. Packages of Optimal Solutions (POSs).

Package Façade Roof Window Door Slab Thermal
Bridge Ventilation Airtightness Night

Ventilation DHW

1 7 5 3 3 3 3 1 2 2 2
2 5 2 7 7 3 2 1 2 1 2
3 4 3 2 1 3 2 1 1 1 2
4 4 3 5 1 3 3 1 2 2 2
5 3 4 2 1 3 3 1 1 1 2
6 7 6 5 1 3 3 1 2 2 2
7 5 3 5 1 3 3 2 2 1 2
8 7 2 4 3 3 2 1 2 2 2
9 7 3 5 2 3 2 1 1 1 2

10 7 4 3 1 3 3 2 1 1 2
11 5 3 5 1 3 2 1 2 2 2
12 7 7 4 3 3 2 1 2 2 2
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As mentioned, the goal of this study is to find the combination of renovation measures
with the best balance in terms of LCC and its impact on energy savings. Table 5 shows
the 12 selected packages of renovation measures, and the optimal combination, this is the
one that minimized the LCC, has been highlighted in green. The façade, roof, windows,
doors, slabs, thermal bridges, ventilation, airtightness, night ventilation and DHW are the
areas considered in this evaluation study as the ones that can guarantee that the building is
upgraded to NZEB condition.

The most common solution for façades was an ETIC system, solution number 7, which
guaranteed the continuous insulation of the vertical elements of the envelope, keeping
under control the thermal bridges caused by the slab edges on each story. In addition,
this solution provided an optimal situation of the thermal mass inside the building, allow-
ing for a high level of energy storage in the building structure.

The roof evaluation showed that green roofing (roof number 5) was an option to
bear in mind when specifying solutions during the design process. There was a diverse
range of very suitable solutions for this zone of the building. Even though green roofing
did not appear in other packages, it was included in the optimal package due to its
insulation characteristics and the benefits that it offered beyond thermal performance and
LCC, such as decreases in albedo and heat island effects and the fact that it was a natural
system for capturing CO2. Moreover, the relationship between its construction cost and
thermal performance was better than other construction solutions manufactured with
inert materials.

Due to the mildness of the climate, the thermal performance capacity of the windows
could be lower than in colder regions. The optimal solution for windows was number 3,
which is in the middle of the specifications table shown in the list.

The optimal solution to reduce thermal bridging was number 3. It was the most
recurrent in all packages as the cost differences between the three options was trivial, but the
thermal performance increased substantially when this option was used; it combined
under-slab insulation with the thermal improvement of the opening contour.

In 10 solutions out of 12, ventilation was equal to the base rate (one air change per
hour), although in most of these cases airtightness was improved to avoid an increase in
the air infiltration rate. Thus, the amount invested in improving ventilation was used in
other solutions that simulations showed to be more profitable in terms of life cycle cost,
such as improving the thermal transmittance of the elements of the envelope. This was
motivated by:

- the mildness of the climate. In other locations with colder outdoor temperatures the
solution could differ;

- the price of the ventilation system in relation to the price of other renovation measures.

Regarding airtightness, the optimum solution was number 2, which only focused
on solving air infiltration problems without incorporating any extra insulation layer into
other elements.

A night ventilation system was implemented. Due to the climate conditions, it was
only necessary to guarantee the air flow with an exhaust unit combined with air vents on
windows, as in solution 2. This solution appeared 6 out of 12 times during the optimal
solution calculations.

Table 6 summarizes the representative global values for each package of solutions.
It is important to remember that the intervention area was 3698.14 m2 in every case, which
was the total usable area of the pilot building:
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Table 6. POS results.

No.

