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Abstract: As research on quantum computers and quantum information transmission deepens,
the multi-particle and multi-mode quantum information transmission has been attracting increasing
attention. For scenarios where multi-parties transmit sequentially increasing qubits, we put forward
a novel (N + 1)-party cyclic remote state preparation (RSP) protocol among an arbitrary number
of players and a controller. Specifically, we employ a four-party scheme in the case of a cyclic
asymmetric remote state preparation scheme and demonstrate the feasibility of the scheme on the
IBM Quantum Experience platform. Furthermore, we present a general quantum channel expression
under different circulation directions based on the n-party. In addition, considering the impact of the
actual environment in the scheme, we discuss the feasibility of the scheme affected by different noises.

Keywords: controlled cyclic asymmetric; qubits sequentially increasing; IBM quantum experience;
bit-phase flip noise; decoherence rate; coefficient of the desired state

1. Introduction

During the past few years, quantum communication theory and technology have
been further extended. Quantum entanglement is a crucial resource in quantum infor-
mation processing tasks, and has been widely applied in various fields such as quantum
teleportation (QT), remote state preparation (RSP), quantum key distribution (QKD) and
quantum secret sharing (QSS). In 1982, Aspect successfully confirmed the phenomenon of
quantum entanglement through experiments [1]. In 1993, Bennett proposed the concept
of QT [2], which has great potential for protecting sensitive information and accelerating
classical computation. Then, Lo [3] first introduced remote state preparation (RSP) at
the beginning of the 21st century. In RSP [4–6], Alice can remotely prepare an arbitrary
single-qubit quantum state for Bob by using a classical bit communication and a shared
entangled state. Besides, Alice knows all the information of the single-qubit quantum state
to be prepared by Bob, and Alice does not have to hold the single-qubit quantum state.
Since then, the novel type of RSP has drawn considerable attention, and various related
schemes [7–11], like CRSP (controlled RSP) [12,13], CJRSP (controlled joint) [14] and CBRSP
(controlled bidirectional RSP), have been presented. In addition, with the development
of entanglement source preparation, the scheme of RSP has been expanded from single
qubit to multiple qubits [15]. In 2016, Chen et al. pointed out an efficient scheme for the
RSP of an arbitrary five-qubit Brown-type state [16]. Binayak and Ding introduced the joint
remote preparation of an arbitrary six-qubit cluster-type state [17,18]. In 2018, Wu and Fang
discussed the bidirectional and hybrid quantum information transmission schemes [19,20].
A JRSP scheme of the arbitrary eight-qubit cluster-type state was put forward in 2020 [21].
However, we note that almost all the protocols mentioned above are only considered in
one-way directional or bidirectional preparations. In fact, the information network is made
up of two or more nodes, that is, a large information system usually is composed by some
subsystems. Naturally, some cyclic RSP schemes [22,23] are investigated, information
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switching is not located in two-party system. In 2019, Li [24] et al. discussed the scheme of
the controlled cyclic quantum teleportation of an arbitrary two-qubit entangled state by
employing a ten-qubit entangled state as a quantum channel. Sang [25] et al. explored a
scheme of four-party cyclic RSP of an arbitrary single-qubit state by employing a ten-qubit
maximally entangled state as the quantum channel. In quantum communication, the
remote preparation of multi-particle quantum states between multi-party is inevitable. So
we put forward the cyclic asymmetric remote preparation scheme with qubits sequentially
increasing, which is a novel transmission mode of cyclic RSP. Furthermore, we generalize
the scheme to send multiple qubits quantum information among multiple players in an
asymmetric manner.

The influence of decoherence caused by the actual environment has always been
the major factor affecting the effect of quantum state transmission; it is meaningful to
investigate the cyclic controlled RSP in a noisy environment. In recent years, some
RSP schemes that operated in noisy environments have been proposed [26–29]. In 2018,
Sun [30] put forward an asymmetrically controlled two-way joint RSP in a noisy environ-
ment for the preparation of single and three equatorial states. The deterministic hierarchical
remote state preparation of a two-qubit entangled state employing a Brown state in a noisy
environment was proposed in 2020 [31].

Since 2016, IBM Quantum Experience has allowed players to design quantum circuits
employing an interactive graphical user interface, test and simulate these circuits on classic
computers and actual quantum processors. The actual relevance of an optimized scheme
lies in the experimental realization of the scheme. The different kinds of theoretical pro-
tocols for quantum communication and computation [32–34] have already been verified
in the IBM quantum experience. IBM Quantum Experience has been utilized to perform
many practical experiments on quantum chips, including quantum simulation, the devel-
opment of quantum algorithms [35], testing quantum information theory tasks, quantum
cryptography, quantum error correction [36], quantum applications [37], and so forth.

In this paper, we put forward a novel (N + 1)-party cyclic RSP protocol for preparing
sequentially increasing qubits among arbitrary number of players with a controller. To
be specific, the i-th party prepare an i-qubit state for the (i + 1)-th party in a loop of N(1,
2, ... i, i + 1, ... n)-party, and the n-th party prepares the n-qubit state for the first party.
Moreover, we demonstrate the special case of our scheme on the IBM quantum computer
by designing appropriate quantum circuits using single-qubit and two-qubit quantum
gates. For verifying the practicality of our scheme, we also discuss the variation of the
fidelity of the scheme affected by different noises.

This paper is structured as follows—in Section 2, we specifically introduce a controlled
cyclic asymmetric RSP scheme in which Alice remotely prepares an arbitrary single-qubit
state for Bob, Bob prepares an arbitrary two-qubit state to Charlie, and Charlie prepares an
arbitrary three-qubit state for Alice. Then, we construct the quantum circuit simulation of
this scheme in IBM’s quantum simulator and analyse the mean probability of the output
results. Furthermore, we generalize the scheme to (N + 1)-party controlled cyclic RSP
protocol for sequentially increasing qubits in Section 3. In Section 4, we analyze and
compare the fidelity of output state in four noisy environments (depolarization noise,
amplitude damping noise, phase damping noise, and bit-phase flip noise). Finally, we give
a brief comparison and conclusion of the scheme in Section 5.

2. Four-Party Controlled Cyclic Asymmetrical RSP Protocol of Sequentially Increasing
Qubits States

In this section, we aim at a situation where the amount of information transmitted
between multiple participants is sequentially increasing. Suppose that there are four
participants, employing ten quantum entangled states as quantum channels. Alice prepares
any single-qubit state |ξA〉 = a0eiθ0 |0〉+a1eiθ1 |1〉 for Bob, Bob prepares any two-qubit state
|ξB〉 = b0eiφ0 |00〉+ b1eiφ1 |11〉 for Charlie, Charlie prepares any three-qubit state |ξC〉 =
c0eiγ0 |000〉+ c1eiγ1 |111〉 for Alice, and David is the controller, where a0, a1, b0, b1, c0, c1 ∈ R,
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a2
0 + a2

1 = 1, b2
0 + b2

1 = 1, c2
0 + c2

1 = 1, θ0, θ1, φ0, φ1, γ0, γ1 ∈ [0, 2π]. The scenario of the
scheme is shown in Figure 1.

 

Figure 1. The schematic of the four-party cyclic asymmetric remote state preparation (RSP) protocol.
The black arrow points out the direction of the communications and the dashed line represents the
control information.

The quantum channel linking the Alice, Bob, Charlie and David has the form

|ϕ〉12345678910
= 1

4 [(|0000〉+ |1111〉)1234(|000〉+ |111〉)567(|00〉+ |11〉)89|0〉10
+(|0011〉−|1100〉)1234(|011〉 − |100〉)567(|01〉 − |10〉)89|1〉10],

(1)

where Alice holds qubits (2,3,4,9), Bob holds qubits (5,8), Charlie holds qubits (1,6,7), and
David holds qubit 10.

