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Abstract: This paper studies the orbital pursuit-evasion problem with imperfect information, includ-
ing measurement noise and input delay. The presence of imperfect information will degrade the
players’ control performance and lead to mission failure. To solve this problem, a compensation
control strategy for the players is proposed. The compensation control strategy consists of two
parts: the guaranteed cost strategy and the time delay compensation method. First, a near-optimal
feedback strategy called guaranteed cost strategy with perfect information is proposed based on
a Lyapunov-like function and matrix analysis theory. Second, a time delay compensation method
based on an uncertainty set is proposed to compensate for delayed information. The compensation
control strategy is derived by combining the time delay compensation method with the guaranteed
cost strategy. While applying this strategy to the game, the input of the strategy is generated by pro-
cessing the measured data with the state estimation algorithm based on the unscented Kalman filter
(UKF). The simulation results show that the proposed strategy can handle the orbital pursuit-evasion
problem with imperfect information effectively.

Keywords: differential game; imperfect information; Lyapunov-like function; guaranteed cost;
uncertainty set

1. Introduction

Recently, the orbital pursuit-evasion has attracted increasing attention in space ren-
dezvous and proximity operations (RPOs) [1–4]. It is usually considered a zero-sum
differential game, whose capture time or distance is shortened by the pursuer and in-
creased by the evader. Many researchers worked on this game with the assumption of
perfect information [5]. However, this assumption violates real scenarios with noise (caused
by measurement) and time delay (caused by observation and data processing). The games
with these uncertain states are called imperfect information games [6]. For this situation,
Woodbury et al. [6] adopted the unscented Kalman filter (UKF) to estimate the players’
relative states and proposed adaptive linear-quadratic feedback control strategies. Linville
et al. [7] built a linear regression model from a large data set to analyze the effect of the
pursuer’s uncertainty start position. The orbital pursuit-evasion problem with noise or
uncertainty start conditions is well solved by these works. However, there exist two short-
comings in scenario and strategy. For the scenario, the time required for measurement and
state estimation is ignored, which leads to the deviation of control strategy in the actual sit-
uation. For the strategy, the shortcomings depend on its characters. In the linear-quadratic
feedback control strategy, the players’ control without boundary constraints is unrealistic,
while in the near-optimal feedback control, the solving process based on the numerous
open-loop solutions is time-consuming and capture unguaranteed.

To overcome the above shortcomings, we need to focus on the following two aspects
when studying the orbital pursuit-evasion problem with imperfect information. One is the
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feedback control strategy with bounded control. The other is the compensation method for
the delayed information.

It is difficult to obtain an analytic feedback solution by solving the Hamilton–Jacobin–
Isaacs (HJI) partial differential equation for the orbital pursuit-evasion problem with
bounded control [8]. Therefore, many works are devoted to generating open-loop equilib-
rium solutions. The process for obtaining the open-loop equilibrium solution is as follows.
First, the orbital pursuit-evasion problem is converted to a two-point boundary value
problem by using the necessary conditions [9] for the existence of solutions. Then various
kinds of methods are designed to solve the problem, such as the semidirect collocation
with nonlinear programming algorithm [5], the hybrid approach combining the semidirect
nonlinear programming and the multiple shooting method [10], the sensitivity method [11],
the semidirect control parameterization method [12], the indirect optimization method [13],
and the hybrid numerical algorithm combining the differential evolution algorithm and
Newton’s iteration method [14]. However, the open-loop equilibrium solution only relies
on the initial state and current time, which cannot deal with interference errors during the
game. Therefore, some researchers have studied the near-optimal closed-loop feedback
solutions. Ghosh et al. [15] proposed a new extremal-field approach for synthesizing nearly
optimal feedback controllers. In this approach, a large number of open-loop solutions were
first generated offline. Then the online nearly optimal feedback control was obtained by
interpolating these open-loop solutions. Anderson [16] obtained the near-optimal feedback
controls for spacecraft pursuit-evasion problems by periodically resolving the differential
game using a modified differential dynamic programming algorithm. However, the near-
optimal closed-loop feedback solutions generated by these methods are based on solving a
large number of open-loop solutions, which is time-consuming and capture unguaranteed.
To overcome the drawbacks in the existing feedback controls for the orbital pursuit-evasion
problem, we applied the optimal missile guidance method proposed by Gutman [17] to
the orbital pursuit-evasion problem. Unlike missile guidance, spacecraft’s dynamic is
more complicated due to the gravity difference, i.e., the difference in the gravitational
accelerations of the pursuer and the evader, which leads to the failure of Assumption 1 in
Ref. [17]. Therefore, we introduce the knowledge of matrix analysis theory to overcome this
issue and drive a near-optimal feedback control strategy to guarantee the terminal cost (i.e.,
the miss distance). This guaranteed cost strategy is superior to the existing near-optimal
feedback strategies in two aspects. First of all, the miss distance can be guaranteed by
adopting this strategy. Second, it does not need to solve numerous open-loop solutions
before or during the game.

Research on the pursuit-evasion problem with time delay can be traced to the work of
Petrosjan [18]. In his work, a reachability set method was proposed to deal with the fixed-
time pursuit-evasion problem with delayed information for the pursuer. In Refs. [19–25],
this method was applied to missile guidance, in which the state was replaced by the
center of the uncertainty set (reachability set) created by the information delay. Simulation
results showed that this method could partially compensate for the information delay
and effectively improve guidance accuracy. However, these previous studies worked for
the pursuit-evasion problem on the assumptions of two-dimensional situations, partial
delay, and no gravity difference, which are invalid in the orbital pursuit-evasion problem.
Without these assumptions, the calculation of the uncertainty set is more complicated.
To get the geometric center of spacecraft’s uncertainty set, we analyze the uncertain set’s
characteristics based on the linear system theory rather than calculate the uncertainty set.
Then, the state is replaced by the uncertainty set’s center. Thus, a compensation method
for the orbital pursuit-evasion problem with delayed information is proposed.