Primary
Energy

Consumption
(kWh/m2·yr)

Primary
Energy Con-

sumption
Savings

LCC 30
Years
(€/m2)

Final Energy
Consumption
(kWh/m2·yr)

CO2
Emissions
(kg/m2·yr)

CO2
Emissions

Savings

Intervention
Cost

(€/m2)

Savings/Year
(€/m2.yr)

Payback
(yr)

1 36.8 57.2% 183.5 25.4 4.63 56.2% 42.6 4.63 9.19
2 36.8 57.2% 197.9 24.7 4.77 54.9% 55.3 4.69 11.78
3 37.0 57.0% 191.2 25.6 4.65 56.0% 50.0 4.61 10.84
4 37.0 57.0% 193.7 25.0 4.76 55.0% 51.3 4.67 11.00
5 37.3 56.6% 190.3 25.9 4.70 55.5% 48.5 4.58 10.59
6 37.7 56.2% 184.4 25.1 4.95 53.1% 39.8 4.64 8.58
7 37.9 55.9% 195.7 25.6 4.93 53.4% 51.3 4.58 11.20
8 38.1 55.7% 189.6 25.7 4.96 53.1% 44.9 4.57 9.82
9 38.3 55.5% 192.0 25.6 5.04 52.3% 46.3 4.58 10.12

10 38.4 55.3% 185.6 26.7 4.88 53.8% 41.7 4.48 9.31
11 39.2 54.4% 189.2 26.6 5.12 51.6% 42.6 4.46 9.55
12 39.7 53.8% 197.5 27.0 5.20 50.8% 49.9 4.41 11.31

The optimization process was replicated for different user behaviour as described
in the methodology section. The POS obtained was exactly the same, which proves the
consistency of the solutions and their independence from the user’s habits when operating
the systems; the previous is valid for this building typology, climate, renovation costs and
energy prices.

4.2. Optimal Solution for the Pilot Building

In the pilot building, the optimal solution that was finally chosen was the package
number 1 out of the 12 in Table 6. This is detailed in Table 7.

Table 7. Package of optimal solutions for the renovation project.

System/Element Renovation Measure Thermal Characteristics Inv. Cost

Facade 7 U = 0.31 W/m2·K 53.72 €/m2

Roof 5 U = 0.54 W/m2·K 71.6 €/m2

Windows 3 U = 2.8 W/m2·K; g = 0.49 122.20 €/m2

Doors 3 U = 2.54 W/m2·K; g = 0.41

Slab 3 U = 0.76 W/m2·K 29.65 €/m2

Thermal bridges 3
Improvement of windows

contour and wall-slabs
joints ψe = 0.751 W/mK

7 €/l.m.

Ventilation 1 1 ACH 564 €/m2

Airtightness 2 n50 = 6.3 60 €/l.m.

Night ventilation 2 10 ACH(night-time in
summer) 150 €/dwelling

DHW 2 Aerothermal 67,314 €

Once the building has been renovated as shown in Table 7, the energy performance
of the building is that shown in Table 8, where the building´s energy performance was
compared before and after the renovation; applying the optimal solutions to renovate the
building could be seen to result in energy savings of approximately 60%.
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Table 8. Pilot building before and after renovation primary energy (PE) consumption.

Energy Use

Before Renovation After Renovation

Primary
Energy
(PET)

Kwh/m2y

Non-Renewable
Primary Energy

(PENR)
Kwh/m2y

Primary
Energy
(PET)

Kwh/m2y

Non-Renewable
Primary Energy

(PENR)
Kwh/m2y

86.03 86.03 36.8 31.52

Heating 49.24 49.24 13.77 13.77

Cooling 17 17 12.48 12.48

Domestic Hot
Water (DHW) 19.79 19.79 10.54 5.27

Ventilation Natural thermal and wind driven + night ventilation system

5. Conclusions

A POS has been obtained for a case study building located in a mild climate in the Med
region of Spain. Primary energy savings for the POS are very high, between 53.8% and 57.2%,
with a 30-year life cycle cost between 183.5 and 197.9 €/m2. The life cycle cost of the current
building (275 €/m2 in its pre-renovation situation) has been reduced considerably, between 28%
and 33%. Since the LCC includes the initial investment and the operating and maintenance costs,
it can be said that all the measures of the POS are very interesting from an economic point of view.

The investment cost to implement the POS is between 42.6 €/m2 and 55.3 €/m2. These
costs have been evaluated according to the prices reported in Section 3.2, obtained from
the database of construction prices in the Valencian Community [36], the region where
the pilot building is located. Thus, the validity of the results is circumscribed to the same
building typology, climatic zone and cost of renovation measures and energy.

It should be noted that with the same initial investment, several renovation solutions
can be found, many of which have a higher life cycle cost and energy consumption than
those found in the POS.