2.1. Preparation of Quantum Channel

The quantum channel in the simplest case is a ten-qubits entangled state shared by
the sender Alice, Bob, Charlie and the receiver David, which can be realized by Hadamard
(H), Controlled-NOT (CNOT) operations and Pauli X, Y, Z gates in “IBM qasm Simulator”.

Firstly, the product state of ten-qubit states initialized to |0〉 is used as the input state
|ϕ0〉 in the quantum circuit, which can be expressed as:

|ϕ0〉 = |0〉1 ⊗ |0〉2 · · · ⊗ |0〉10 (2)

Then, performing H gates on qubits (1, 5, 8, 10), and then the input state |ϕ0〉 is
converted to |ϕ1〉 as follows:

|ϕ1〉 = (|0000〉+ |1000〉)1234 ⊗ (|000〉+ |100〉)567 ⊗ (|00〉+ |10〉)89(|0〉+ |1〉)10. (3)

Several CNOT operations are performed on the following qubit pairs (1,2), (1,3), (1,4),
(5,6), (5,7), (8,9). When qubit 10 is |1〉, qubits 3, 4, 6, 7, and 9 are performed Pauli X gate
operation, and qubits 1, 5, and 8 are performed Pauli Z gate operation. Afterwards, the
quantum channel is reconstructed as Formula (1).

Then, Alice, Bob and Charlie respectively performing CNOT operation on qubits
pairs (9, a

′
), (5, b

′′
), (1, c

′′′
), qubits 9, 5, 1 control auxiliary qubits a

′
and b

′′
, c
′′′

. We get the
thirteen-qubits target channel and it can be described as follows:∣∣∣ϕ′〉

12345678910a′ b′′ c′′′

= 1
4 [(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(|000〉|0〉b′′ + |111〉|1〉b′′ )567

(|00〉|0〉a′ + |11〉|1〉a′ )89|0〉10+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234
(|011〉|0〉b′′ − |100〉|1〉b′′ )567|01〉|1〉a′ − |10〉|0〉a′ )89|1〉10].

(4)

The process and the result of the construction of the target channel in IBM qasm
Simulator is illustrated by Figure 2.
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(a)
 

(b)

Figure 2. The construction of the target channel. (a) Quantum circuit illustrating the construction of target channel. (b) The
histogram shows theoretical and experimental results of the quantum state’s mean probability distribution. The x-axis of
this histogram is arranged in the order of (c

′′′
, b
′′
, · · · 2, 1) from the bottom to the top, showing the average probability and

percentage error of each state in the target channel of 13 qubits.

Theoretically, the distribution probability of each quantum state in the target channel
is 0.0625 in ideal case. Based on the Figure 2b, we calculate that the standard deviation of
the average probability distribution is 0.002. The diversity in mean probability and ideal
case is due to the decoherence effects and gate errors.

2.2. Description of Four-Party Controlled Cyclic Asymmetrical RSP Protocol

In this scheme, the four participants including three players and one controller, and
each of the players acts both as a sender and as a receiver. From the schematic given in
Figure 3, the procedure of the four-party controlled cyclic asymmetrical RSP protocol is
detailed as follows:

Figure 3. Diagram of four-party controlled cyclic asymmetrical RSP protocol, where SM is short for
single-qubit measurement.

Step 1: Alice selects an appropriate measurement basis according to the known
quantum state to perform a single qubit measurement on his qubits. After completing
the measurement operations, Alice announces his outcomes to the Bob via the classical
channels.

Alice performs a single qubit measurement on qubit 9 based on the following basis:{
|Φ+〉9 = (a0|0〉+ a1|1〉)9
|Φ−〉9 = (a1|0〉 − a0|1〉)9

(5)
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The measurement result has two possibilities, and the remaining qubits collapse with
a probability of 0.5 to a new state as follows:

9

〈
Φ±

∣∣∣ ϕ
′
〉

123456789,10,a′ b′′ c′′′



= 1
4 [(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(|000〉|0〉b′′

+|111〉|1〉b′′ )567(a0|0〉8|0〉a′ + a1|1〉8|1〉a′ )|0〉10
+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234(|011〉|0〉b′′
−|100〉|1〉b′′ )567(a1|0〉8|1〉a′ − a0|1〉8|0〉a′ )|1〉10]

= 1
4 [(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(|000〉|0〉b′′

+|111〉|1〉b′′ )567(a1|0〉8|0〉a′ − a0|1〉8|1〉a′ )|0〉10
+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234(|011〉|0〉b′′
−|100〉|1〉b′′ )567(−a0|0〉8|1〉a′ − a1|1〉8|0〉a′ )|1〉10].

(6)

Alice performs a single qubit measurement on an auxiliary qubit a
′
.

For 9〈Φ+| ϕ′
〉

123456789,10,a′ b′′ c′′′
, the basis are

{
|Ψ+〉a′ =

1√
2
(e−iθ0 |0〉+ e−iθ1 |1〉)a′

|Ψ−〉a′ =
1√
2
(e−iθ0 |0〉 − e−iθ1 |1〉)a′ .

(7)

The remaining qubits collapse with a probability of 0.5 to a new state as follows:

a′
〈
Ψ±
∣∣9〈Φ+

∣∣∣ ϕ
′〉

123456789,10,a′ b′′ c′′′



= 1
4
√

2
[(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(|000〉|0〉b′′

+|111〉|0000〉b′′ )567(a0eiθ0 |0〉8 + a1eiθ1 |1〉8)|0〉10
+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234(|011〉|0〉b′′
−|100〉|1〉b′′ )567(a1eiθ1 |0〉8 − a0eiθ0 |1〉8)|1〉10]

= 1
4
√

2
[(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(|000〉|0〉b′′

+|111〉|1〉b′′ )567(a0eiθ0 |0〉8 − a1eiθ1 |1〉8)|0〉10
+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234(|011〉|0〉b′′
−|100〉|1〉b′′ )567(−a1eiθ1 |0〉8 − a0eiθ0 |1〉8)|1〉10].

(8)

For 9

〈
Φ−

∣∣∣ ϕ
′
〉

12345678910a′ b′′ c′′′
, the basis are

{
|Ω+〉a′ =

1√
2
(e−iθ1 |0〉+ e−iθ0 |1〉)a′

|Ω−〉a′ =
1√
2
(e−iθ1 |0〉 − e−iθ0 |1〉)a′ .

(9)

The remaining qubits collapse with a probability of 0.5 to a new state as follows:

a′ 〈Ω
±|9
〈

Φ−
∣∣∣ ϕ

′
〉

123456789,10,a′ b′′ c′′′

= 1
4
√

2
[(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(|000〉|0〉b′′

+|111〉|1〉b′′ )567(a1eiθ1 |0〉8 − a0eiθ0 |1〉8)|0〉10
+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234(|011〉|0〉b′′
−|100〉|1〉b′′ )567(−a0eiθ0 |0〉8 − a1eiθ1 |1〉8)|1〉10]

= 1
4
√

2
[(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(|000〉|0〉b′′

+|111〉|1〉b′′ )567(a1eiθ1 |0〉8 + a0eiθ0 |1〉8)|1〉10
+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234(|011〉|0〉b′′
−|100〉|1〉b′′ )567(a0eiθ0 |0〉8 − a1eiθ1 |1〉8)|1〉10].

(10)

Step 2: Bob selects an appropriate measurement basis according to the known quan-
tum state to perform a single qubit measurement on his qubits. After completing the
measurement, Bob announces his outcomes to the Charlie via the classical channels.
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Bob performs a single qubit measurement on qubit 5 based on the following basis:{
|Φ+〉5 = (b0|0〉+ b1|1〉)5
|Φ−〉5 = (b1|0〉 − b0|1〉)5.

