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Abstract: The recent development of gas imaging technologies has raised a growing interest for
various applications. Gas imaging can significantly enhance functional safety by early detection of
hazardous gas leaks. Moreover, optical gas imaging technologies can be used to identify possible
gas leakages and to investigate the amount of gas emission in industrial sites, which is essential,
primarily based on current efforts to decrease greenhouse gas emissions all around the world.
Therefore, exploring the solutions for automating the inspection process can persuade industries
for more regular tests and monitoring. One of the main challenges in gas imaging is the proximity
condition required for data to be more reliable for analysis. Therefore, the use of unmanned aerial
vehicles can be very advantageous as they can provide significant access due to their maneuver
capabilities. Despite the advantages of using drones, their movements and sudden motions during
hovering can diminish data usability. In this paper, we propose a method for gas leak detection
and visually-enhancement of gas emanation involving stabilization and gas leak detection steps. In
addition, a comparative analysis of candidate stabilization techniques is conducted to find the most
suitable technique for the drone-based application. Moreover, the system is evaluated using three
experiments respectively on an isolated environment, a real scenario, and a drone-based inspection.

Keywords: thermography; video stabilization; gas leakage detection; unmanned aerial vehicle; aerial
inspection; nondestructive testing; optical flow analysis

1. Introduction

Gas leaks and emissions are challenges for various industries like petrochemical and
oil and gas industries resulting in financial losses and possibly human injuries. Therefore,
in recent years, significant efforts are dedicated to developing reliable gas leak detection
techniques. Moreover, some studies are devoted to introducing techniques for detecting
the origin of possible leaks for launching corrective measures.

Gas leaks can be very dangerous to health and the environment. In confined spaces
like buildings, even a small leak in pipelines can gradually build up to be an extremely
lethal or even explosive amount of gas which can endanger staff. The release of some gases
such as natural gas, propane, and isobutane into the atmosphere is harmful due to their
effect on global warming or ozone depletion. Another area would be fugitive emissions
which is the emission of gases from industrial equipment due to leaks or other sources of
gas release which can lead to an increase in air pollution [1]. The analysis of gas emission
can be very beneficial in many industries such as chemical manufacturing or oil and gas.
The early detection of many hazardous gases, for instance, Volatile Organic Compounds
(VOCs) or Methane can increase the functional safety of the system and prevent any health
risk for the personnel. Unfortunately, there have been many incidents during previous
years that show the importance of providing reliable gas leak detection techniques as
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preventive measures. For instance, in July 2014, the occurrence of methane gas leak at
Bhilai plant of Steel Authority Of India, caused the loss of six human lives [2]. The sig-
nificance and consequences of gas leaks for the environment and human life motivated
industries and governments to conduct regulated inspections as preventive measures to
avoid such incidents.

Gas leaks can cause financial losses for the companies and the end-users. For example,
in the case of natural gas, possible gas leaks can cost companies and end-users significantly.
The increase in the number of natural-gas consumers causes the rapid expansion and
construction of gas pipelines and distribution centers [3]. Based on the report of the
European Gas Pipeline Incident Data Group, the length of the gas transportation pipelines
has grown more than 21% in the 1970–2016 period and the total length of natural gas
distribution has almost reached 2,200,000 km in Europe [4]. The length and expansion
rate in pipelines also increase the possibility of leaks and failures, making the necessity of
regular and reliable inspection more significant and critical to avoid financial losses and
dangerous incidents. These losses are not limited to companies and distribution systems;
the possible leakages in buildings and industrial sites can cost end-users. Google Earth
and Environmental Defense Fund collaborated by equipping Google Street View mapping
cars with required sensors to map the methane gas leaks in various urban areas like Boston,
Indianapolis, and New York City’s Staten Island. The map shows methane seeping from
thousands of aging pipes in the cities. Although the leaks were all low-level, end-users pay
for the leaked gas [5].

To prevent gas leaks, many organizations and companies devoted a significant amount
of efforts and investments to provide reliable and efficient gas leak detection techniques.
Additionally, several surveys and studies were conducted on the gas leak related incidents
by various organizations. One study stated that during the 1996–2006 period, eighty
pipeline rupture incidents were reported in the Gulf of Mexico and Pacific areas. The report
demonstrates that the probability of occurring an incident in this specific area is 0.43
incident per year [6,7]. Another report focused on the risks of pipeline transportation
states that around 1326 gas leaks were reported in Alberta, Canada between 2001 and
2005 [8]. All the reviewed surveys emphasize the consequences and prevalence of gas
leak detection methods demonstrating the importance of finding reliable techniques as
an essential preventive measure. In order to decrease the risks and potential product
loss, industries rely on accurate and reliable reports and analyses prepared by experts
for detecting the issues and maintain the systems. Therefore, providing the tools and
automation processes can assist inspectors in providing more reports with less human
error in a more satisfying time frame. Additionally, since the corrective measures require
more extensive information about the leakage such as origin, severity, and size, recent
studies also are focused on providing comprehensive approaches to detect and characterize
gas leaks.