The main work of this paper is as follows. First, the orbital pursuit-evasion model is
established based on the Clohessy–Wiltshire (C–W) equations [26]. Based on this model, a
guaranteed cost strategy with perfect information is proposed. Second, an uncertainty set
based time delay compensation method is proposed to compensate for delayed information.
Combining the guaranteed cost strategy with the time delay compensation method, a
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compensation control strategy for the orbital pursuit-evasion problem with imperfect
information is proposed. Finally, the effectiveness of the proposed strategy is verified by
simulations.

2. Mathematical Model of the Orbital Pursuit-Evasion Problem

The orbital pursuit-evasion problem occurs in the situation that the players are close
enough so that they can identify each other with onboard electronic devices [4]. In this
situation, the players’ nonlinear dynamics can be reduced to the linear C–W equations [3].
Same as in [3], the players’ dynamics are described in the local-vertical local-horizontal
(LVLH) frame [27] centered on a virtual spacecraft, which follows a circular orbit near the
players. Besides, the C–W equations are adopted to describe the players’ relative motion.

As Figure 1 shows, we set a virtual spacecraft O, which is close to the players. The
LVLH coordinate system is established on the point O. OX points outwards along the
radius of the earth, OY is perpendicular to OX in the reference orbital plane and points to
the front of its flight direction, and OZ is perpendicular to the orbital plane and forms a
right-handed frame with OX and OY.
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The C–W equations can be expressed as
..
xi = 3ω2xi + 2ω

.
yi + uxi..

yi = −2ω
.
xi + uyi..

zi = −ω2zi + uzi

, i = P, E (1)

where P and E represent the pursuer and the evader, respectively. ω represents the orbital
angular velocity of the origin O. xi, yi, and zi represent the position components of the
players in the relative coordinate system. uxi, uyi, and uzi, respectively, represent control
variables in the three directions (i.e., x, y, and z axis).

The state variables of both players are represented by Xi as follows:

Xi = [xi, yi, zi,
.
xi,

.
yi,

.
zi]

T, i = P, E. (2)

Thus, the dynamics equations can be written as

.
Xi = AXi + BUi (3)
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where

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3ω2 0 0 0 2ω 0
0 0 0 −2ω 0 0
0 0 −ω2 0 0 0

 , B = [03×3, I3×3]
T (4)

Ui = [uxi, uyi, uzi]
T , (i = P, E) is the control variable, which satisfies ‖UP‖2 ≤ ρP , ‖UE‖2 ≤

ρE, ρP > ρE > 0. ρP and ρE are constants.
Furthermore, we take the relative states of the two spacecraft as state variables. By

defining XPE(t) = XP(t)−XE(t), the state equations are converted to

.
XPE(t) = AXPE(t) + BUP(t) + CUE(t) (5)

where C = −B.
By taking the terminal distance as the cost, the objective function can be defined as

J = ‖DXPE

(
t f

)
‖ (6)

where D = [I3×3, 03×3].

3. Construction of Guaranteed Cost Strategy with Perfect Information

To solve the orbital pursuit-evasion problem given in the second section and enable
the players to achieve their individual goals, we should construct a feedback control for
the players. However, for the orbital pursuit-evasion problem with bounded control, it is
difficult to get optimal feedback control by solving the HJI equation. Therefore, researchers
have focused on constructing near-optimal feedback control. The existing near-optimal
feedback control strategies [15,16] are based on solving numerous open-loop solutions,
which is time-consuming and cannot guarantee capture.

To overcome this shortcoming, we derive a guaranteed cost strategy by adopting
the Lyapunov-like function-based method [17] and the matrix analysis theory. Besides,
we propose a hybrid method combining the homotopy method and Newton’s method
to calculate the unknown time-to-go in this strategy. This guaranteed cost strategy can
guarantee the miss distance and does not need to solve numerous open-loop solutions.
The detailed procedure is shown as follows.

3.1. The Guaranteed Cost Strategy

For the sake of brevity, we define the zero-effort-miss (ZEM) variables as follows:

Z(t) = DΦ
(

t f − t
)

XPE (7)

where Φ
(

t f − t
)

is the zero-input state transfer matrix of Equation (5) and satisfies

Φ
(

t f − t
)
= eA(t f−t).

Substituting Equation (7) into Equations (5) and (6), the system is reduced to
.
Z(t) = BP

(
t f − t

)
UP(t) + CE

(
t f − t

)
UE(t)

J = ‖Z
(

t f

)
‖

(8)

where BP

(
t f − t

)
= DΦ

(
t f − t

)
B, CE

(
t f − t

)
= DΦ

(
t f − t

)
C.
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Define the Lyapunov-like function V(t) = ‖Z(t)‖, t ∈
[
0, t f

]
. Thus, the change rate

of V(t) over time satisfies

dV(t)
dt

=
d
dt
‖Z(t)‖ = ξTBP

(
t f − t

)
UP(t) + ξTCE

(
t f − t

)
UE(t) (9)

where ξ = Z(t)
‖Z(t)‖ .

The feedback control strategies of the pursuer and the evader can be obtained by
minimizing or maximizing the change rate:

U∗P = −ρP
BT

P(t f−t)ξ

‖BT
P(t f−t)ξ‖

U∗E = ρE
CT

E(t f−t)ξ

‖CT
E(t f−t)ξ‖

(10)

where ρP and ρE are the upper boundaries of the control of the pursuer and the evader,
respectively. The time-to-go tgo = t f − t is an unknown variable and needs to be calculated
in real time. The feedback control strategies can guarantee the cost (i.e., miss distance)
for the pursuer and the evader when the time-to-go is appropriate. The feedback control
strategies with appropriate time-to-go are called guaranteed cost strategies.