(11)

The measurement result has eight possibilities, and the remaining qubits collapse with
a probability of 0.125 to a new state 5〈Φ±|a′ 〈Ψ

±|9
〈

Φ+
∣∣∣ ϕ

′
〉

123456789,10,a′ b′′ c′′′

5〈Φ±|a′ 〈Ω
±|9
〈

Φ−
∣∣∣ ϕ

′
〉

123456789,10,a′ b′′ c′′′
.

Then Bob performs a single qubit measurement on an auxiliary qubit b
′′
.

For 5〈Φ+|a′ 〈Ψ
±|9
〈

Φ+
∣∣∣ ϕ

′
〉

123456789,10,a′ b′′ c′′′
5〈Φ+|a′ 〈Ω

±|9
〈

Φ−
∣∣∣ ϕ

′
〉

123456789,10,a′ b′′ c′′′
,

the basis are {
|Ψ+〉b′′ =

1√
2
(e−iφ0 |0〉+ e−iφ1 |1〉)

b′′

|Ψ−〉b′′ =
1√
2
(e−iφ0 |0〉 − e−iφ1 |1〉)

b′′
.

(12)

If Bob’s single-qubit projection measurement result is |Φ+〉5, |Ψ+〉b′′ , the remaining
qubits collapse with a probability of 0.25 to a new state as follows:

b′′ 〈Ψ
+|5〈Φ+|a′ 〈Ψ

±|9
〈

Φ+
∣∣∣ ϕ

′
〉

123456789,10,a′ b′′ c′′′

= 1
8 [(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(b0eiφ0 |00〉67 + b1eiφ1 |11〉67)

(a0eiθ0 |0〉8 + a1eiθ1 |1〉8)|0〉10+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234
(b0eiφ0 |11〉67 − b1eiφ1 |00〉67)(a1eiθ1 |0〉8 − a0eiθ0 |1〉8)|1〉10]

= 1
8 [(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(b0eiφ0 |00〉67 + b1eiφ1 |11〉67)

(a0eiθ0 |0〉8 − a1eiθ1 |1〉8)|0〉10+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234
(b0eiφ0 |11〉67 − b1eiφ1 |00〉67)(−a1eiθ1 |0〉8 − a0eiθ0 |1〉8)|1〉10]

(13)

b′′〈Ψ+|5〈Φ+|a′ 〈Ω
±|9
〈

Φ−
∣∣∣ ϕ

′
〉

123456789,10,a′ b′′ c′′′

= 1
8 [(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(b0eiφ0 |00〉67 + b1eiφ1 |11〉67)

(a1eiθ1 |0〉8 − a0eiθ0 |1〉8)|0〉10+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234
(b0eiφ0 |11〉67 − b1eiφ1 |00〉67)(−a0eiθ0 |0〉8 − a1eiθ1 |1〉8)|1〉10]

= 1
8 [(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(b0eiφ0 |00〉67 + b1eiφ1 |11〉67)

(a1eiθ1 |0〉8 + a0eiθ0 |1〉8)|0〉10+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234
(b0eiφ0 |11〉67 − b1eiφ1 |00〉67)(a0eiθ0 |0〉8 − a1eiθ1 |1〉8)|1〉10].

(14)

For 5〈Φ−|a′ 〈Ψ
±|9
〈

Φ+
∣∣∣ ϕ

′
〉

123456789,10,a′ b′′ c′′′
5〈Φ−|a′ 〈Ω

±|9
〈

Φ−
∣∣∣ ϕ

′
〉

123456789,10,a′ b′′ c′′′

the basis are {
|Ω+〉b′′ =

1√
2
(e−iφ1 |0〉+ e−iφ0 |1〉)a′

|Ω−〉b′′ =
1√
2
(e−iφ1 |0〉 − e−iφ0 |1〉)a′ .

(15)

If Bob’s single-qubit projection measurement result is |Ω+>b′′ |Φ
−〉5 , the remaining

qubits collapse with a probability of 0.25 to a new state as follows:

b′′ 〈Ω
+|5〈Φ−|a′ 〈Ψ

±|9
〈

Φ+
∣∣∣ ϕ

′
〉

123456789,10,a′ b′′ c′′′

= 1
8 [(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(b1eiφ1 |00〉67 − b0eiφ0 |11〉67)

(a0eiθ0 |0〉8 + a1eiθ1 |1〉8)|0〉10+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234
(b1eiφ1 |11〉67 + b0eiφ0 |00〉67)(a1eiθ1 |0〉8 − a0eiθ0 |1〉8)|1〉10]
= 1

8 [(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(b1eiφ1 |00〉67 − b0eiφ0 |11〉67)

(a0eiθ0 |0〉8 − a1eiθ1 |1〉8)|0〉10+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234
(b1eiφ1 |11〉67 + b0eiφ0 |00〉67)(−a1eiθ1 |0〉8 − a0eiθ0 |1〉8)|1〉10]

(16)
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b′′ 〈Ω
+|5〈Φ−|a′ 〈Ω

±|9
〈

Φ−
∣∣∣ ϕ

′
〉

123456789,10,a′ b′′ c′′′

= 1
8 [(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(b1eiφ1 |00〉67 − b0eiφ0 |11〉67)

(a1eiθ1 |0〉8 − a0eiθ0 |1〉8)|0〉10+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234
(b1eiφ1 |00〉67 + b0eiφ0 |11〉67)(−a0eiθ0 |0〉8 − a1eiθ1 |1〉8)|1〉10]

= 1
8 [(|0000〉|0〉c′′′ + |1111〉|1〉c′′′ )1234(b1eiφ1 |00〉67 − b0eiφ0 |11〉67)

(a1eiθ1 |0〉8 + a0eiθ0 |1〉8)|0〉10+(|0011〉|0〉c′′′−|1100〉|1〉c′′′ )1234
(b1eiφ1 |00〉67 + b0eiφ0 |11〉67)(a0eiθ0 |0〉8 − a1eiθ1 |1〉8)|1〉10].

(17)

Step 3: Charlie selects an appropriate measurement basis according to the known
quantum state to perform a single qubit measurement on his qubits. After completing the
measurement, Charlie announces his outcomes to the Alice via the classical channels.

Charlie performs a single qubit measurement on qubit 1 based on the following basis:{
|Φ+〉1 = (c0|0〉+ c1|1〉)1
|Φ−〉1 = (c1|0〉 − c0|1〉)1.

(18)

Then Charlie performs a single qubit measurement on an auxiliary qubit c
′′′

.
If Charlie performs a single qubit measurement on qubit 1 based on the |Φ+〉1, the

basis are {
|Ψ+〉c′′′ =

1√
2
(e−iγ0 |0〉+ e−iγ1 |1〉)a′

|Ψ−〉c′′′ =
1√
2
(e−iγ0 |0〉 − e−iγ1 |1〉)a′ .

(19)

If Charlie performs a single qubit measurement on qubit 1 based on the |Φ−〉1, the
basis are {

|Ω+〉c′′′ =
1√
2
(e−iγ1 |0〉+ e−iγ0 |1〉)a′

|Ω−〉c′′′ =
1√
2
(e−iγ1 |0〉 − e−iγ0 |1〉)a′ .

(20)

Step 4: David carries out a single qubit measurement on qubit 10 based on the
following basis: |0〉, |1〉.

With the help of the controller David, the senders Alice, Bob and Charlie can exchange
their desired quantum state at the same time. The final result of the controlling party
David measuring particle 10 makes the participants Alice, Bob, and Charlie must carry out
corresponding unitary transformations, respectively, to obtain all the information of the
quantum state. The controller ensures the security of the quantum communication scheme
and provides robustness against complex eavesdropping attacks.

Step 5: The unitary transformations
If the controller, David’s, basis is |0〉, then the qubits 2,3,4,6,7 and 8 will collapse

into the following product state |ϕ〉234678 = (c0eiγ0 |000〉 + c1eiγ1 |111〉) ⊗ (b0eiφ0 |00〉 +
b1eiφ1 |11〉)⊗ (a0eiθ0 |0〉+a1eiθ1 |1〉). Alice, Bob and Charlie carry out a corresponding unitary
operation I234 ⊗ I67 ⊗ I8 to obtain the desired quantum state respectively.