One of the fundamental requirements for an effective corrective measure is the identifi-
cation and quantification of the leaks like the level of gas concentration and approximation
of the source’s location. Therefore, the proximity of equipment or inspectors to the pos-
sible leaks increases the reliability of the analysis. Conventional inspection approaches
for gas leak detection requires direct contact of inspectors with the environment. Due to
the hazardous nature of these gases, an inspection of these sites can put the personnel at
considerable health risk. In addition, likely access constraints imposed by the conditions
like height or temperature of an operating facility can make the inspection very challenging
or even impossible. The challenges and requirements motivated companies to use flexible
and mobile units to carry on the inspections. Ground-vehicles equipped with gas analysis
technologies can certainly increase the reliability and safety of such inspections. However,
in many scenarios, it is very hard or impossible for them to reach the emission source
because of the height or complex structure of the component. Using unmanned aerial vehi-
cles for the inspections can decrease the risk as well as the cost and time of the operation.
The maneuver capabilities provided by drones can assist inspectors with better access to



Appl. Sci. 2021, 11, 1412 3 of 19

the facilities and reduce the inspection time, which can motivate the companies to perform
them more regularly. Moreover, this approach minimizes the number of required staff
on-site, which can also lead to cost- and time-saving and an increase in operational safety.
Therefore, introducing drone-enabled techniques for the detection and characterization of
gas leaks is very essential and is the main motivation behind this study.

In this paper, we introduce an approach to enhance the visibility of possible gas
leaks in recorded image streams using image flow analysis. Moreover, we investigate the
possibility of locating the origin of possible gas leaks based on gas concentration. One of
the issues in the analysis of drone-recorded image streams is the rigid motion of UAVs
during hovering, which can diminish the usability of the recorded image streams. In this
paper, we investigate the use of video stabilization methods for minimizing the effect of
such motions.

The organization of this paper is as follows, The literature review and a survey about
the current methods of gas leak detection are presented in Section 2. The video stabilization
and gas leak detection techniques are described in Sections 3.2 and 3.3 respectively. More-
over, the experiments and results are presented in Sections 4 and 5. Finally, the conclusion
of this work is presented in Section 6.

2. Literature Review

Gas leak detection techniques can be classified into various categories based on the
level of human involvement and employed technologies. The level of human involve-
ment is one of the factors that would be important especially for the detection of possible
hazardous gas leaks. The gas leak detection techniques can be classified into three main
categories based on the level of human intervention, (a) automatic detection, (b) semiauto-
matic detection, and (c) manual detection. The automatic detection methods mostly include
installed sensors and monitoring systems that can detect the leaks completely automated.
Semiautomatic detection approaches require certain human inputs or assistance to perform
the task and manual detection techniques involving the sensors that need to be directed by
operators [6].

Gas leak detection techniques can also be categorized based on the employed technol-
ogy. Some studies classify the detection approaches into optical and nonoptical due to the
wide range of optical methods used for leak finding purposes [9,10]. Moreover, they can
be considered based on their detection approaches and grouped into direct and indirect
approaches. The direct approach involves the use of systems and sensors like a thermal
camera to find the possible gas emanations while in the indirect approach, the leaks are de-
tected by measuring the variation in some of the parameters such as flow rate or pressure in
the targeted system like pipeline [11]. One of the most used ways to categorize the gas leak
detection methods is based on their technical nature [6,12], (a) hardware-based techniques,
and (b) software-based techniques. Hardware-based techniques basically use a sensing
system to detect possible gas emanation. These methods can further be classified based
on the type of sensors that they employ for detection. On the other hand, software-based
techniques continuously monitor and analysis the parameters of a system like a pipeline to
detect possible signs of gas leaks. The categories and the subcategories are demonstrated
in Figure 1.

Acoustic methods determine the existence of gas leaks based on the fact that escaping
gas generates an acoustic signal as it flows through a crack in the pipe. The inspection
can be carried out with handheld detection devices used by operators moving alongside
the pipeline [13]. Moreover, continuous monitoring is possible using installed sensors on
the pipeline’s outerior with fixed distance [14]. Cable sensors are another type of sensor
for gas leak detection. The cables are made of specific materials reacting when in contact
with a certain medium. The changes in parameters can be monitored and utilized for
leak detection purposes. Cable sensors are fast in responding and more sensitive than
many other approaches. However, the cost of implementation is high and the difficulty of
retrofitting the sensors to the existing pipelines are the main disadvantages of cable sensors.
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Additionally, cable sensors are not able to provide leak size estimation. Soil monitoring is
another type of gas leak detection involving the use of tracer compounds on pipelines [15].
In this method, high sensitivity and low false alarm rates are the advantages and the high
cost of applying this method is the main disadvantage.