When the pursuer adopts U∗P, its corresponding time-to-go can be obtained by substi-
tuting U∗P into Equation (9) to obtain

dV(t)
dt

=
d
dt
‖Z(t)‖ = −ρP‖BT

P

(
t f − t

)
ξ‖+ ξTCE

(
t f − t

)
UE(t) (11)

As U∗E is derived by maximizing the change rate (9), we get
d
dt
‖Z(t)‖ = −ρP‖BT

P

(
t f − t

)
ξ‖+ ξTCE

(
t f − t

)
UE(t) ≤ −ρP‖BT

P

(
t f − t

)
ξ‖+ ρE‖CT

E

(
t f − t

)
ξ‖ (12)

As ‖ξ‖= 1, according to the matrix analysis theory, we get

λ1/2
min ≤ ‖B

T
P

(
t f − t

)
ξ‖ ≤ λ1/2

max (13)

where λmin and λmax, respectively, represent the maximum and minimum eigenvalues of
the matrix BP

(
t f − t

)
BT

P

(
t f − t

)
.

Thus, Equation (12) can be further expressed as
d
dt‖Z(t)‖ = −ρP‖BT

P

(
t f − t

)
ξ‖+ ξTCE

(
t f − t

)
UE(t) ≤ −ρP‖BT

P

(
t f − t

)
ξ‖+ ρE‖CT

E

(
t f − t

)
ξ‖

= −ρP‖BT
P

(
t f − t

)
ξ‖+ ρE‖BT

P

(
t f − t

)
ξ‖ ≤ −ρPλ1/2

min + ρEλ1/2
max

(14)

Integrate Equation (14) to obtain

‖Z
(

t f

)
‖ ≤ ‖Z(t0)‖+

∫ t f

t0

−ρPλ1/2
min + ρEλ1/2

maxdt = H1

(
t0, t f

)
, provided H1

(
t0, t f

)
≥ 0 (15)

From Equation (15), it is seen that when the pursuer adopts U∗P, the cost (i.e., miss

distance) will not exceed the value H1

(
t0, t f

)
. If the safe distance between the players is m,

we can calculate the time-to-go tP
go = t f − t0 by solving the equation H1

(
t0, t f

)
= m. Thus,

when the pursuer adopts U∗P, the capture of the evader can be guaranteed within tP
go.
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Similarly, we get

‖Z
(

t f

)
‖ ≥ ‖Z(t0)‖+

∫ t f

t0

−ρPλ1/2
max + ρEλ1/2

mindt = H2

(
t0, t f

)
(16)

From Equation (16), it is seen that when the evader adopts U∗E, the cost (i.e., miss

distance) is not less than the value H2

(
t0, t f

)
. Then, we can calculate the time-to-go

tE
go = t f − t0 by solving the equation H2

(
t0, t f

)
= m. Due to the control constraint

ρP > ρE > 0, the evader cannot avoid being captured when the pursuer chooses the
appropriate strategy. However, when the evader adopts U∗E, it can escape from the pursuer
before tE

go.

3.2. Time-To-Go Calculation

For the sake of brevity, define the range θP = ωtP
go, where ω is the orbital angular

velocity of the origin of the LVLH coordinate system. The equation H1

(
t0, t f

)
= m is

converted to

‖Z
(

θP
)
‖+ 1

ω

∫ θP

0
−ρPλ1/2

min(s) + ρEλ1/2
max(s) ds = m (17)

Similarly, define θE = ωtE
go. The equation H2

(
t0, t f

)
= m is converted to

‖Z
(

θE
)
‖+ 1

ω

∫ θE

0
−ρPλ1/2

max(s) + ρEλ1/2
min(s) ds = m (18)

We can get the appropriate time-to-go by solving Equations (17) and (18). However,
the analytic solution of the equations is difficult to obtain since the equations are nonlinear.
Thus, we use the numerical method to solve the equations. The iterative method is an
effective numerical method for solving nonlinear equations. However, most iterative
methods (such as Newton’s method) require appropriate initial guesses. If the initial value
is not selected properly, it is difficult to obtain the solution of the nonlinear equation.
Unfortunately, the appropriate initial values for Equations (17) and (18) are difficult to find.
Define functions FP and FE as follows:{

FP
(
θP) = ‖Z(θP)‖+ 1

ω

∫ θP

0 −ρPλ1/2
min(s) + ρEλ1/2

max(s) ds−m

FE
(
θE) = ‖Z(θE)‖+ 1

ω

∫ θE

0 −ρPλ1/2
max(s) + ρEλ1/2

min(s) ds−m
. (19)

Figure 2 shows the shapes of functions FP and FE in Equation (19) with different
current states. The different current relative states for four cases are shown in Table 1. The
functions’ shapes are highly dependent on the current states, and their uncertainty makes
it difficult to find an appropriate initial value. As noted by Yamamura [28], the homotopy
method is good at global convergence. Thus, using the homotopy method to calculate
the time-to-go can avoid the convergence problem caused by the improper selection of
initial value. However, the homotopy method is not good at convergence speed. Thus,
we propose a hybrid method combining the homotopy method and Newton’s method to
calculate the time-to-go.
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Table 1. Current relative states of different cases.