If the controller David’s basis is |1〉, then the qubits 2,3,4,6,7 and 8 will collapse into the
following product state |ϕ〉234678 = (c0eiγ0 |011〉 − c1eiγ1 |100〉)⊗ (b0eiφ0 |11〉 − b1eiφ1 |00〉)⊗
(a1eiθ1 |0〉 − a0eiθ0 |1〉). Alice, Bob and Charlie carry out a corresponding unitary operation
σ2

z ⊗ σ34
x ⊗ iσ6

y ⊗ σ7
x ⊗−iσ8

y to obtain the desired quantum state, respectively.
For the other 127 measurement results, Alice, Bob and Charlie can perform an appro-

priate unitary operation on their qubit according to the single-qubit projection measurement
result, and then reconstruct the desired quantum state for 100%. Eight situations of the
possible outcomes of the measurement results and corresponding unitary operations are
illustrated in the following Table 1.
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Table 1. Joint collapsed states of some cases and reconstructed unitary transformation.

SPM1(A) SPM1(B) SPM1(C) SPM2(A) SPM2(B) SPM2(C) SPM(D)
Transformations

Alice Bob Charlie

∣∣Φ+
〉

9

∣∣Φ+
〉

5

∣∣Φ+
〉

1

∣∣Ψ+
〉

a′
∣∣Ψ+

〉
b′′

∣∣Ψ+
〉

c′′′
|0〉10 I234 I8 I67

|1〉10 σ2
z ⊗ σ34

x −iσ8
y iσ6

y ⊗ σ7
x∣∣Φ+

〉
9

∣∣Φ+
〉

5

∣∣Φ+
〉

1

∣∣Ψ−〉a′
∣∣Ψ−〉b′′

∣∣Ψ−〉c′′′
|0〉10 σ234

z σ8
z σ67

z

|1〉10 I2 ⊗ σ34
x −σ8

x σ67
x∣∣Φ−〉9

∣∣Φ−〉5

∣∣Φ−〉1

∣∣Ψ+
〉

a′
∣∣Ψ+

〉
b′′

∣∣Ψ+
〉

c′′′
|0〉10 −iσ2

y ⊗ σ34
x −iσ8

y −iσ6
y ⊗ σ7

x

|1〉10 σ2
x ⊗ I34 −I8 I67

∣∣Φ−〉9

∣∣Φ−〉5

∣∣Φ−〉1

∣∣Ψ−〉a′
∣∣Ψ−〉b′′

∣∣Ψ−〉c′′′
|0〉10 σ234

x σ8
x σ67

x

|1〉10 σ2
x σ2

z ⊗ I34 σ8
z σ67

z .

2.3. Experimental Realization in IBM QE

The implementation of a particular protocol is made solely in view of the number of
qubits the device supports. It provides free access through a cloud-based web-interface
called IBM Quantum Experience (IBM QE), which allows researchers to design, test and run
their experiments. Based on the high level of control that can be reached on the IBM digital
quantum computer, we perform a proof-of-principle experimental realization of the four-party
controlled asymmetric RSP scheme in IBM quantum computer. Randomness intrinsic in
quantum mechanics is shown with the help of measuring an equal super position state in the
computational basis for single run. The experiment is repeated for a different number of shots
in the device to get the probability of obtaining each output state accurately.

The single-qubit quantum gates like Identity gate(I), Pauli gates (X, Y, Z), Hardman
gate (H), and phase gates (S, S†, T, T†) are available in the IBM quantum experience toolbox.
These gates can be inserted anywhere in the circuit utilizing a graphical user interface
which allows click, drag, and drop method.

In the Four-party controlled cyclic asymmetrical RSP protocol of sequentially increas-
ing qubits states, we assume that the measurement basis are |Φ+〉9, |Φ+〉5, |Φ+〉1, |Ψ+〉a′ ,
|Ψ+〉b′′ , |Ψ

+〉c′′′ , and the coefficient of measurement basis is a0, a1, b0, b1, c0, c1 = 1√
2
. Ow-

ing to the q-sphere simulation is only available for circuits using less than 6 qubits, we
suppose that the phase coefficient of measurement basis is θ0, θ1, φ0, φ1, γ0, γ1 = 0. We
implement controlled Z gate on qubits 2, 6, and 8, and controlled X gate on qubits 3, 4, 6, 7,
8 to achieve the above scheme. The circuit diagram constructed is shown in Figure 4:

Figure 4. Quantum circuit illustrating four-party controlled cyclic asymmetrical RSP protocol.

The output state of the four-party controlled cyclic asymmetrical RSP protocol can
be obtained by performing a measurement operator at the end of the lines, which in turn
gives the average probability of each output state.

From Figure 5, it shows the state of qubits 1,5,9,10,11,12,13 are |0〉. In the ideal situation,
the mean probabilities for the output state of qubits 2, 3, 4, 6, 7, 8 are 0.125, the output state
is |ϕ〉234678 = 1

2
√

2
(|000〉+ |111〉)⊗ (|00〉+ |11〉)⊗ (|0〉+|1〉), and the result after running

ten times in Jupyter Notebook (Figure 5b) is more stable than the result after running once
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in the ibmq_qsam_simulator (Figure 5a). We successfully implement quantum circuit in
the IBM quantum computer to realize the cyclic asymmetric RSP scheme.

(a) (b)

Figure 5. Histogram of output results. (a) Histogram of output results after running once in the
’ibmq_qasm_simulator’ quantum processor. The x-axis of this histogram is arranged in the order
of (8, · · · 2, 1) from the bottom to the top. (b) Histogram of output results after running ten times in
Jupyter Notebook. The x-axis of this histogram is arranged in the order of (c

′′′
, b
′′
, · · · 2, 1) from the

bottom to the top.

In Table 2, we have shown the outcome of 10 runs for the output state each run having
8192 shots. According the average value and standard deviation, we obtain the average
error between the ideal results and the experimental results is 0.004. The discrepancy
arises from the finite coherence time of the qubits, the implementation of the gates and the
process of reading out the qubits.

Table 2. Data analysis of the output state, where A is short for the average value, S is for standard deviation.

Runs |000000〉234678 |000001〉234678 |000110〉234678 |000111〉234678 |111000〉234678 |111001〉234678 |111110〉234678 |111111〉234678

1 0.125 0.117 0.126 0.118 0.118 0.138 0.130 0.128

2 0.132 0.125 0.122 0.121 0.129 0.131 0.119 0.121

3 0.120 0.128 0.124 0.127 0.129 0.118 0.126 0.127

4 0.125 0.123 0.130 0.127 0.123 0.127 0.120 0,125

5 0.132 0.123 0.129 0.122 0.124 0.118 0.125 0.127

6 0.128 0.129 0.122 0.125 0.124 0.122 0.129 0.121

7 0.124 0.126 0.124 0.129 0.122 0.119 0.132 0.123

8 0.121 0.121 0.123 0.130 0.127 0.126 0.124 0.127

9 0.120 0.131 0.122 0.129 0.121 0.125 0.120 0.132

10 0.123 0.130 0.126 0.125 0.125 0.124 0.124 0.124

A 0.125 0.1253 0.1248 0.1253 0.1242 0.1248 0.1249 0.1255

S 0.0044 0.0044 0.0029 0.0039 0.0035 0.0063 0.0045 0.0039

3. Multi-Party Controlled Cyclic Asymmetrical RSP Protocol of Sequentially
Increasing Qubits States

The controlled cyclic asymmetrical RSP protocol of sequentially increasing qubits
states can be extended to multiparty scenario easily. Suppose there are n players Alice1,
Alice2, ... and Alicen, and controller Charlie. Alicei can prepare an i-qubit state to his neigh-
bor Alicei+1 under the control of Charlie. The entangled channel share among participants

is
∣∣∣∣ϕ( n

∑
i=1

(i + 1) + 1)
〉

.
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∣∣∣∣ϕ( n
∑

i=1
(i + 1) + 1)