Figure 1. The categories of gas leak detection approaches and their subcategories.

Optical methods for the purpose of leak detection can be categorized into passive
and active techniques. In active methods, the targeted area is excited by an external
radiation source. On the other hand, passive methods do not require excitation source [16].
The optical methods have many advantages including portability, contactless detection,
and locating the origin of the leakage. In many scenarios, the optical sensor is installed on
an aircraft or ground vehicle for detecting a long pipeline. One of the passive methods
for gas leak detection is to employ a thermal imaging system. Thermal imaging systems
visualize the temperature difference between leaked gas and the surrounding environment
to detect leaks. However, one of the disadvantages of using thermal imagers is that the
detection cannot be done if leaked gas has the same temperature as the surrounding
environment [17].

In recent years, many studies focused on the use of drones and mobile robots for
gas leak detection applications. Daugela et al. (2020) used a microcontroller-based gas
sensor array together with an imaging system installed on a drone for the sole purpose
of localizing CH4 emission hotspots [18]. Some studies employed measuring instruments
for gas leak detection installed on an aerial platform as a candidate solution for gas leak
detection. Frish (2020) presented an aerial near-infrared laser sensor platform creating
quantitative plume images by scanning laser beans for locating and visualizing methane
gas emissions [19]. The study demonstrates that the introduced active laser-based QGI
technology is more sensitive, quantitative, and independent of ambient conditions than
passive thermal infrared optical gas imaging systems. Another study utilized a modified
version of an open-path tunable laser diode absorption spectrometer installed on a fix-wing
drone for locating the methane gas emissions in upstream natural gas networks [20]. In
addition, in the study conducted by BAM Federal Institute of Materials Research and Test-
ing in collaboration with AirRobot, a micro-UAV platform which is capable of measuring
hazardous gas concentrations and locating the sources were presented that uses five gas
detectors embedded in an aerial platform [21].

One of the popular approaches for drone-enabled gas leak detection is the use of
optical imagers like thermal imaging systems for aerial platforms. Shi et al (2020) intro-
duced a real-time automated technique for hydrocarbon gas leak detection. They used
Faster R-CNN neural network integrated with optical gas imaging technology [22]. Due
to the real-time capability of the algorithm, it can be possible to embed the technique in
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an aerial platform for instant detection and reporting. Druart et al. (2020) addressed the
visualization of methane gas leak detection by using an LWIR Cryogenic multispectral
infrared camera installed on a Hexarotor drone [23]. One study investigates a comparison
study between a few approaches for gas leak detection to provide a more comprehensive
analysis of available methods [24]. They employed different gas sensors and a thermal
camera installed on a Quadrotor for the experiment. The integrated system provides a
gas distribution map of the investigated area. Kroll et al. (2009) proposed an automated
system for detection of pressured air and gas leaks [17]. The system takes advantage of
infrared thermography embedded in a mobile robotic platform to conduct automated
routine inspections of facilities.

3. Methodology

As discussed in Section 1, gas leaks in industrial sites can cause financial loss and hu-
man injuries, thus many companies invest in finding solutions assisting inspectors to more
accurately locate and assess the possible gas leaks. These approaches involve enhancing
the visualization of gas emanations and automating the detection and characterization of
gas leaks. The optical methods especially thermal imaging systems are one of the most
common approaches since the minimum setup is required and an inspector can carry the
equipment while moving alongside the pipeline. However, the hazardous nature of leaked
gases and the length of pipelines motivated companies to find alternative ways to conduct
the inspections. The use of aerial platforms like a drone is one of the most convenient
and effective ways to conduct such inspections. A drone can move alongside a specimen
and obtain the required data in a shorter amount of time compared to a conventional
approach. In addition, drones can minimize the risk of any human injuries as there is no
need for close-contact.

In this study, a process pipeline is proposed involving three main steps as shown in
Figure 2: (a) a fixed-size frame buffering, (b) a stabilization technique to remove unwanted
motions of hovering drone, and (c) an approach for detection and visually-enhance gas
emanations using optical flow analysis of thermal image streams. The system collects
frames and keeps them in a buffer. When the buffer reaches a predefined size, the frames
are batched and passed to the stabilization technique minimizing the effect of the drone’s
motions on the gas leak detection algorithm. Finally, the proposed algorithm is employed
to process the frames and to provide expected results: (a) probabilistic map, (b) hotspot,
and (c) the area with the highest flow intensity.

Figure 2. The abstract process flow of the proposed technique.