Likewise, there are solutions with the same primary energy consumption as the
optimal one but with a much higher initial investment. Specifically, there is one renovation
alternative with an energy consumption of 36.87 kWh/m2, a 30-year LCC of 321.47 €/m2

and an initial investment of € 179.8/m2. Note that due to the optimization performed,
the investment cost is reduced by 76.3%. In other words, the same result is achieved in
terms of energy consumption, but with an investment 4.22 times lower.

Therefore, before renovating a building, it is necessary to be clear about the savings
objectives to be achieved, the improvement measures available and their cost before
deciding on the best combination. The combination of measures is more effective than the
individualized application of each one and it is necessary to make calculations, or follow
some indications, to optimize the intervention in terms of investment.

The optimal solution or the POS obtained can be compared with other previous studies,
specifically with the study by Guardigli et al. [16]. Although the use of the buildings is different,
remarkably similar values are observed in terms of payback period since the optimized
measures have a cost proportional to the savings they provide. If the compare the POS of the
pilot apartment building to the POS obtained for generic reference buildings, we observe that
the latter lead very well towards the optimum, although it would be necessary in the long
term to have more powerful tools or pre-calculated cases that allow engineers and architects to
take a decision that optimizes the life cycle cost of the building and its systems.

In the future, more research should focus on step-by-step renovations because some
users, especially private owners, do not carry out renovations in a single step. When a
one-moment-in-time optimal renovation is split into different stages, it is very important to
define which measures should be implemented in each step as this order has repercussions
on the LCC, the payback and of course in the initial investment of that step.



Appl. Sci. 2021, 11, 1423 17 of 25

Author Contributions: Conceptualization, J.M.S.L.; data curation, C.I.J.E. and M.N.E.; formal analy-
sis, C.I.J.E.; investigation, J.M.S.L.; methodology, J.M.S.L. and F.J.S.d.l.F.; Supervision, T.K.; writing—
original draft, J.M.S.L. and C.I.J.E.; writing—review & editing, F.J.S.d.l.F., T.K. and M.-N.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by European Union’s Horizon 2020 research and innovation
programme, grant agreement number 785072. It has been performed within the framework of the
project HAPPEN-Holistic APproach and Platform for the deep renovation of the med residential
built Environment. It reflects only the author’s view and that the Agency and the Commission are
not responsible for any use that may be made of the information it contains.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful for the support of EVha: Entitat Valenciana d´Habitatge
i Sòl (Eng.: Valencian Entity of Housing and Land), and José Fco Zapater Colomer from ARG
Arquitectos for the data and figures used in this research.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A List of Renovation Measures

The following tables summarize the thermal and geometrical properties of the envelope
of the building and the different systems of the building, whether they exist or not, in its
current conditions. They include the description by an image of a cross section, each layer
thickness and material, and the U-value when appropriate or other thermal property.

Table A1. Main thermal and geometrical properties of the present building envelope and systems.

Façade: Transmittance U = 1.17 W/m2·K
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The following tables summarize the thermal and geometrical properties of the enve-

lope of the building and the different systems of the building, whether they exist or not, 
in its current conditions. They include the description by an image of a cross section, each 
layer thickness and material, and the U-value when appropriate or other thermal prop-
erty. 

Table A1. Main thermal and geometrical properties of the present building envelope and systems. 

Façade: Transmittance U = 1.17 W/m2·K 
Layers Materials D (cm)

Ext. Exposed ceramic brick 11.5 
2 Air chamber 3
3 Hollow ceramic brick 7 

Int. Plaster lining 1
Roof: Transmittance U = 1.47 W/m2 K 

Layers Materials D (cm)
Ext. Outdoor ceramic tiles 2 

2 Gripping mortar 1

Layers Materials D (cm)

Ext. Outdoor ceramic tiles 2

2 Gripping mortar 1

3 Waterproofing sheet layer 0.3

4 Horizontal ceramic brick base 3

5 Air chamber 22.5

6 Existing slab 25

Int. Gypsum plaster 1

Slab: Internal slab between the ground floor and the first floor. Transmittance U = 1.72 W/m2·K
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Layers Materials D (cm)

Int. Marble floor finish 1

2 Cement mortar 1

3 Reinforced concrete slab 25

4 Air cavity 2

Ext. Plasterboard ceiling 1
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Table A1. Cont.