Case X (m) Y (m) Z (m) VX (m × s−1) VY (m × s−1) VZ (m × s−1)

Case 1 3000 200 1000 −3 −8 −5
Case 2 413 −32 331 −5 −0.5 −12.5
Case 3 413 −32 331 5 0.5 12.5
Case 4 306 −16 166 −10 0 −5

3.2.1. Time-To-Go Calculation Based on the Homotopy Method

For the sake of brevity, ignore the superscripts and subscripts, and use F for the
functions FP and FE, and θ for the variables θP and θE. To solve the nonlinear equation
F(θ) = 0, we construct the fixed-point homotopy equation as follows:

H(θ, p) = pF(θ) + (1− p)(θ − θ0) = 0 (20)

where p ∈ [0, 1]. The solution of H(θ, 1) = 0 is the desired solution, whereas the
solution of H(θ, 0) = 0 is θ0, which can be any specified value. As shown in Figure 3,
when the variable p increases from 0 to 1, the solution of the homotopy equation changes
continuously from θ0 to the expected solution along the homotopy path. The detailed
procedure is shown as follows.
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To find the solution along the homotopy path, first, we need to get the unit tangent
vector of the homotopy path. Let θ = θ(s) and p = p(s), where s is the arc length along
the homotopy path. The derivative of H(θ, p) with respect to s is

∂H
∂θ

dθ

ds
+

∂H
∂p

dp
ds

= 0 (21)

where 

∂H
∂θ = p dF

dθ + (1− p)
∂H
∂p = F− θ + θ0

dFP
dθP =

ZT(θP)DAΦ(θP)XPE

ω‖Z(θP)‖
+ 1

ω

(
−ρPλ1/2

min
(
θP)+ ρEλ1/2

max
(
θP))

dFE
dθE =

ZT(θE)DAΦ(θE)XPE

ω‖Z(θE)‖
+ 1

ω

(
−ρPλ1/2

max
(
θE)+ ρEλ1/2

min
(
θE))

. (22)

Considering the arc length constraint, the relationship between θ, p, and s is as follows:(
dθ

ds

)2
+

(
dp
ds

)2
= 1. (23)

The unit tangent vector of the homotopy path V =
[

dθ
ds , dp

ds

]T
can be obtained by

combining Equations (21) and (23):
dp
ds = ‖Hθ‖√

Hθ
2+Hp2

dθ
ds = −Hp

Hθ

‖Hθ‖√
Hθ

2+Hp2

, (24)

where Hθ = ∂H
∂θ , Hp = ∂H

∂p .
By integrating the unit tangent vector until p = 1 is satisfied, the desired solution can

be obtained. The iterative equation is as follows:
[

θ
p

](k+1)

=

[
θ
p

](k)
+ hV(k), k = 0, 1, · · ·[

θ
p

](0)
=

[
θ0
0

] , (25)

where h is the step length.
To meet the accuracy requirements of the solution, a correction method is used after

each iteration step of Equation (25). The correction equation is as follows:[
θ
p

](k+1)

i+1
=

[
θ
p

](k+1)

i
−
([

∂H
∂θ

∂H
∂p

](k+1)

i

)−1
H(k+1)

i , i = 0, 1, · · · . (26)

Repeat Equation (26) until ‖H‖ is brought beneath the desired value.
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3.2.2. Time-to-Go Calculation Based on the Hybrid Method

Although the homotopy method is good at global convergence, it is not good at
convergence speed. In many cases (when the initial value is appropriate), Newton’s
method can also achieve good convergence. Thus, we propose a hybrid method combining
the homotopy method and Newton’s method, which takes into account the validity and
rapidity of the algorithm. The specific steps are given as follows:

Step1. Take the time-to-go calculated at the last moment in the confrontation as the initial
value θ0 at the current moment.
Step2. Set the maximum iteration number N, and calculate the time-to-go using Newton’s
method, i.e., θi+1 = θi − F(θi)/F′(θi), i = 0, 1, · · · . If convergence can be obtained within
the maximum iteration number, the operation will end and the time-to-go will be obtained.
Otherwise, go to step 3.
Step3. Calculate the time-to-go by using the homotopy method. Use Equation (25) for
calculation and Equation (26) for correction. Repeat the iteration until p = 1 is satisfied, and
the time-to-go is obtained.

Since we use the time-to-go of the previous step as the initial guess value of the
current step, the initial value is appropriate in most cases. The time-to-go of the current
step can be found quickly by using Newton’s method, which is second-order convergence.
The homotopy method will be used only at the beginning moment or at a few special
moments when the time-to-go suddenly changes (as shown in Examples 2 and 3), and the
convergence speed is relatively slower.

It should be noted that the time-to-go calculation using the hybrid method is based on
the premise that the range and bearings of the spacecraft are measurable. In the case of
bearings-only measurements, the time-to-go cannot be calculated by this method.

4. Compensation Control Strategy for Delayed Information

In this section, we present a compensation method for the time delay caused by the
measurement and estimation process. By adopting this method to modify the guaranteed
cost strategies given in the third section, we get the compensation control strategies.

4.1. Time Delay Compensation Method Based on Uncertainty Set

Few works have yet dealt with the orbital pursuit-evasion problem with delay in-
formation. However, several works on delay information have been done in other areas.
To compensate for the delay information in the pursuit-evasion problem, Petrosjan [18]
proposed the reachability set (uncertainty set) method and proved that the optimal strategy
of the pursuer is the pursuit of the center of the reachability set of the evader. Refer-
ences [19–25] applied this method for missile guidance, which partially compensates for
the information delay and effectively improves the guidance accuracy.

However, the above works assumed two-dimensional situations, partial delay, and no
gravity difference. These assumptions are invalid in the orbital pursuit-evasion problem.
Thus, without the consideration of these assumptions, the calculation of the uncertainty
set is more complicated. To get the geometric center of the spacecraft’s uncertainty set, we
analyze the uncertain set’s characteristics based on the linear system theory rather than
calculate the uncertainty set. Then, the delayed state is replaced by the uncertainty set’s
center. The detailed procedure is shown as follows.

First, we give a definition of the uncertainty set. In the case delay time ∆t 6= 0, the
player’s current state value is unknown to the opponent. The opponent can calculate
the set of all possible state values based on the delayed state information he gets and the
player’s control constraint. This set is called the uncertainty set (denoted by S).