3.1. Frame Buffering for Batch Processing

The introduced gas leak detection algorithm processes all the frames in an image
stream to provide the expected results, which means it cannot be used as a real-time
process deployed in an aerial platform. As shown in Figure 2, to address this issue, a frame
buffering technique is employed to provide real-time continuous detection and visually-
enhancement of gas emanations. In this approach, a fixed-size buffer is defined that collects
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all the acquired thermal image frames and passes them as a frame batch to the remaining
steps when its size reaches a predefined threshold. In this way, the system is expected
to provide continuous results. In addition to real-time capabilities, this approach makes
the proposed algorithm more dynamic and more resistant to large drone’s movements as
it brings the focus more on recent frames. In Algorithm 1, the proposed steps to process
the online thermal image stream for gas leak detection and visually-enhancement of gas
emanation are explained.

Algorithm 1: The proposed steps for drone-enabled gas leak detection and visually-
enhancement of gas emanation.

Data:
Hcamera ←− handle to the thermal camera
FS←− the size of frame buffer

begin
define the frame buffer as B f rame with the size FS
while the camera handle is alive do

fcurrent ←− collect one frame from Hcamera
if fcurrent is invalid or does not have defined size then

skip the frame and go to the beginning of the loop
end
add fcurrent to B f rame
/* Check if the size of the frame buffer reached the defined

threshold */
if length(B f rame) ≥ FS then

/* Apply the stabilization method to the buffered frames */
Bstabilized ←− stabilize the frames
/* Apply the proposed algorithm on stabilized algorithms */
PM, RHS, RHI ←− apply Algorithm 2 using Bstabilized
visualize the results PM, RHS, RHI
/* Clear all the frames from the buffer and prepare it for

next round */
clear all frames in B f rame

end
end

end

3.2. Image Stream Stabilization

Despite the benefits introduced by using aerial platforms for inspection of industrial
sites, some challenges may need to be addressed to open the door for employing drones in
various applications. One of the open areas that certainly can take great benefit of using
drones, is where constant monitoring and data acquisition of an area using a thermal
camera for a period of time, is required. Normally, it is expected that both the camera and
the specimen maintain their position to accurately analyze the temporal changes in thermal
behavior. This presumption can be problematic in a drone-based inspection as the drone
may experience slight movements while hovering which can disturb the post-analysis.
Therefore, using a stabilization method to remove undesired motions, is a necessary step
in these applications.

Generally, image stream stabilization methods can be categorized into spatial and
frequency domain techniques. Spatial-domain techniques use intensity patterns or features
to match images and define the proper transformation model. On the other hand, frequency-
domain methods determine the transformation parameters while operating in the transform
domain. Spatial-domain methods normally have higher accuracy and are able to detect
large transformations, but they need more computation resources. Moreover, they mostly
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require a certain amount of feature points to be able to minimize the estimation error. On the
other hand, frequency-domain approaches define the transformation model including
rotation, translation, and scale by their counterparts in the frequency domain. They
are different from other methods because they look for the optimal match based on the
information available in the frequency domain [25]. Phase correlation is a frequency-
domain based method for image registration. Unlike spatial-domain methods, phase
correlation is resilient to noise and other defects. In addition, they have lower time-
complexity which makes them suitable for real-time applications using embedded systems
with limited resources. One of the problems with image alignment based on correlation is
that they cannot accurately define the transformation model when there is a large rotation
or scale factor [26].

In this study, the main objective of using a stabilization method is to minimize the effect
of the drone’s unexpected motions while hovering because the presented gas leak detection
method is sensitive to motions and changes in the environment. Here, a comparative
analysis is conducted between four candidate methods: (a) a feature-based method with
moving averaging filter for smoothing (AVS) [27], (b) a stabilization method with robust
L1 optimal camera path (L1-OP) [28], (c) an approach based on phase correlation (PC-RF),
and (d) an optimization-based stabilization method (OPC) [29]. The stabilization step
involves the following steps: (a) perform the stabilization on the buffered frames and (c)
crop out black borders resulted from the stabilization method.

The phase correlation approach is a two-steps stabilization method. In this method,
the first frame is considered as a reference frame, then the phase correlation method
is employed to generate the preliminary transformation matrix for prealignment of the
reference and current frames. Phase correlation is a frequency-domain technique providing
an estimation of the rigid transformation model between two images based on Fourier shift
property [30]. Then, an intensity-based image registration technique explained in [31,32]
is used to minimize the registration error. The method is an iterative optimization-based
technique that uses the two frames as a similarity metric to optimize the transformation
matrix initially generated by the phase correlation method. Finally, the transformation
matrices are combined to align each frame to the previous frames based on the reference
frame using Equation (1), where Tn

G is the absolute transformation based on the reference
frame and Tn is the transformation matrix of frame n.