Windows: Transmittance U (W/m2 K) = 5.7

Description

Single-glazed units with aluminum frame system without thermal bridge break. The glazing solar factor is 0.85. Folding leaf
opening system.

Balcony doors: Transmittance U (W/m2 K) = 5.7

Description

Single-glazed units with aluminum frame system without thermal bridge break. The glazing solar factor is 0.85. Sliding door
opening system.

Thermal bridges 1: Joint between façade and slab at balcony. Linear thermal transmittance Ψe (W/mK) = 1.003
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Ventilation system: air changes per hour, ACH = 1 
Type Description 

Natural 

The ventilation rate of the existing building currently relies only on natural ventilation from open-
ing windows. Thus, for the assessment of the energy needs, the software tool considers the mini-
mum air ventilation rate required by the building technical code, which in this building is 1 air 

change per hour (ACH). 
Infiltration: n50 = 10 

Description 
The initial airtightness of the building was quantified by a n50 value of 8.5 which corresponds to the average value of 

the existing buildings in Spain [39]. 
Domestic hot water (DHW) system: η = 0.92 

Type Description  
Mixed gas boiler  The domestic hot water system is based on a mixed gas boiler with a seasonal performance of 0.92. 

Heating system 
Type Description 

Natural gas boiler 
Default system from the Spanish technical building code [40]: natural gas heating system with a 

nominal performance of 0.92 
Cooling system 

Type Description 
Centralized Heat 

pump 
Default system from the Spanish Building Regulations [40]: one centralized heat pump per dwell-

ing with a nominal performance coefficient of 2.60. 

Description

The initial values for the linear thermal transmittance were selected from the official documents of
the Spanish Technical Building Code [38] except for the joints between façades and slabs because
these were not present in the previous atlas. The initial value of this kind of thermal bridge was
evaluated using the Therm© software tool. The figure on the left shows the heat flux gradient.

The evaluated psi-value of the detail is 1.003 W/mK.

Ventilation system: air changes per hour, ACH = 1

Type Description

Natural

The ventilation rate of the existing building currently relies only on natural ventilation from
opening windows. Thus, for the assessment of the energy needs, the software tool considers the
minimum air ventilation rate required by the building technical code, which in this building is 1

air change per hour (ACH).

Infiltration: n50 = 10

Description

The initial airtightness of the building was quantified by a n50 value of 8.5 which corresponds to the average value of the existing
buildings in Spain [39].

Domestic hot water (DHW) system: η = 0.92

Type Description

Mixed gas boiler The domestic hot water system is based on a mixed gas boiler with a seasonal performance of 0.92.

Heating system

Type Description

Natural gas boiler Default system from the Spanish technical building code [40]: natural gas heating system with a
nominal performance of 0.92

Cooling system

Type Description

Centralized Heat pump Default system from the Spanish Building Regulations [40]: one centralized heat pump per
dwelling with a nominal performance coefficient of 2.60.

The following tables summarize the solutions considered for the renovation of the
façade. They include the description by means of a cross-sectional image, each layer
thickness and material, U-value, and their price.
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Table A2. Proposed Façade renovation measures.

Façade Layers Materials D
(cm)

U
(W/m2K) Price (€/m2)

1/ Existing building façade composition (description on Section 3.1 of this
paper) 84.35

2/
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1.5

0.46 85.67

3/
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0.48 76.18
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9/
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135 × 120 2.98 114.86 

6/ 
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Ext.layer
Layer 2
Layer 3
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Layer 5
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Int. layer
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1
8
1
6

1.3
4.8
1.5

0.26 144.68
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Table A3. Proposed renovation measures for openings: windows and external doors.

Windows

Solution Glazing & Frame Systems D
(cm)

U
(W/m2K)

Price
(€/m2)

1/ Existing building façade composition (description on Section 3.1 of this paper)

2/

Aluminium frame 2 folding leaves with thermal break system
Double glazing low emissive coating + solar protection 6/12/6 mm

U: 1.8 W/m2k
Luminous transmittance: 49%

G: 0.38

135 × 120 2.25 104.27

3/

Aluminium frame 2 folding leaves with thermal break system and
airtightness joint.