〉
= 1√

2
[(|0 · · · 0〉+ |1 · · · 1〉)A1

n ,A1
1,··· ,An

1
⊗ (|0 · · · 0〉+ |1 · · · 1〉)A1

n−1,A2
n ,··· ,An

n
· · · ⊗ (|0 · · · 0〉

+|1 · · · 1〉)A1
i ,A2

i+1,···Ai+1
i+1
· · · ⊗ (|000〉+ |111〉)A1

2,A2
3,A3

3
⊗ (|00〉+ |11〉)An+1

1 ,A2
2
⊗ |0〉

(
n
∑

i=1
(i+1)+1)

+(|0 · · · 1〉 − |1 · · · 0〉)A1
n ,A1

1,··· ,An
1
⊗ (|0 · · · 1〉 − |1 · · · 0〉)A1

n−1,A2
n ,··· ,An

n
· · · ⊗ (|0 · · · 1〉

−|1 · · · 0〉)A1
i ,A2

i+1,···Ai+1
i+1
· · · ⊗ (|011〉 − |100〉)A1

2,A2
3,A3

3
⊗ (|01〉 − |10〉)An+1

1 ,A2
2
⊗ |1〉

(
n
∑

i=1
(i+1)+1)

],

(21)

where An
1 represents the nth qubit owned by Alice1, An

n represents the nth qubit owned by
Alicen, and Ai

i+1 represents the i-th qubit owned by Alicei+1 , and i ∈ {1, 2, · · · , n}. Charlie

holds control qubit labeled by
n
∑

i=1
(i + 1) + 1. For example, if n = 3, the entangled channel

shared should have the form as Equation (1).
If we want to change the direction of the controlled cyclic asymmetrical RSP protocol,

we need to change the distribution of qubits, and the quantum channel will be changed to
the following expression.∣∣∣∣ϕ( n

∑
i=1

(i + 1) + 1)
〉

= 1√
2
[(|0 · · · 0〉+ |1 · · · 1〉)A1

2,A1
1,··· ,An

1
⊗ (|0 · · · 0〉+ |1 · · · 1〉)A1

3,A2
2,···An

2
· · · ⊗ (|0 · · · 0〉

+|1 · · · 1〉)A1
i+1,A2

i ,···Ai+1
i
· · · ⊗ (|000〉+ |111〉)A1

n ,A2
n−1,A3

n−1
⊗ (|00〉+ |11〉)An+1

1 ,A2
n

⊗|0〉
(

n
∑

i=1
(i+1)+1)

+(|0 · · · 1〉 − |1 · · · 0〉)A1
2,A1

1,··· ,An
1
⊗ (|0 · · · 1〉 − |1 · · · 0〉)A1

3,A2
2,···An

2

· · · ⊗ (|0 · · · 1〉 − |1 · · · 0〉)A1
i+1,A2

i ,···Ai+1
i
· · · ⊗ (|011〉 − |100〉)A1

n ,A2
n−1,A3

n−1
⊗ (|01〉

−|10〉)An+1
1 ,A2

n
⊗ |1〉

(
n
∑

i=1
(i+1)+1)

],

(22)

where A1
2 represents the 1th qubit owned by Alice2, Ai+1

i represents the (i + 1)th qubit

owned by Alicei, Charlie holds control qubit labeled by
n
∑

i=1
(i + 1) + 1. Specifically,

there is (

∣∣∣∣∣∣0 · · · 0︸ ︷︷ ︸
n+1

〉
+

∣∣∣∣∣∣1 · · · 1︸ ︷︷ ︸
n+1

〉
)A1

2,A1
1,··· ,An

1
. When n is even, there is (

∣∣∣∣∣∣∣0 · · ·︸︷︷︸
[ n+1

2 ]

· · · 1︸︷︷︸
[ n+1

2 ]+1

〉
−

∣∣∣∣∣∣∣1 · · ·︸︷︷︸
[ n+1

2 ]

· · · 0︸︷︷︸
[ n+1

2 ]+1

〉
)A1

2,A1
1,··· ,An

1
. When n is odd, there is (

∣∣∣∣∣∣∣0 · · ·︸︷︷︸
n+1

2

· · · 1︸︷︷︸
n+1

2

〉
−

∣∣∣∣∣∣∣1 · · ·︸︷︷︸
n+1

2

· · · 0︸︷︷︸
n+1

2

〉
)A1

2,A1
1,··· ,An

1
.

Available online: (accessed on 15 March 2012)

4. Four-Party Controlled Cyclic Asymmetrical RSP Protocol in Noisy Environments

In this section, we discuss our scheme in four noisy environments, including amplitude-
damping, phase-damping noise, bit-flip noise, and phase-flip noise.

The content shared by the participants in advance is constructed by an organization
called the QDC (Qubits Distribution Center). After preparing the quantum channel, QDC
allocates the qubits A1, A2, A3, A4 to Alice, the qubits B1, B2 to Bob, and sends the qubits
C1, C2, C3 to Charlie, sends the qubits D1 to David. If the quantum channel is in an ideal
environment without noise influence, it is a pure state, and its density matrix can be ex-
pressed as ρ = |ζ〉〈ζ|. In practical applications, when affected by a noisy environment [38],
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the pure state may be converted to a mixed state. The corresponding density matrix can be
written as follows:

Λq(ρ) = ∑
m
(Eq

j )C1
(Eq

j )A1
(Eq

j )A2
(Eq

j )A3
(Eq

j )B1
(Eq

j )C2
(Eq

j )C3
(Eq

j )B2

× (Eq
j )A4(Eq

j )D1 ρ(Eq
j )

†
C1
(Eq

j )
†
A1
(Eq

j )
†
A2
(Eq

j )
†
A3
(Eq

j )
†
B1
(Eq

j )
†
C2

× (Eq
j )

†
C3
(Eq

j )
†
B2
(Eq

j )
†
A4
(Eq

j )
†
D1

,

(23)

where j is a label, and different noise channels have different values; the superscript
indicates that the operator E acts on different noise environment and q ∈ {D, A, P, W, B, S}.
If q = D, for depolarized noise, then j = 0, 1, 2, 3; if q = A, for amplitude damping noise,
then j = 0, 1; if q = P, for phase damping noise, then j = 0, 1 ; if q = S, for bit-phase flip
noise, then j = 0, 1.

For reconstructing the desired state, three participants and the controller have to
perform single-qubit measurements based on appropriate measurement bases.The desired
states were then reconstructed via unitary transformations. If the seven measurement bases
are |Φ+〉9 , |Ψ+〉a′ , |Φ+〉5 , |Ψ+〉b′′ , |Φ+〉1 , |Ψ+〉c′′′ , |0〉10 , then the corresponding unitary
transformations would be IA2 ⊗ IA3 ⊗ IA4 ⊗ IB2 ⊗ IB3 ⊗ IC2 to recover the desired states.
We obtain the reconstructed desired state in an ideal environment as follows,

|ζ〉=


[
c0eiγ0 |000〉+ c1eiγ1 |111〉

]
A1 A2 A3

⊗
[
b0eiφ0 |00〉+ b1eiφ1 |11〉

]
C2C3

⊗
[
a0eiθ0 |0〉+ a1eiθ1 |1〉

]
B2
[|0〉]D1

+
[
c0eiγ0 |011〉 − c1eiγ1 |100〉

]
A1 A2 A3

⊗
[
b0eiφ0 |11〉 − b1eiφ1 |00〉

]
C2C3

⊗
[
a1eiθ1 |0〉 − a0eiθ0 |1〉

]
B2
[|1〉]D1

.