Tn
G = Tn−1

G × Tn, T1
G = T1 (1)

3.3. Gas Leak Detection

In this section, the proposed method for visually-enhance gas emanation and gas leak
detection is explained in detail. As described in Algorithm 2, firstly, a set of preprocessing
steps is applied on the image frames to improve the result of optical flow analysis using
an adaptive histogram-based adjustment technique. For this method, the first frame is
considered as the reference to adjust the histogram of the remaining frames. Next, all
pixels with illumination differences lower than a predefined threshold (Tγ) are omitted.
The threshold (Tγ) determines the algorithm’s flexibility on temporal illumination changes
and it is set manually based on the environmental conditions such as the existing noises
in the image, the level of motions, and illumination variations. Additionally, adaptive
thresholding [33] is used to binarize the frames and remove the outliers. For binarization of
the frames, a parameter (Ts) is used to determine the sensitivity of the thresholding process.
For the experiments, it is set by comparing the results of using different values.
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Algorithm 2: Gas emanation visually-enhancement and Gas leak detection algo-
rithm.

Data:
B←− stabilized frame batch
Tγ ←− the threshold for illumination difference
Ts ←− the sensitivity of adaptive thresholding [0, 1]
Tα ←− the threshold for magnitude map
Tp ←− the threshold for the probability map
Result:
PM ←− Probability map
RHS ←− hotspot area
RHI ←− the area with high intensity

begin
fre f ←− B0

nB ←− number of frames in the frame batch
B←− apply adaptive histogram-based adjustment on B and reference frame

fre f
M←− [] /* M is a three-dimensional matrix that will contain all
magnitude maps. */

for i←− 1 to nB do
/* loop through the frames, the first frame will be zero

matrix. */
Bi ←− Bi − fre f
Set the pixels of Bi that their values are lower than Tγ to 0
Apply adaptive thresholding on Bi with the sensitivity of Ts
/* The result of adaptive thresholding will be a binarized

frame */
mi ←− Apply Farneback optical flow on B1...i
/* mi is the magnitude map of current state of optical flow */
Adjust the range of mi to [0, 1.0]
/* The higher magnitude represents the bigger motion. Based

on the initial assumption that there is no movement on the
background, it is safe to say that the large motions are
representing the gas emanation. */

Set the pixels of mi with lower value than Tα

M←− Concatenate mi and M
end
Combine all magnitude maps to create the probability map PM using
Equation (2)

Filter out the noises or small motions in PM using Tp threshold
Find hotspot RHS and the area with high intensity RHI

end

In the next step, Farneback optical flow [34] is used to create the motion map rep-
resenting the orientation and magnitude of local changes. Then, the magnitude map is
processed to filter out the motions with magnitudes smaller than a defined threshold (Tα).
Tα determines the algorithm’s sensitivity for lower motions and its value is determined
based on the magnitude and volume of expected gas emanations. Later, the series of magni-
tude maps are combined to form a probabilistic map PM determining the probability of the
occurrences of local motions as shown in Equation (2), where Mi,j,k is the magnitude map
of kth frame. In this way, the effect of noises and small changes is minimized. Addition-
ally, the probabilistic map is processed to remove sudden and inconsistent local motions
based on a defined threshold (Tp). The elements of the probability map demonstrate the
occurrence rate of local motions. Thus, the higher threshold value causes the algorithm to
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lean on the more repetitive local motions with higher occurrence rates and magnitudes.
Therefore, its value can be determined based on the pattern of gas emanation, the severity
of the expected leak, and the weather situation. Finally, the hotspot area which contains
the highest probability values and the area with the highest flow intensity are determined
based on the probabilistic map.

PM
i,j =

1
K

K

∑
k=1

⌈
Mi,j,k

⌉
, 0 ≤ Mi,j,k ≤ 1 (2)

4. Experiments

In order to investigate the performance of the proposed gas leak detection method
and provide a comprehensive analysis of the candidate stabilization methods, three experi-
ments are conducted which are described thoroughly in the following sections. The first
experiment involves the data acquisition of gas emanation in an isolated environment.
The second experiment is an online dataset of gas leaks and gas emanations in a real
scenario. Finally, the third experiment is a drone-based inspection that aimed to be used
for evaluating the stabilization technique as well as the system performance.

4.1. Experiment A: Isolated Environment

This experiment is designed to investigate the performance of the proposed gas leak
detection method in an isolated environment. To do so, a FLIR GF620 cooled thermal
camera in a fixed position with around one-meter distance from the target is utilized
to record the generated gas emanations. The experiment is conducted in two sessions
using two types of gases and containers including alcohol and gasoline. The details of the
experiment are listed in Table 1 and the sample photos are shown in Figure 3.

Table 1. Details of the Experiment A.

Session 1 Session 2

Camera FLIR GF620 cooled thermal camera

Gas Alcohol Gasoline

Container Bottle Metalic canister

Duration 384 frames 624 frames

(a) Alcohol container (b) Gasoline container
Figure 3. Sample photos of the collected thermal footage of the containers.