Double glazing guardian sun 6/12/6 mm
U: 2.8 W/m2k

Luminous transmittance: 42%
G: 0.49

135 × 120 3.94 122.20

4/

Aluminium Monoblock frame 2 folding leaves with thermal break system,
airtightness joint. Shutter.

Double glazing guardian sun 6/12/6-6 mm with acoustic film
U: 2.6 W/m2k

Luminous transmittance: 42%
G: 0.40

135 × 120 2.9 163.38

5/

Aluminium monoblock frame 2 folding leaves with thermal break system,
airtightness joint.

Double glazing green tinted guardian sun 6/12/6 mm with dehydrated air
chamber

U: 2.8 W/m2k
Luminous transmittance: 61%

G: 0.59

135 × 120 2.98 114.86

6/

Aluminium monoblock frame 2 folding leaves with thermal break system,
airtightness joint.

Double glazing guardian sun 6/12/6 mm with dehydrated air chamber
U: 2.8 W/m2k

Luminous transmittance: 61%
G: 0.59

135 × 120 3.1 118.25

7/

PVC frame, 2 folding leaves, with thermal break system. No air tightening
reinforce need.

Triple glazing of clear glass panels 8/16/6/16/8 with 2 air chambers argon
filled.

U:0.60 W/m2k
G: 0.62

135 × 120 0.61 194.10

External Doors

Solution Glazing & Frame Systems D
(cm)

U
(W/m2K)

Price
(€/m2)

1/ Existing building façade composition (description on Section 3.1 of this paper)

2/

Aluminium sliding door frame system 2 leaves with thermal break system,
airtightness joint.

Double glazing low emissive coating 6/12/6 mm
U: 1.6 W/m2k

Luminous transmittance: 66%
G: 0.41

210 × 220 2.97 148.65
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Table A3. Cont.

Windows

Solution Glazing & Frame Systems D
(cm)

U
(W/m2K)

Price
(€/m2)

3/

Aluminium sliding door frame system 2 leaves with thermal break system,
airtightness joint.

Double glazing low emissive coating 6/12/6 mm
U: 2.09 W/m2k

Luminous transmittance: 66%
G: 0.3

210 × 220 3.39 133.21

4/

Aluminium sliding door frame system 2 leaves with thermal break system,
airtightness joint.

Double glazing low emissive coating 6/25/6 mm with internal blind
system in the air chamber

U: 2.2 W/m2k
G: 0.6

210 × 220 3.48 581.50

5/

Aluminium sliding door frame system 2 leaves with thermal break system,
airtightness joint.

Double glazing low emissive coating 6/12/6 mm
U: 2.8 W/m2k

G: 0.70

210 × 220 2.97 143.32

6/

Aluminium sliding door frame system 2 leaves with thermal break system,
airtightness joint.

Double glazing guardian sun 6/12/6 mm with dehydrated air chamber
U: 2.6 W/m2k

Luminous transmittance: 61%
G: 0.22

210 × 220 2.82 190.43

7/

PVC sliding door frame system, 2 leaves with thermal break system.
U: 0.60 W/m2k

Triple glazing of clear glass panels 6/16/6/16/6 with 2 air chambers.
G: 0.62

210 × 220 0.61 255.44

Table A4. Proposed renovation measures for roof components.

Roof Layers Materials D
(cm)

U
(W/m2K)

Price
(€/m2)

1/ Existing building façade composition (description on Section 3.1 of this paper)

2/

Ext. layer Earth substrate 18

0.20 81.88

Layer 2 Polyester resin 1
Layer 3 XPS insulation 12
Layer 4 Waterproofing layer 2
Layer 5 Cement mortar 2
Layer 6 Cellular concrete 2
Layer 7 Reinforced concrete slab 25

3/

Ext. layer Earth substrate 18

0.16 96.81

Layer 2 Polyester resin 1
Layer 3 XPS insulation 16
Layer 4 Waterproofing layer 2
Layer 5 Cement mortar 2
Layer 6 Cellular concrete 2
Layer 7 Reinforced concrete slab 25
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Table A4. Cont.