(24)

For any two quantum states, including pure state and mixed state, the fidelity is

F(ρ, σ) = Tr
√

ρ
1
2 σρ

1
2 , which is defined as a formula composed of density operators in

two states. Then the fidelity between two pure states |ψ〉 and |ϕ〉 is the modulus of their
inner product, which is F=|〈ψ | ϕ〉|. As in this article, when the ideal output state is a
pure state and the observed output state is a mixed state, the fidelity formula defined
by the original fidelity is simplified to F = 〈ζ|ρout|ζ〉. When the two states are mixed
state, the density matrix can be calculated separately employing the universal formula
F(ρ, σ) = Tr(ρσ) +

√
1− Tr(ρ2)

√
1− Tr(σ2).

4.1. Depolarized Noise

For a single qubit, supposing that the qubit is depolarized with probability p and
remains unchanged with probability 1-p. The effect of the depolarization noise on the
Bloch sphere is the entire sphere shrinks uniformly as a function of p. Then the state of
the quantum system in depolarized noise is ε(ρ) = pI

2 + (1− p)ρ , and supposing there is
I
2 = ρ+XρX+YρY+ZρZ

4 , and then get ε(ρ) = (1− p)ρ + p
3 (XρX + YρY + ZρZ). The depolar-

ized noise can be expressed by Kraus operators given in Formula (25).

ED
0 =

√
1−3

4
pD, ED

1 =

√
pD
4

[
0 1
1 0

]
, ED

2 =

√
pD
4

[
0 −i
i 0

]
, ED

3 =

√
pD
4

[
1 0
0 −1,

]
(25)

where pD ∈ [0, 1] is the decoherence rate for depolarized noise. ED
0 means that the quantum

state |0〉, |1〉 is not changed, but the amplitude of the quantum state is reduced; ED
1 means

the quantum state |0〉 and |1〉 transition with probability
√

pD
4 ; ED

2 means the quantum state

|0〉 transitions to i|1〉, the quantum state |1〉 transitions to −i|0〉; ED
2 means the quantum

state |1〉 transition to |−1〉.
If the scheme is implemented in depolarized noisy environment, then the concrete

density matrices of the output states can be obtained as follows.
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(ρD
out) =



(1− 3
4 pD)

10{
[
c0eiγ0 |000〉+ c1eiγ1 |111〉

]
A1 A2 A3

×
[
b0eiφ0 |00〉+ b1eiφ1 |11〉

]
C2C3

×
[
a0eiθ0 |0〉+ a1eiθ1 |1〉

]
B2
[|0〉]D1

+
[
c0eiγ0 |011〉 − c1eiγ1 |100〉

]
A1 A2 A3

×
[
b0eiφ0 |11〉 − b1eiφ1 |00〉

]
C2C3
×
[
a1eiθ1 |0〉 − a0eiθ0 |1〉

]
B2
[|1〉]D1

×
[
c0e−iγ0〈000|+ c1e−iγ1〈111|

]
A1 A2 A3

×
[
b0e−iφ0〈00|+ b1e−iφ1〈11|

]
C2C3

×
[
a0e−iθ0〈0|+ a1e−iθ1〈11|

]
B2
[〈0|]D1

+
[
c0e−iγ0〈011| − c1e−iγ1〈100|

]
A1 A2 A3

×
[
b0e−iφ0〈11| − b1e−iφ1〈00|

]
C2C3
×
[
a1e−iθ1〈0| − a0e−iθ0〈1|

]
B2
[〈1|]D1

}
+( pD

4 )10{
[
c1eiγ1 |111〉+ c0eiγ0 |000〉

]
A1 A2 A3

×
[
b1eiφ1 |11〉+ b0eiφ0 |00〉

]
C2C3

×
[
a1eiθ1 |1〉+ a0eiθ0 |0〉

]
B2
[|1〉]D1

+
[
c1eiγ1 |100〉 − c0eiγ0 |011〉

]
A1 A2 A3

×
[
b1eiφ1 |00〉 − b0eiφ0 |11〉

]
C2C3
×
[
a0eiθ0 |1〉 − a1eiθ1 |0〉

]
B2
[|0〉]D1

×
[
c1e−iγ1〈111|+ c0e−iγ0〈000|

]
A1 A2 A3

×
[
b1e−iφ1〈11|+ b0e−iφ0〈00|

]
C2C3

×
[
a1e−iθ1〈1|+ a0e−iθ0〈0|

]
B2
[〈1|]D1

+
[
c1e−iγ1〈100| − c0e−iγ0〈011|

]
A1 A2 A3

×
[
b1e−iφ1〈00| − b0e−iφ0〈11|

]
C2C3
×
[
a0e−iθ0〈1| − a1e−iθ1〈0|

]
B2
[〈0|]D1

}
+( pD

4 )10{
[
c1eiγ1 |111〉+ c0eiγ0 |000〉

]
A1 A2 A3

×
[
−i(b1eiφ1 |11〉 − b0eiφ0 |00〉)

]
C2C3

×
[
−(a1eiθ1 |1〉+ a0eiθ0 |0〉)

]
B2
[i|1〉]D1

+
[
c1eiγ1 |100〉 − c0eiγ0 |011〉

]
A1 A2 A3

×
[
−i(b1eiφ1 |00〉+ b0eiφ0 |11〉)

]
C2C3
×
[
a0eiθ0 |1〉 − a1eiθ1 |0〉

]
B2
[−i|0〉]D1

×
[
c1e−iγ1〈1111|+ c0e−iγ0〈000|

]
A1 A2 A3

×
[
−i(b1e−iφ1〈11| − b0e−iφ0〈00|)

]
C2C3

×
[
−(a1e−iθ1〈1|+ a0e−iθ0〈0|)

]
B2
[i〈1|]D1

+
[
c1e−iγ1〈100| − c0e−iγ0〈011|

]
A1 A2 A3

×
[
−i(b1e−iφ1〈00|+ b0e−iφ0〈11|)

]
C2C3
×
[
a0e−iθ0〈1| − a1e−iθ1〈0|)

]
B2
[−i〈0|]D1

}
+( pD

4 )10{
[
c0eiγ0 |000〉+ c1eiγ1 |111〉

]
A1 A2 A3

×
[
b0eiφ0 |00〉 − b1eiφ1 |11〉

]
C2C3

×
[
a0eiθ0 |0〉+ a1eiθ1 |1〉

]
B2
[|0〉]D1

+
[
c0eiγ0 |011〉 − c1eiγ1 |100〉

]
A1 A2 A3

×
[
b0eiφ0 |11〉+ b1eiφ1 |00〉

]
C2C3
×
[
−(a1eiθ1 |0〉 − a0eiθ0 |1〉)

]
B2
[−|1〉]D1

×
[
c0e−iγ0〈000|+ c1e−iγ1〈111|

]
A1 A2 A3

×
[
b0e−iφ0〈00| − b1e−iφ1〈11|

]
C2C3

×
[
a0e−iθ0〈0|+ a1e−iθ1〈1|

]
B2
[〈0|]D1

+
[
c0e−iγ0〈011| − c1e−iγ1〈100|

]
A1 A2 A3

×
[
b0e−iφ0〈11|+ b1e−iφ1〈00|

]
C2C3
×
[
−(a1e−iθ1〈0| − a0e−iθ0〈1|)

]
B2
[−〈1|]D1

}.

(26)

Then, the fidelity of the output state in depolarized noisy environment can be calcu-
lated as:

FD=〈ζ|ρD
out|ζ〉

=
{
(1− 3

4 pD)
10
+ ( pD

4 )
10
[
(b2

0 − b2
1)

2
+ (b2

0 − b2
1)

2 × (−a2
0 − a2

1)
2
]}

.
(27)

It can be seen from the above formula that the fidelity of the output quantum state is
related to the decoherence rate in depolarization noise and the coefficient of the desired
quantum state.