4.2. Experiment B: Online Dataset

In this experiment, the objective is to assess the algorithm with data collected in a
real scenario. The experiment is conducted using the GasVid dataset presented in [35].
All data were taken at the Methane Emissions Technology Evaluation Center (METEC)
at Colorado State University. The dataset includes ten thermal footage of Methane gas
emission recorded at a distance of 4.6–15.6 m by a FLIR GF320 thermal camera operating in
the normal mode. The details of the dataset are described in Table 2 and the sample photos
are shown in Figure 4.
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Table 2. Details of the Experiment B.

Camera FLIR GF320 operating in the normal mode

Distance The distance varies between 4.6–15.6 m

Gas Methane

Location Methane Emissions Technology Evaluation Center (METEC) at Colorado State University

Date July 2017

Figure 4. Sample photos of the GasVid dataset.

4.3. Experiment C: Drone-Based Inspection

In this experiment, the main objective is to investigate the use of aerial platforms
for gas leak detection and visually-enhancement of the gas emanation. Moreover, the ex-
periment is used for the comparative analysis of candidate stabilization techniques. It is
conducted in two sessions recorded by thermal and digital cameras as shown in Figure 5,
providing a total of four sets of data, covering various scenarios that can be used in the
analysis. The experimental setup involves a fire pit containing ignited dried trunks and
woodchips. The ignited woods make smoke which simulates a scenario for further anal-
ysis. The details of the experiment are listed in Table 3. Four scenarios were provided
to investigate the behavior of stabilization techniques explained in Table 4. In addition,
Figure 6 demonstrates some samples of the camera motion paths for the four scenarios in
Experiment C.

Table 3. The details of Experiment C: the experiment includes two sessions recorded using a drone
and a handheld thermal camera.

Session 1 Session 2

Acquisition Setup DJI Mavic 2 Pro Handheld camera, simulated camera movement

Camera Drone’s camera FLIR GF309 cooled camera

Location TORGANTS, Quebec, Canada

Date November 2020

Sections 6 9

Total Duration 9 min 17 min
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Table 4. Details of scenarios in the Experiment C: * the motions are set to normal and medium. The medium motions are
constantly shaking to investigate the resistance of stabilization methods.

Datatype Motion * Sections Description

Scenario 1 Visible Normal 4 sections Drones hovering during data collection.

Scenario 2 Thermal Normal 6 sections Handheld camera simulating hovering motion with limited mo-
tions.

Scenario 3 Visible Medium 3 sections Constant shaking motions and moving objects in the scene.

Scenario 4 Visible Medium 2 sections Constant shaking motions.

Figure 5. Sample photos of the drone-based experiment. The (top left) photo is a thermal image of the gas emission, the (top
right) photo is a visible image collected by drone; the (bottom left) is a photo of the drone during the experiment and the
(bottom right) is another photo sample of collected imagery data by drone.

Figure 6. The sample of camera motion paths for the four scenarios in Experiment C.
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5. Results and Discussions

The presented system in this paper involves two main steps: (a) stabilization and (b)
gas leak detection. In this section, the acquired data from the experiments explained in
Section 4 are used to evaluate the two main steps and the general performance of the
system. In the following, a comparative analysis of candidate methods is provided in
Section 5.1. In addition, the proposed gas leak detection method is evaluated in Section 5.2.
It is worth mentioning that all the analyses were carried on a Ubuntu 18.04 Linux operating
on a workstation with Intel Core i7-9750H CPU, 16GB RAM, and Nvidia Quadro T1000
Graphic card.

5.1. Comparative Analysis between Stabilization Methods

In this section, a comparative analysis between the candidate methods based on
collected data from Experiment C explained in Section 4.3 is conducted to demonstrate
their performance in the defined scenarios. The comparative study involves visual tests
and quality assessment. The visual test is the visual examination of the results providing
required insight into the behavior of the candidate methods. For quality assessment, few
metrics are defined to evaluate the methods from different aspects.

For the visual test, the x- and y-axis global trajectory is calculated; the global trajectory
demonstrates the approximate camera motions before and after stabilization based on the
reference frame (the first frame of the frame batch). The reference frame is considered since
the main objective of stabilization here is to minimize the camera motions to be able to
analyze the flow motions of gas emanation. Figure 7 demonstrates the video trajectory in
the x and y-axis for the first, second, and third scenarios.

In the first scenario, AVS mostly smoothened the camera motion but failed to minimize
them; on the other hand, OPC, L1-OP, and PC-RF were mostly able to reduce the effect of
camera motions. In addition, L1-OP showed a significant ability to remove small camera
motions while not being effective enough for larger motions. PC-RF demonstrated the
ability to minimize the motions significantly; however, the inaccurate frame registration
in few cases especially during sudden movements needs further consideration. In the
second scenario, OPC was not able to provide stable and significant results, but AVS,
L1-OP, and PC-RF were able to effectively perform the stabilization. For this case, L1-OP
and PC-RF presented significant results and minimized the camera motions which shows
their ability to stabilize thermal footages. The third scenario involves a larger amount of
shaking in the footage, as well as moving objects in the scene. In this scenario, PC-RF and
OPC demonstrated a significant ability to remove the motions, but L1-OP was not able to
provide referable results.