Roof Layers Materials D
(cm)

U
(W/m2K)

Price
(€/m2)

4/

Ext. layer Earth substrate 18

0.28 77.47

Layer 2 Polyester resin 1
Layer 3 XPS insulation 8
Layer 4 Waterproofing layer 2
Layer 5 Cement mortar 2
Layer 6 Cellular concrete 2
Layer 7 Reinforced concrete slab 25

5/

Ext. layer Earth substrate 18

0.54 71.60

Layer 2 Polyester resin 1
Layer 3 XPS insulation 3
Layer 4 Waterproofing layer 2
Layer 5 Cement mortar 2
Layer 6 Cellular concrete 2
Layer 7 Reinforced concrete slab 25

6/

Ext. layer Roof ceramic tile 2

0.23 121.62

Layer 2 Cement mortar 1
Layer 3 Polyester Resin 2
Layer 4 Polypropylene 25% glass fibre 0.5
Layer 5 XPS insulation 10.5
Layer 6 Cement mortar 1.5
Layer 7 Cellular concrete 2
Layer 8 Reinforced concrete slab 25

7/

Ext. layer Roof ceramic tile 2

0.60 117.74

Layer 2 Cement mortar 1
Layer 3 Polyester Resin 2
Layer 4 Polypropylene 25% glass fiber 0.5
Layer 5 MW insulation 4
Layer 6 Cement mortar 2
Layer 7 Cellular concrete 2
Layer 8 Reinforced concrete slab 25

8/

Ext. layer Roof ceramic tile 1

0.24 116.48

Layer 2 Cement mortar 2.5
Layer 3 Polyester Resin 0.5
Layer 4 Waterproofing layer 1
Layer 5 Polypropylene 25% glass fiber 0.5
Layer 6 XPS insulation 10
Layer 7 Cement mortar 2
Layer 8 Air cavity 5
Layer 9 Reinforced concrete slab 25

Layer 10 Plasterboard ceiling 1.5

Table A5. Proposed renovation Measures for slabs.

Slab Layers Materials D
(cm)

U
(W/m2K)

Price
(€/m2)

1/ Existing building façade composition (description on Section 3.1 of this paper)

2/

Int. layer Marble floor finish 4

0.39 46.47

Layer 2 Cement mortar 1
Layer 3 Mineral wool 1
Layer 4 Reinforced concrete slab 25
Layer 5 Air cavity 5
Layer 6 Mineral wool 5
Layer 7 Plasterboard ceiling 1.5
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Table A5. Cont.

Slab Layers Materials D
(cm)

U
(W/m2K)

Price
(€/m2)

3/

Int. layer Marble floor finish 4

0.76 29.65

Layer 2 Cement mortar 1
Layer 3 Mineral wool 2
Layer 4 Reinforced concrete slab 25
Layer 5 Air cavity 3
Layer 6 Plasterboard ceiling 1.5

4/

Int. layer Marble floor finish 4

0.26 45.93

Layer 2 Cement mortar 1
Layer 3 Reinforced concrete slab 25

Layer 4 Air cavity 3
Layer 5 Mineral wool 10
Layer 6 Plasterboard ceiling 1.5

5/

Int. layer Marble floor finish 4

0.21 57.77

Layer 2 Cement mortar 1
Layer 3 Mineral wool 3

Layer 4 Reinforced concrete slab 25
Layer 5 Air cavity 3
Layer 6 Mineral wool 10
Layer 7 Plasterboard ceiling 1.5

Appendix B Calculation of Infiltration Rate for the Airtightness Measures

The n50 value for the airtightness measures has been calculated using the next equation:

n50

[
h−1

]
= (C0·A0 + Ch·Ah)·

(
50

100

)0.667
(A1)

where:

A0 is the surface of the opaque elements of the building envelope next to the outdoor, this is
façade 1, façade 2 and roof and is equal to 2618.4 m2;
Ah is the surface of the glazed elements of the building envelope, this is 498.2 m2;
C0 is the permeability of the opaque elements of the building envelope at 100 Pa, this can
be considered equal to 16 m3/hm2 or 29 m3/hm2 for new and existing buildings respec-
tively [25];
Ch is the permeability of the semi-transparent elements at 100 Pa, this is 50 m3/hm2 for all
the new windows and glazed external doors in the list of renovation measures.
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