4.2. Amplitude Damping Noise

The amplitude damping noise can be expressed by Kraus operators given in
Formula (28).

EA
0 =

[
1 0
0
√

1− pA

]
, EA

1 =

[
0
√

pA
0 0

]
, (28)

where PA = sin2θ(PA ∈ [0, 1]) is the decoherence rates for amplitude damping noise. EA
0

means that quantum state |0〉 is not changed, and only reduce the amplitude of quantum
state |1〉; EA

1 means the quantum state |1〉 transition to |0〉.
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If the scheme is implemented in amplitude damping noisy environment, then the
concrete density matrices of the output states can be obtained as follows.

(ρA
out) =



{
[
c0eiγ0 |000〉+ (1− PA)

2c1eiγ1 |111〉
]

A1 A2 A3

×
[
b0eiφ0 |00〉+ (

√
1− PA)

3b1eiφ1 |11〉
]

C2C3
×
[
a0eiθ0 |0〉+ (1− PA)a1eiθ1 |1〉

]
B2
[|0〉]D1

+
[
(1− PA)(c0eiγ0 |011〉 − c1eiγ1 |100〉)

]
A1 A2 A3

×
[
((1− PA)b0eiφ0 |11〉 −

√
1− PAb1eiφ1 |00〉)

]
C2C3

×
[√

1− PA(a1eiθ1 |0〉 − a0eiθ0 |1〉)
]

B2

[√
1− PA|1〉

]
D1
}

×{
[
c0e−iγ0〈000|+ (1− PA)

2c1e−iγ1〈111|
]

A1 A2 A3

×
[
b0e−iφ0〈00|+ (

√
1− PA)

3b1e−iφ1〈11|
]

C2C3
×
[
a0e−iθ0〈0|+ (1− PA)a1e−iθ1〈1|

]
B2
[〈0|]D1

+
[
(1− PA)(c0e−iγ0〈011| − c1e−iγ1〈100|)

]
A1 A2 A3

×
[
(1− PA)(b0e−iφ0〈11| − b1e−iφ1〈00|)

]
C2C3

×
[√

1− PA(a1e−iθ1〈0| − a0e−iθ0〈1|)
]

B2

[√
1− PA〈1|

]
D1
}

+PA
10c2

0b2
0a2

0(|0000000〉+ |0000000〉)A1 A2 A3C2C3B2D1
×(〈0000000|+ 〈0000000|)A1 A2 A3C2C3B2D1 .

(29)

Then, the fidelity of the output state in amplitude damping noisy environment can be
calculated as:

FA=〈ζ|ρA
out|ζ〉

=


1
2{{

[
c2

0 + (1− PA)
2c2

1

]
×
[
b2

0 + (
√

1− PA)
3b2

1

]
×
[
a2

0 + (1− PA)a2
1
]
}2

+{
[
(1− PA)(c2

0 + c2
1)
]
×
[
((1− PA)b2

0 +
√

1− PAb2
1)
]

×
[√

1− PA(a2
0 + a2

1)
]
× (1− PA)}2}+ P10

A c4
0b4

0a4
0.

 (30)

It can be seen from the above formula that the fidelity of the output quantum state
is related to the decoherence rate in amplitude damping noise and the coefficient of the
desired quantum state.

4.3. Phase Damping Noise

The phase damping noise can be expressed by Kraus operators given in Formula (31).

EP
0 =

√
1− pP

[
1 0
0 1

]
, EP

1 =
√

pP

[
1 0
0 0

]
, EP

2 =
√

pP

[
0 0
0 1

]
, (31)

where pP ∈ [0, 1] is the decoherence rates for phase damping noise.
If the scheme is implemented in phase damping noisy environment, then the concrete

density matrices of the output states can be obtained as follows.

(ρP
out) =



(1− pP)
10{
[
c0eiγ0 |000〉+ c1eiγ1 |111〉

]
A1 A2 A3

×
[
b0eiφ0 |00〉+ b1eiφ1 |11〉

]
C2C3

×
[
a0eiθ0 |0〉+ a1eiθ1 |1〉

]
B2
|0〉D1

+
[
c0eiγ0 |011〉 − c1eiγ1 |100〉)

]
A1 A2 A3

×
[
b0eiφ0 |11〉 − b1eiφ1 |00〉

]
C2C3
×
[
a1eiθ1 |0〉 − a0eiθ0 |1〉

]
B2
|1〉D1

}
×
[
c0e−iγ0〈000|+ c1e−iγ1〈111|

]
A1 A2 A3

×
[
b0e−iφ0〈00|+ b1e−iφ1〈11|

]
C2C3

×
[
a0e−iθ0〈0|+ a1e−iθ1〈1|

]
B2
[〈0|]D1

+
[
c0e−iγ0〈011| − c1e−iγ1〈100|

]
A1 A2 A3

×
[
b0e−iφ0〈11| − b1e−iφ1〈00|

]
C2C3
×
[
a1e−iθ1〈0| − a0e−iθ0〈1|

]
B2
〈1|D1

}
+p10

P c2
0b2

0a2
0[|0000000〉+ |0000000〉]A1 A2 A3C2C3B2D1

×[〈0000000|+ 〈0000000|]A1 A2 A3C2C3B2D1
+p10

P c2
1b2

1a2
1[|1111111〉+ |1111111〉]A1 A2 A3C2C3B2D1

×[〈1111111|+ 〈1111111|]A1 A2 A3C2C3B2D1
.

(32)
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Then, the fidelity of the output state in phase damping noisy environment can be
calculated as:

FP=〈ζ|ρP
out|ζ〉= (1−pP)

10 + p10
P c4

0b4
0a4

0 + p10
P c4

1b4
1a4

1. (33)

It can be seen from the above formula that the fidelity of the output quantum state is
related to the coefficient of the desired quantum state and the decoherence rate in phase
damping noise.

4.4. Bit-Phase Flip Noise

The bit-phase flip noise is a combination of a phase flip and a bit flip, and its influence
to the quantum channel can be expressed by the Kraus operators given in Formula (34).

ES
0 =

√
1− sP

[
1 0
0 1

]
, ES

1 =
√

sP

[
0 −i
i 0

]
, (34)

where pS ∈ [0, 1] is the decoherence rates for bit-phase flip noise. ES
0 means that the

quantum state |0〉 is not changed, but the amplitude of quantum state |1〉 is reduced; ES
1

means that quantum state |0〉 transitions to i|1〉, quantum state |1〉 transitions to -i|0〉.
If the scheme is implemented in bit-phase flip noisy environment, then the concrete

density matrices of the output states can be obtained as follows.