Quality Assessment

In this study, few metrics are defined to describe the performance of the stabilization
methods from different aspects: (a) Processing Time (PT), (b) Interframe Transformation
Fidelity (ITF), (c) Interframe Similarity Index (ISI), and (d) Average Speed (AvSpeed).
The analysis produced by these metrics can provide insight into the algorithms’ behavior
based on the scope of this study’s objectives.

The processing time is one of the metrics considered in this paper. The required
time for processing one frame can be an essential factor in a real-time process flow. Here,
the processing time for stabilizing a frame is measured to analyze the real-time capability
of the candidate methods. The results of this analysis are shown in Figure 8. Based on the
results, PC-RF has the highest processing time while the processing time of AVS, L1-OP,
and OPC is suitable for real-time applications.
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Figure 7. The figure shows the x and y global trajectory of the first, second, and third scenarios. The global trajectory
demonstrates the ability of stabilization algorithm to remove the camera’s motions. The first and second scenario involves
the camera’s motions and the third scenario involves the camera’s motion and moving objects in the background.
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Figure 8. The processing time for stabilizing one frame in seconds. The abbreviations of method
names are defined in Section 3.2 just for referencing simplification.

In addition to processing time, other metrics are defined to assess the performance
of the methods. The most common metric for evaluating the performance of video sta-
bilization techniques is Interframe Transformation Fidelity (ITF) [36,37] which is based
on Peak Signal to Noise Ratio (PSNR) measurement. In this study, PSNR calculates the
degree of deviation from the reference frame considered as optimal output by using Mean
Squared Error (MSE). The higher PSNR value represents higher system performance. ITF
and PSNR are shown respectively in Equations (3) and (4), where N and M are height and
width of the image frames, N f is the number of frames. Since the similarity of frames with
the reference frame can be assumed to be high in the lack of sudden and large camera
motions, in addition to the similarity factor, ITF can evaluate the resulted distortion in the
stabilization process. It is worth mentioning that ITF value of a series of repetitive image
frames would be infinity.

PSNR(Ik, Ire f ) = 10log

 2552NM

∑N
n=1 ∑M

m=1

[
Ik(n, m)− Ire f (n, m)

]2

, I(n, m) = [0, 255] (3)

ITF =
1

N f

N f

∑
k=2

PSNR(Ik, Ire f ), Ire f = I1 (4)

Interframe Similarity Index (ISI) is another metric used in this study which is simply
the average of Structural Similarity Index (SSIM). SSIM can be defined as the structural
similarity index between the reference frame and another frame in the footage, which
is explained in Equation (5). ISI shows the perceptual similarity of frames and the refer-
ence frame.

ISI =
1

N f

N f

∑
k=2

SSIM(Ik, Ire f ) (5)

Local motions are another area to investigate in the stabilization methods. The smooth-
ness of camera motions is another metric named as AvSpeed [37], which is considered in
this study, since large motions or sudden movements can create flows with high magnitude
disturbing the optical flow analysis required in the gas leak detection algorithm. To measure
this metric, the average speed of selected feature points are calculated using Equation (6),
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where Np is the number of feature points, and di(k) is the coordinate of ith feature point.
The low AvSpeed value shows more perceptual similarity in the consecutive frames.

AvSpeed =
1

Np(N f − 1)

Np

∑
i=1

N f−1

∑
k=1

∥∥∥ ˙di(k)
∥∥∥

2
, ˙di(k) = di(k + 1)− di(k) (6)

In Table 5, the metrics for all the candidate methods are calculated for all the scenarios.
For the first scenario, PC-RF showed the more reliable results; however, because of the few
frames with inaccurate registration as shown in Figure 7, the AvSpeed was higher than
the other methods. For the second scenario containing thermal image stream with low
camera motions, L1-OP and PC-RF both showed significant results. As in the first scenario,
in the third scenario, despite the existence of constant but smooth camera shaking and
moving objects in the background, PC-RF demonstrated much better results compared to
other methods. Finally, in the fourth scenario containing shaking motions causing motion
blurriness in some of the frames, OPC showed outstanding results compared to others;
however, PC-RF presented better perceptual similarity.

Table 5. The results of comparative analysis of candidate stabilization techniques. For each scenario, the best measurement
for each metric is indicated in bold. The method abbreviation is defined only for reference simplifying.