Ignoring the subscripts, the spacecraft dynamics (3) can be expressed as follows:

.
X(t) = AX(t) + BU(t), (27)

where ‖U(t)‖2 ≤ ρ.
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Let
[
t0, t f

]
be the delay period. According to the linear system theory [29], the

terminal state X
(

t f

)
satisfies

X
(

t f

)
= Φ

(
t f − t0

)
X(t0) +

∫ t f

t0

Φ
(

t f − τ
)

BU(τ)dτ. (28)

According to the definition of the uncertainty set, for any given X1

(
t f

)
∈ S, there

exists a corresponding control strategy U1(t), which satisfies ‖U1(t)‖2 ≤ ρ such that

X1

(
t f

)
= Φ

(
t f − t0

)
X(t0) +

∫ t f

t0

Φ
(

t f − τ
)

BU1(τ)dτ. (29)

Let U2(t) = −U1(t), t ∈
[
t0, t f

]
, where ‖U2(t)‖2 ≤ ρ. The terminal state X2

(
t f

)
corresponding to U2(t) can be expressed as

X2

(
t f

)
= Φ

(
t f − t0

)
X(t0) +

∫ t f

t0

Φ
(

t f − τ
)

BU2(τ)dτ. (30)

According to the definition of the uncertainty set, we have X2

(
t f

)
∈ S. Combining

Equations (29) and (30) yields

X1

(
t f

)
+ X2

(
t f

)
= 2Φ

(
t f − t0

)
X(t0). (31)

Equation (30) can be further expressed as

X1

(
t f

)
−Φ

(
t f − t0

)
X(t0) = −

(
X2

(
t f

)
−Φ

(
t f − t0

)
X(t0)

)
. (32)

According to Equation (32), states X1

(
t f

)
and X2

(
t f

)
are centrally symmetric about

point Φ
(

t f − t0

)
X(t0) in the state space.

Thus, we have the following conclusion: In the system described by Equation (27), for
any given X1

(
t f

)
∈ S, there exists a corresponding state X2

(
t f

)
∈ S such that X1

(
t f

)
and

X2

(
t f

)
are centrally symmetric about point Φ

(
t f − t0

)
X(t0) in the state space.

Besides, the spacecraft’s control is bounded. Thus, the total energy it can provide
over delay time ∆t is limited. Under the condition of finite energy and fixed time, the
spacecraft’s reachable state is limited, which means the uncertainty set is a bounded set.

According to the above analysis, the uncertainty set’s geometric center is

X̂ = Φ
(

t f − t0

)
X(t0). (33)

The delay information can be compensated by replacing the state variable with the
center of the uncertainty set.

4.2. Compensation Control Strategy

In this part, by modifying the guaranteed cost strategy through the above time delay
compensation method, we obtain the compensation control strategy for the time delay
scenario. Due to the existence of delay time ∆t, the information obtained at time t is the
opponent’s state information at time t− ∆t. Although the opponent’s state information at
time t is not known, the uncertainty set can be calculated. Then the center of the uncertainty
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set is taken as the opponent’s estimation state at time t. The compensation control strategies
are given as follows: 

UP(t) = −ρP
BT

P(t f−t)ξc

‖BT
P(t f−t)ξc‖

UE(t) = ρE
CT

E(t f−t)ξc

‖CT
E(t f−t)ξc‖

, (34)

where ξc = Zc(t)
‖Zc(t)‖ , Zc(t) = DΦ

(
t f − t

)
X̂PE. X̂PE is the estimated relative state after

compensation.

5. State Estimation Based on UKF

Before applying the compensation control strategies given in the above section to the
orbital pursuit-evasion problem, the spacecraft’s state needs to be measured. However,
noise is included in the measured data. To determine the opponent’s state, we need
to estimate the state of the spacecraft based on the observed data. Radar is a relative
measurement sensor commonly used in space missions. We use radar as the measurement
sensor. Besides, since the measurement equation is nonlinear, we need to adopt a nonlinear
filtering method. Nonlinear filtering methods mainly include the extended Kalman filter
(EKF), UKF, and particles filter (PF) [30]. Compared with PF, UKF has lower computational
complexity [31]. Compared with EKF, UKF has better performance [31]. Thus, we use
UKF to estimate the state. In this section, the spacecraft state estimation model is first
established, and then the UKF toolkit [32] is used to estimate the spacecraft state.

The spacecraft motion equation with environmental perturbation can be expressed as
follows: .

X = AX + BU + Bw, (35)

where w =
[

wx wy wz
]T is the equivalent noise of environmental perturbation,

which follows the normal distribution wx ∼ N(0, σwx), wy ∼ N
(
0, σwy

)
, wz ∼ N(0, σwz),

σwx = σwy = σwz = σw.
We use radar as the measurement sensor. Taking relative distance Φ, elevation angle

ψ, and azimuth angle ϕ as measurement variables, the measurement equation can be
expressed as follows:

Z =

 φ
ψ
ϕ

 =


√

x2 + y2 + z2

arctan y√
x2+z2

arctan−z
x

+ V, (36)

where V is the measurement noise, which follows the normal distribution.
Before UKF is used for state estimation, the continuous system needs to be discretized.

We use the solution formula of the state equation to ensure that the continuous state
equation and the discrete state equation have the same solution at the sampling point. The
discretized system equation is as follows:{

Xk+1 = Φ(tk+1 − tk)Xk + ΓkBUk + ΓkBwk
Zk = HXk + Vk

, (37)

where E
[
wkwT

k
]
= Qk, E

[
VkVT

k
]
= Rk, E

[
wiVT

j

]
= 0, Γk =

∫ tk+1
tk

Φ(tk+1 − t)dt.
Finally, the UKF toolkit [32] is used to estimate the spacecraft state based on the

established model.
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6. Results and Discussion

To verify the effectiveness of the proposed method, we present several numerical
simulations. The simulation is divided into the following two parts. The first part is to
verify the effectiveness of the guaranteed cost strategy proposed in this paper. The second
part is to verify the effectiveness of the compensation control strategy by comparing the
orbital pursuit-evasion problem under three scenarios: no time delay, with compensation
for time delay, and without compensation for time delay.