(ρS
out) =



(1− pS)
10{
[
c0eiγ0 |000〉+ c1eiγ1 |111〉

]
A1 A2 A3

×
[
b0eiφ0 |00〉+ b1eiφ1 |11〉

]
C2C3

×
[
a0eiθ0 |0〉+ a1eiθ1 |1〉

]
B2
|0〉D1

+
[
c0eiγ0 |011〉 − c1eiγ1 |100〉)

]
A1 A2 A3

×
[
b0eiφ0 |11〉 − b1eiφ1 |00〉

]
C2C3
×
[
a1eiθ1 |0〉 − a0eiθ0 |1〉

]
B2
|1〉D1

}
×
[
c0e−iγ0〈000|+ c1e−iγ1〈111|

]
A1 A2 A3

×
[
b0e−iφ0〈00|+ b1e−iφ1〈11|

]
C2C3

×
[
a0e−iθ0〈0|+ a1e−iθ1〈1|

]
B2
[〈0|]D1

+
[
c0e−iγ0〈011| − c1e−iγ1〈100|

]
A1 A2 A3

×
[
b0e−iφ0〈11| − b1e−iφ1〈00|

]
C2C3
×
[
a1e−iθ1〈0| − a0e−iθ0〈1|

]
B2
〈1|D1

}
+pS

10{
[
c0eiγ0 |000〉+ c1eiγ1 |111〉

]
A1 A2 A3

×
[
i(b0eiφ0 |00〉 − b1eiφ1 |11〉)

]
C2C3

×
[
−a0eiθ0 |0〉 − a1eiθ1 |1〉

]
B2
[i|1〉]D1

+
[
c1eiγ1 |100〉 − c0eiγ0 |011〉)

]
A1 A2 A3

×
[
−ib0eiφ0 |11〉 − ib1eiφ1 |00〉

]
C2C3
×
[
a1eiθ1 |1〉 − a0eiθ0 |0〉

]
B2
[−i|0〉]D1

}
×
[
c0e−iγ0〈000|+ c1e−iγ1〈111|

]
A1 A2 A3

×
[
i(b0e−iφ0〈00|+ b1e−iφ1〈11|)

]
C2C3

×
[
−a0e−iθ0〈0| − a1e−iθ1〈1|

]
B2
[i〈1|]D1

+
[
c1e−iγ1〈100| − c0e−iγ0〈011|

]
A1 A2 A3

×
[
−i(b0e−iφ0〈11| − b1e−iφ1〈00|)

]
C2C3
×
[
a1e−iθ1〈1| − a0e−iθ0〈0|

]
B2
[−i〈0|]D1

}.



(35)

Then, the fidelity of the output state in bit-phase flip noisy environment can be
calculated as:

FS=〈ζ|ρS
out|ζ〉= (1−pS)

10. (36)

It can be seen from the above formula that the fidelity of the output quantum state is
only related to the decoherence rate in bit-phase flip noise.

4.5. Analysis of the Effect of the Scheme in Four Noisy Environments

From the above calculation results of fidelity, it can be found that in the environment
of depolarization, amplitude damping and phase damping noise, the fidelity of the output
state depends on the coefficient of the desired state and the decoherence rate. However, in
a bit-phase flip noise environment, the fidelity of the output state is only decided by the
decoherence rate.

As can be seen from the Figure 6, in the depolarization noise, amplitude damped
noise, and bit-phase flip noise channels, as the probability of depolarization increases, the
fidelity of the output state gradually tends to 0; while in phase damping noise channel,
the fidelity of the output state decreases with the increase of decoherence rate and then
increases when P > 0.8.
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Figure 6. The trend of the fidelity of the output state with the change of the decoherence rate(P) in four
types of noisy environments, where different types of lines represent different noise environments.
Suppose the coefficient of the desired state a0 = a1 = b0 = b1 = c0 = c1 = 1√

2
.

When the decoherence rate of bit-phase flip noise and phase damped noise channel is
0.4, the fidelity of the output state drops to 0, and the fidelity of the phase damping noise
is gradually increasing after the decoherence rate is 0.8. When the decoherence rate of the
depolarized noise channel is 0.6, the fidelity of the output state drops to 0; and the amplitude
damping noise is less affected by the decoherence rate than the other three noises.

When simultaneously considering the influence of the coefficient of the desired quan-
tum state and the decoherence rate, it is assumed that the coefficients of the desired
quantum state are all equal. There are the variations of fidelity in different noises as the
decoherence rate and the coefficient of desired quantum state varied simultaneously is
shown in the figure below:

From Figure 7, it can be observed that the Fidelity(D) and the Fidelity(S) decrease with
the P(D) and P(S). The Fidelity(D) and the Fidelity(S) independent of the coefficient of the
desired quantum state. In the amplitude damped noise, when the coefficient of the desired
state is greater than 0.7, the Fidelity(A) is positively correlated with the transformation of P(A).
In the phase damping noise channel, when the coefficient of the desired state is 1 and the P(p)
is higher than 0.5, the Fidelity(p) increases as the P(p) increases. When the coefficient of the
desired state is less than 1, the Fidelity(p) decreases with the increasing of P(p).
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Figure 7. The variations of the fidelity in different noise with different coefficients of the initiated
state and decoherence rate, where P(D) is short for the decoherence rate of the depolarized noise, P(A)
is short for the decoherence rate of the Amplitude damping noise, P(p) is short for the decoherence
rate of the phase damping noise, P(S) is short for the decoherence rate of the bit-phase flip noise.
Suppose the coefficient of the desired state is a0 = a1 = b0 = b1 = c0 = c1 ∈ [0, 1].



Appl. Sci. 2021, 11, 1405 16 of 18

5. Comparison and Conclusions

Efficiency [39] is a main factor utilizing for weighing the superiority of RSP protocol.
In comparison with the other cyclic RSP schemes, we calculate the scheme’s efficiency (η)
with the following manner.

η =
qi

qs + qc
, (37)

where qi denotes the number of states to be transmitted, qs indicates the quantum resource
consumption, and qc means the classical resource consumption.

From Table 3, the following conclusions can be drawn:
(1) The efficiency of our scheme is 32%, which is relatively higher than those of the

schemes in [16,23–25,30,32]. Besides, our scheme has a larger transmission capacity than
the other schemes because the sequentially increasing qubits could carry more information
via the transmission in the scheme.

(2) Due to the influence of the real environment, the initial maximally entangled state
easily evolves into a non-maximally entangled state or a mixed state. Compared with
the [25], we employ a ten-qubit non-maximally entangled state as quantum channel which
is more realistic than the maximally entangled state.

(3) In comparison with [25], we increase the number of states to be transmitted in
the four-party cyclic remote preparation scheme of an arbitrary single-particle state, an
arbitrary two-qubit state and an arbitrary three-qubit state, which is more efficient and
realistic.

(4) Another remarkable advantage of our scheme is that the protocol can be employed
to send multiple quantum information among multiple players either in an asymmetric
manner. Compared with [16,23–25,30,32], our scheme can realize the system having N >
3 observers. When the value of N is specified, we can construct anyone of all possible
quantum channels.

Table 3. Comparison with other RSP schemes, where BSM is short for Bell-state measurement and SM for single-qubit
measurement.

Scheme Type qi qs qc Operation Efficiency

[25] CCJRSP 3 (three arbitrary single-qubit) 10 6 7 SM 19%

[32] CJRSP 3 (three arbitrary single-qubit) 9 9 6 SM 17%

[30] CCJRSP 2 (An arbitrary two-qubit state) 7 5 5 SM 17%

[24] CBRSP 4(Two arbitrary two-qubit ) 9 8 9 SM 24%

[16] CBRSP and QT 2 (two arbitrary single-qubit) 7 4 1 BSM,3 SM 18%

[23] CCRSP 3 (three arbitrary single-qubit) 7 6 6 SM 23%

Ours CCARSP 6(A single-qubit, a two-qubit, a three-qubit) 13 6 7 SM 32%

In this paper, the most significant innovation of the proposed scheme is reflected in
realizing the remote state preparation with sequentially increasing qubits among multi-party,
which is not only cyclically asymmetric but also bidirectional. We introduce a specific case of
our scheme concretely, namely, the four-party controlled cyclic asymmetrical RSP protocol.
Then the four-party controlled cyclic asymmetrical RSP protocol is demonstrated on the IBM
quantum computer by designing appropriate quantum circuits using single-qubit and two-
qubit quantum gates. The desired quantum states are reconstructed by adopting appropriate
unitary transformations with a success probability of 100%. Furthermore, arbitrary qubit
transmission channels with different circulation directions are designed and constructed.
Considering the mutual coupling between the open quantum system and the environment,
the feasibility of the scheme under different noise environments is analyzed respectively.

In our subsequent research, we will consider a case where the input state is a mixed
state and the output state is also a mixed state. Besides, the phase transition between the
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output state and the input state in the scheme can be discussed by simulating it in IBM
Quantum Experience.
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