Metrics Original AVS L1-OP PC-RF OPC

Scenario #1

PSNR (min–max) 70.94–110.83 71.27–106.2 69.16–107.36 65.09–111.95 72.88–110.33

ITF 74.36 74.87 73.76 80.15 76.32

ISI 0.532 0.544 0.504 0.726 0.568

AvSpeed 0.1928 0.20 0.215 0.356 0.1526

Scenario #2

PSNR (min–max) 58.23–78.97 58.65–85.82 58.21–82.92 58.65–69.76 –

ITF 61.83 62.30 63.17 63.16 –

ISI 0.427 0.52 0.64 0.56 –

AvSpeed 1.559 1.05 0.565 0.41 –

Scenario #3

PSNR (min–max) 69.96–63.99 65.02–88.85 – 63.22–132.46 65.40–87.40

ITF 66.74 70.24 – 80.8 71.27

ISI 0.159 0.402 – 0.6 0.14

AvSpeed 1.06 0.5814 – 0.386 0.621

Scenario #4

PSNR (min–max) 58.43–68.5 63.46–71.56 59–69.65 59.46–91.82 62.24–248.9

ITF 64.47 66.72 64.56 68.63 81.91

ISI 0.1121 0.24 0.1220 0.2718 0.1281

AvSpeed 4.92 2.2356 1.6196 2.401 1.60

PSNR: higher value indicates higher system accuracy. ITF: the higher shows smoother camera motions (perfect stabilization results infinity
value. SSIM: higher value shows better performance. ISI: higher value shows higher similarity between frames. AvSpeed: the lower value
shows more perceptual similarity.

5.2. Evaluation of Gas Leak Detection

In this section, the algorithm for the gas leak detection and visually-enhancement
of gas emanation is evaluated using three sets of experiments that investigate the perfor-
mance of the algorithm and the whole system. First, the effectiveness and performance
of the algorithm are assessed by using the collected data from Experiment A explained
in Section 4.1 which is conducted in an isolated environment. The isolated environment
provides an opportunity to evaluate the algorithm without the effect of other environ-
mental parameters. The results of this experiment are shown in Figure 9. As shown in
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this figure, the algorithm successfully provided the flow map and detected the area with
high flow intensity. Moreover, Experiment B explained in Section 4.2, was employed to
investigate the algorithm’s performance in real scenarios. Figure 9 represents a sample
result that shows the algorithm successfully extracted the gas flow and detected the area
with the high gas intensity. Additionally, one of the algorithm’s parameters affecting the
results remarkably is the adopted threshold for filtering the probabilistic map. In Figure 10,
the results with respect to different values are demonstrated.

(a) A sample probabilistic map of the
Experiment A showing the region of interest

(b) The detected areas with the high flow
intensity for the Experiment A

(c) A sample probabilistic map of the
Experiment B showing the region of interest

(d) The detected areas with the high flow
intensity for the Experiment B

Figure 9. The results of applying the gas leak detection on the collected data from Experiment A
and B.

Figure 10. The probabilistic map’s threshold defined in the algorithm. The threshold should be
determined based on the collected data and the contained noises.
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5.3. Evaluation of Drone-Based Gas Leak Detection

In this section, the whole system is evaluated using the collected data from Experiment
C Scenario 2, which is explained in Section 4.3. As explained before, the system has
two main steps including stabilization and gas leak detection. For this section, PC-RF is
employed for the stabilization combined with the proposed gas leak detection to investigate
the system performance while deployed on a drone. In Figure 11, the results of the system
are presented and they show that the system was able to visualize the gas emanations and
determine the area with high gas flow intensity.

(a) The probability map showing the region of
interest and detected gas emanations

(b) The detected areas with the high
flow intensity

Figure 11. The results of applying the proposed method to the data collected in Experiment C
Scenario 2.

6. Conclusions

In recent years, the interest in the employment of thermal imaging systems for gas
leak detection and visually-enhancement of gas emanation has been raised significantly.
However, most of these studies focused more on the visually-enhancement of the gas
emanations and also they are not equipped to be used in an aerial platform. In this
study, a drone-enabled gas leak detection technique is proposed involving two steps: (a) a
video stabilization method and (b) a gas leak detection method based on the optical flow
analysis. In order to find the most suitable video stabilization technique for the defined
application, a comparative analysis is conducted to investigate the candidate methods
from different aspects. Finally, the proposed method and the whole system are evaluated
using three experiments: (a) an experiment in an isolated environment, (b) an experiment
in a real environment, and (c) an experiment using a drone. The results of applying
the proposed algorithm on the data collected in Experiments A and B showed that the
method successfully enhanced the visualization and detected the gas flow and the area
with the highest flow intensity. Moreover, the algorithm demonstrated a notable result
while processing the footage collected by a drone. In addition, the comparative analysis
of candidate stabilization techniques provided detailed insight into their abilities for the
targeted application.

For future work, we will work on using deep learning methods to detect and visualize
the gas flow. Moreover, we will conduct more experiments using drones for Methane gas
emission and gas leak detection in the oil and gas industry. In addition, we will investigate
the use of the stabilization method based on deep learning techniques to improve the
performance of the stabilization. Finally, we will work on developing a method to locate
the origin of the gas leak more effectively.
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