In these simulations, the initial altitude of the reference orbit is 500 km, the con-
trol boundary of the pursuer is ρP = 0.2 m/s2, the control boundary of the evader is
ρE = 0.1 m/s2, the safe distance between the players is m = 1 m, and the sampling step is
0.01 s. The initial state of the pursuer and the evader is shown in Table 2.

Table 2. Positions and velocities of the initial time.

Player X (m) Y (m) Z (m) VX (m×s−1) VY (m×s−1) VZ (m×s−1)

Pursuer 1500 1000 2000 0 0 0
Evader 0 0 0 −3 8 5

6.1. Examples of Guaranteed Cost Strategy

To verify the guaranteed cost strategy’s effectiveness, we give the following example
without considering noise and time delay.

Example 1. Both pursuer and evader adopt the guaranteed cost strategy.

Figure 4 shows the positions changing with time during the confrontation. From
Figure 4, it can be seen that the pursuer finally intercepts the evader, and the interception
time is 209.56 s. The terminal miss distance is 0.9013 m, which is less than the safe distance.
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Figure 4. The position of each player changing with time.

Figure 5 shows tgo and ∆tgo (∆tgo = tP
go − tE

go) changing with time during the
confrontation. As shown in Figure 5a, at the beginning of the confrontation, the pursuer’s
time-to-go tP

go is 212.27 s, and the evader’s time-to-go tE
go is 207.75 s. This result means the

pursuer can guarantee capture within 212.27 s, and the evader can avoid capture within
207.75 s by adopting the guaranteed cost strategies. As shown in Figure 5b, ∆tgo decreases
with time and turns to zero at the end of the confrontation. This result means ∆tgo and tE

go
approach the real interception time as time goes on.
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Figure 5. (a) tgo and (b) ∆tgo changing with time.

Figure 6 shows the control variable changing with time during the confrontation. In
this figure, the pursuer’s control is similar to the evader’s control. The reason is that tP

go is
close to tE

go during the confrontation.
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Figure 6. The control variable of (a) the pursuer and (b) the evader changing with time.

In the case of ρP > ρE > 0, when the pursuer chooses the appropriate control strategy,
the pursuer will eventually capture the evader no matter how the evader reacts. However,
the guaranteed cost strategy provides an opportunity to determine upper and lower bounds
on the capture time. When the evader chooses the guarantee cost strategy, the capture time
can be guaranteed to be greater than tE

go. When the pursuer chooses the guarantee cost
strategy, the capture time can be guaranteed to be less than tP

go.
As can be seen from the above example, the evader is intercepted by the pursuer in

209.56 s, which is less than 212.27 s (tP
go) and greater than 207.75 s (tE

go). The effectiveness
of the guaranteed cost strategy is verified. By adopting the guaranteed cost strategy, the
pursuer can guarantee capture within tP

go, and the evader can avoid capture before tE
go.

6.2. Examples of Compensation Control Strategy

To verify the effectiveness of the compensation control strategy proposed in this paper,
we compare the orbital pursuit-evasion problem under three scenarios: no time delay, with
compensation for time delay, and without compensation for time delay. Consider the follow-
ing two examples: the first example is that the evader’s information has no time delay, and
the pursuer plays under the above three scenarios. The second example is that the pursuer’s
information has no time delay, and the evader plays under the above three scenarios. The
covariance of the process noise is set as Qk = diag

([
0.1 0.1 0.1

])
, and the covariance

of the measurement noise is set as Rk = diag
([

1.75× 10−4 1.75× 10−4 1.75× 10−4 ]).
We present a Monte Carlo simulation for each case.
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Example 2. The evader’s information has no time delay, and the pursuer plays under three scenarios:
no time delay, with compensation for time delay, and without compensation for time delay. The
delay time is 1 s.

(1) Terminal Time is Free

Figure 7 shows the estimation errors of the relative state. From Figure 7, it can
be seen that the estimation errors in relative position are about the order of magnitude
1 × 10−5 m, and the estimation errors in relative velocity are about the order of magnitude
1 × 10−3 m/s.
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Figure 7. The estimation errors of the relative state: (a) X, (b) Y, (c) Z, (d) VX, (e) VY, and (f) VZ.

Figure 8 shows the average relative distance of 100 Monte Carlo runs between the
players in three scenarios: the pursuer plays without time delay, without compensation for
time delay, and with compensation for time delay. When the pursuer plays without time
delay, the average interception time is 209.56 s. The average terminal distance between
the two players is 0.9013 m, which is less than the safe distance. When the pursuer plays
without compensation for time delay, the average relative distance between the two players
reaches the minimum value of 19.1841 m at 206.89 s. After that, the relative distance
increases. The reason is that after a period of acceleration, the velocity has reached a
relatively large value. After the two players miss each other, it takes a while for the
velocity to change. However, the distance between the players still increases, which
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means the pursuer cannot intercept the evader in a short time. When the pursuer plays
with compensation for time delay, the average interception time is 211.69 s. The average
terminal distance between the two spacecraft is 0.9763 m, which is less than the safe
distance. By comparison, we can see that with compensation for time delay, the pursuer
can significantly reduce the relative distance between the pursuer and the evader. Although
the interception time is longer than that in the no time delay scenario, it still intercepts the
evader successfully.
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Figure 8. The average relative distance of 100 Monte Carlo runs in the scenario that the pursuer plays (a) without time
delay; (b) without compensation for time delay; and (c) with compensation for time delay.

Figure 9 shows the average tgo and ∆tgo of 100 Monte Carlo runs between the players
in three scenarios: the pursuer plays without time delay, without compensation for time
delay, and with compensation for time delay. When the pursuer plays without time delay,
tgo decreases linearly with time, ∆tgo is a non-negative value during the confrontation.
When the pursuer plays without compensation for time delay, the evader’s time-to-go tE

go
suddenly increases at 177.76 s, which means the evader can avoid capture for a longer
time. This phenomenon is caused by a change in the system state. The pursuer’s control
deviates from the guaranteed cost strategy due to delayed information, which leads to the
system state deviating from the expected trajectory. It thus gives the evader a chance to
prolong the interception time. However, the pursuer’s time-to-go tP

go does not increase until
206.61 s. The reason is that the pursuer’s delayed information misleads the calculation of tP

go.
When the pursuer plays with compensation for time delay, the time-to-go corresponding
to the pursuer and the evader slightly deviates from that of the no delay scenario. The
reason is that the compensation method cannot completely eliminate the effect of delayed
information.



Appl. Sci. 2021, 11, 1400 16 of 23
Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 25 
 

  
(a) 

  
(b) 

  
(c) 

Figure 9. The average got  and Δ got  of 100 Monte Carlo runs in the scenario that the pursuer plays (a) without time 

delay; (b) without compensation for time delay; and (c) with compensation for time delay. 

Figure 10 shows the average control variable of 100 Monte Carlo runs between the 
players in three scenarios: the pursuer plays without time delay, without compensation 
for time delay, and with compensation for time delay. When the pursuer plays without 
time delay, the control trajectories are linear during the confrontation. When the pursuer 
plays without compensation for time delay, the evader’s control switches at 177.76 s. 
This phenomenon is caused by a sudden change in E

got . The pursuer’s control decreases 
from 178.77 s due to the state change caused by the evader’s control switch. The pursu-
er’s control switches at 206.61 s due to the sudden change in P

got . When the pursuer 
plays with compensation for time delay, the pursuer’s control and the evader’s control 
slightly deviate from the no-delay ones due to the delayed information. 

  

0 20 40 60 80 100 120 140 160 180 200 220
0

50

100

150

200

250

t go
 (s

)

Time (s)

 Pursuer
 Evader

0 20 40 60 80 100 120 140 160 180 200 220

0

1

2

3

4

5

Δ
t go

 (s
)

Time (s)

0 20 40 60 80 100 120 140 160 180 200 220
0

100
200
300
400
500
600
700
800

t go
 (s

)

Time (s)

 Pursuer
 Evader

0 20 40 60 80 100 120 140 160 180 200 220
600
450
300
150

0
150
300

-
-
-
-

Δ
t go

 (s
)

Time (s)

0 20 40 60 80 100 120 140 160 180 200 220
0

50

100

150

200

250

t go
 (s

)

Time (s)

 Pursuer
 Evader

0 20 40 60 80 100 120 140 160 180 200 220
1
0
1
2
3
4
5

-

Δ
t go

 (s
)

Time (s)

Figure 9. The average tgo and ∆tgo of 100 Monte Carlo runs in the scenario that the pursuer plays (a) without time delay;
(b) without compensation for time delay; and (c) with compensation for time delay.

Figure 10 shows the average control variable of 100 Monte Carlo runs between the
players in three scenarios: the pursuer plays without time delay, without compensation
for time delay, and with compensation for time delay. When the pursuer plays without
time delay, the control trajectories are linear during the confrontation. When the pursuer
plays without compensation for time delay, the evader’s control switches at 177.76 s. This
phenomenon is caused by a sudden change in tE

go. The pursuer’s control decreases from
178.77 s due to the state change caused by the evader’s control switch. The pursuer’s
control switches at 206.61 s due to the sudden change in tP

go. When the pursuer plays with
compensation for time delay, the pursuer’s control and the evader’s control slightly deviate
from the no-delay ones due to the delayed information.
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Figure 10. The average control variable of 100 Monte Carlo runs in the scenario that the pursuer plays (a) without time
delay; (b) without compensation for time delay; and (c) with compensation for time delay.

(2) Terminal Time is Fixed

The terminal time is set as 212 s.
Figure 11 shows the average ZEM distance of 100 Monte Carlo runs in three fixed-time

scenarios: the pursuer plays without time delay, without compensation for time delay, and
with compensation for time delay. When the pursuer plays without time delay, the average
terminal distance between the two players reaches 0.00003202 m, which is less than the
safe distance. When the pursuer plays without compensation for time delay, the average
terminal distance between the two players is 25.6273 m, which means the pursuer failed
to intercept the evader. When the pursuer plays with compensation for time delay, the
average terminal distance between the two players reaches 0.1064 m, which is less than
the safe distance. According to Figure 11b, when the pursuer has delayed information, the
zero-effort miss distance at the beginning of the confrontation shows an upward trend. The
reason is that the pursuer adopts no control at the beginning of the confrontation due to
lack of information. According to Figure 11c, when the pursuer plays without time delay,
the average zero-effort miss distance reaches below the safe distance at 180.43 s. When
the pursuer plays with compensation for time delay, the average zero-effort miss distance
reaches below the safe distance at 202.59 s. However, when the pursuer plays without
compensation for time delay, the zero-effort miss distance converges to a large value, which
means the pursuer cannot intercept the evader.
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Figure 11. The average ZEM distance of 100 Monte Carlo runs: (a) the ZEM distance changing with time; zoom in on the
curve at (b) the beginning of the confrontation and (c) the end of the confrontation.

Example 3. The pursuer’s information has no time delay, and the evader plays under three scenarios:
no time delay, with compensation for time delay, and without compensation for time delay. The
delay time is 1 s.

(3) Terminal Time is Free

Figure 12 shows the average relative distance of 100 Monte Carlo runs between the
players in three scenarios: the evader plays without time delay, without compensation for
time delay, and with compensation for time delay. When the evader plays without time
delay, the average interception time is 209.56 s. The average terminal distance between
the two players is 0.9013 m, which is less than the safe distance. When the evader plays
without compensation for time delay, the average interception time is 204.39 s. The average
terminal distance between the two players is 0.7960 m, which is less than the safe distance.
When the evader plays with compensation for time delay, the average interception time is
208.48 s. The average terminal distance between the two spacecraft is 0.9904 m, which is
less than the safe distance. By comparison, we can see that the pursuer can successfully
intercept the evader in all scenarios. In the time delay scenarios, the interception time is
shorter than that in the no-delay scenario. The reason is that the pursuer takes advantage
of the evader’s control based on delay information to shorten the interception time in the
time delay scenarios. The interception time in the scenario that the evader plays without
compensation for time delay is shorter than that in the scenario the evader plays with
compensation for time delay, which means the compensation control strategy can help the
evader prolong the interception time.
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Figure 12. The average relative distance of 100 Monte Carlo runs in the scenario that the evader plays (a) without time
delay; (b) without compensation for time delay; and (c) with compensation for time delay.

Figure 13 shows the average tgo and ∆tgo of 100 Monte Carlo runs between the players
in three scenarios: the evader plays without time delay, without compensation for time
delay, and with compensation for time delay. When the evader plays without time delay,
tgo decreases linearly with time, and ∆tgo is a non-negative value during the confrontation.
When the evader plays without compensation for time delay, the evader’s time-to-go
tE
go suddenly increases at 176.43 s. The reason is that the evader’s delayed information

misleads the calculation of tE
go. When the evader plays with compensation for time delay,

the time-to-go corresponding to the pursuer and the evader slightly deviates from that
of the no-delay scenario. The reason is that the compensation method cannot completely
eliminate the effect of delayed information.

Figure 14 shows the average control variable of 100 Monte Carlo runs between the
players in three scenarios: the evader plays without time delay, without compensation for
time delay, and with compensation for time delay. When the evader plays without time
delay, the control trajectories are linear during the confrontation. When the evader plays
without compensation for time delay, its control switches at 176.43 s. This phenomenon is
caused by a sudden change in tE

go. The evader’s control deviates from the guaranteed cost
strategy due to the delayed information, which leads to the system state deviating from the
expected trajectory. It thus gives the pursuer a chance to shorten the interception time. The
pursuer’s control decreases from 176.44 s due to the state change caused by the evader’s
control switch. When the evader plays with compensation for time delay, the pursuer’s
control and the evader’s control slightly deviate from the no-delay ones due to the delayed
information.
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Figure 13. The average tgo and ∆tgo of 100 Monte Carlo runs in the scenario that the evader plays (a) without time delay;
(b) without compensation for time delay; and (c) with compensation for time delay.

(4) Terminal Time is Fixed

The terminal time is set as 212 s.
Figure 15 shows the average ZEM distance of Monte Carlo runs in three fixed-time

scenarios: the evader plays without time delay, without compensation for time delay, and
with compensation for time delay. When the evader plays without time delay, the average
terminal distance between the two players reaches 0.00005056 m, which is less than the safe
distance. When the evader plays without compensation for time delay, the average terminal
distance between the two players reaches 0.00005425 m, which is less than the safe distance.
When the evader plays with compensation for time delay, the terminal distance between
the two players reaches 0.00004705 m, which is less than the safe distance. According to
Figure 15b, when the evader has delayed information, the zero-effort miss distance at the
beginning of the confrontation declines faster than that in the no-delay scenario. The reason
is that the evader adopts no control at the beginning of the confrontation due to the lack of
information. At the terminal time, the pursuer can successfully intercept the evader in all
scenarios, and the terminal distances are close to each other.
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Figure 14. The average control variable of 100 Monte Carlo runs in the scenario that the evader plays (a) without time delay;
(b) without compensation for time delay; and (c) with compensation for time delay.
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orbital pursuit-evasion problem based on the uncertainty set. By combining the time de-
lay compensation method with the guaranteed cost strategy, we derive a compensation 
control strategy. 

The simulation results show the following: 
1. The proposed guaranteed cost strategy is valid in the orbital pursuit-evasion prob-

lem with perfect information. By adopting the guaranteed cost strategy, the pursuer 
can guarantee capture within P

got , and the evader can avoid capture before E
got . 

2. The proposed compensation control strategy is applicable to the orbital pur-
suit-evasion problem with imperfect information. When the pursuer has imperfect 
information, the compensation control strategy can shorten the relative distance 
between the players and increase the possibility of intercepting the evader. When 
the evader has imperfect information, the compensation control strategy can pro-
long the time that the pursuer takes to intercept the evader. 
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Figure 15. The average ZEM distance of 100 Monte Carlo runs: (a) the ZEM distance changing with time; zoom in on the
curve at (b) the beginning of the confrontation and (c) the end of the confrontation.
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Example 2 shows that when the pursuer has delayed information, the compensation
control strategy proposed in this paper can shorten the relative distance between the
players and increase the possibility of intercepting the evader. Example 3 shows that when
the evader has delayed information, the compensation control strategy proposed in this
paper prolongs the time that the pursuer takes to intercept the evader.

7. Conclusions

In this paper, we derive a guaranteed cost strategy based on a Lyapunov-like function
and matrix analysis theory, and propose a time delay compensation method for the orbital
pursuit-evasion problem based on the uncertainty set. By combining the time delay
compensation method with the guaranteed cost strategy, we derive a compensation control
strategy.

The simulation results show the following:

1. The proposed guaranteed cost strategy is valid in the orbital pursuit-evasion problem
with perfect information. By adopting the guaranteed cost strategy, the pursuer can
guarantee capture within tP

go, and the evader can avoid capture before tE
go.

2. The proposed compensation control strategy is applicable to the orbital pursuit-
evasion problem with imperfect information. When the pursuer has imperfect infor-
mation, the compensation control strategy can shorten the relative distance between
the players and increase the possibility of intercepting the evader. When the evader
has imperfect information, the compensation control strategy can prolong the time
that the pursuer takes to intercept the evader.
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