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1. Introduction 
The first general formulation of the research problem involving the parameter opti-

mization in a tuned mass dampers (TMD) attached to a single degree of freedom (SDOF)  
structure was suggested by Den Hartog [1]. He determined known formulas for TMD 
tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom) 
system with harmonic excitation. Recommendations in terms of the optimal TMD param-
eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
when the main mass of a SDOF system undergoes harmonic excitation. The response of a 
linear system to broadband response is different in the case of a harmonic excitation, be-
cause the first one occurs at system’s natural frequencies. In cases where broadband exci-
tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
points A, B (just like Den Hartog), and one central, between the previous two. He derived 
a new optimal damping factor value, which is 15% higher than the classic result. 

The most recent work that needs mentioning includes the one by Batou and Adhikari 
[7], which focused on an SDOF system with an attached viscoelastic damper. A standard 
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∞ for the transfer function associated
with the generalized displacement of an SDOF system was applied. The research work utilized GA
(genetic algorithms) and SA (simulated annealing method) optimization algorithms to determine
the stiffness and damping parameters for individual TMDs. The effect of damping and stiffness
(MTMD tuning) distribution depending on the number of TMDs was also analyzed. The paper also
reviews the impact of primary system mass change on the efficiency of optimized MTMDs, as well as
confirms the results of other authors involving greater MTMD effectiveness relative to a single TMD.
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1. Introduction

The first general formulation of the research problem involving the parameter opti-
mization in a tuned mass dampers (TMD) attached to a single degree of freedom (SDOF)
structure was suggested by Den Hartog [1]. He determined known formulas for TMD
tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom)
system with harmonic excitation. Recommendations in terms of the optimal TMD parame-
ter set can also be found in the work by Warburton [2] for a deterministic case, that is, when
the main mass of a SDOF system undergoes harmonic excitation. The response of a linear
system to broadband response is different in the case of a harmonic excitation, because
the first one occurs at system’s natural frequencies. In cases where broadband excitation
has an almost constant spectrum within the natural frequency range, it is convenient to
replace it with white noise. In his work [3], Warburton provided formulas for optimal TMD
parameters at exactly such excitation. Similar discussions were conducted by Bakre and
Jangid in [4,5]. A different approach to the issue of determining TMD parameter values
was proposed by Krenk [6], who suggested aligning the ordinates of three points A, B (just
like Den Hartog), and one central, between the previous two. He derived a new optimal
damping factor value, which is 15% higher than the classic result.

The most recent work that needs mentioning includes the one by Batou and Ad-
hikari [7], which focused on an SDOF system with an attached viscoelastic damper. A
standard rheological model as a TMD model was used to obtain analytically optimal TMD
parameters. Classic results for a TMD with viscous damping can be obtained as a specific
case for this damper type. It was also demonstrated that using a TMD with viscoelastic
damping enables obtaining better vibration absorption compared to an equivalent TMD
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with viscous damping. Another new approach to a well-known TMD attached to an SDOF
system was reviewed in the work by Marian and Giaralis [8]. The authors proposed a tuned
mass damper inerter (TMDI), which combines a classic tuned mass damper (TMD) with a
grounded inerter, which counteracts relative acceleration through additional inertia. The
work utilized a modified “two point” approach proposed by Den Hartog [1], which enabled
determining optimal TMDI parameters. TMD analyses are conducted in various fields
of science. The study by Peterka et al. [9] involved modeling the vibrations of a drilling
mandrel with a vibration damper linked with the mandrel via a viscoelastic coupling. A
system with three degrees of freedom with an additionally installed TMD was modeled
and the efficiency of such a solution demonstrated.

Multiples TMDs (MTMDs) can be introduced to a system in order to improve struc-
tural parameters. The efficiency of a spatially distributed MTMD was originally discussed
by Bergman et al. [10]. The presented results indicated that structural behavior could be
improved when an MTMD is tuned for appropriate structural frequencies, maintaining
the total mass ratio at the same level as in the case of a TMD. It was demonstrated that an
increased number of dampers resulted in the flattening of the response curve over a wider
frequency range (Kareem and Kline [11]). The performance of TMD and MTMD was com-
pared, and it was shown that the optimal damping values of an MTMD damper were lower
than in the case of TMD. The early stages of studies concerning MTMD configurations
under simplified and constrained conditions primarily involved to reducing the number of
associated design variables. For example, in [12], Xu and Igusa studied MTMD with evenly
spaced natural frequencies and an equal constant damping, and based on the asymptotic
analysis, they demonstrated that such an MTMD was efficient in reducing primary system
response. For a finite number of MTMDs with similar constraints, Joshi and Jangid [13] and
Jangid [14] presented optimal MTMD parameters for an undamped and damped primary
system, respectively. MTMDs with equal damping factors and evenly spaced natural
frequencies were also studied by such authors as Yamaguchi and Harnpornchai [15].

A number of algorithms for selecting optimal MTMD parameter values have been
proposed over the years (see Zuo and Nayfeh [16]). The study focused on developing
optimization algorithms based on the
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response to random and harmonic excitations.

 
 

 

 
Appl. Sci. 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci 

Article 

Optimization of Multiple Tuned Mass Damper (MTMD) 
Parameters for a Primary System Reduced to a Single Degree of 
Freedom (SDOF) through the Modal Approach 
Piotr Wielgos 1,* and Robert Geryło 2 

1 Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40,  
20-618 Lublin, Poland 

2 Building Research Institute, Filtrowa 1, 00-611 Warsaw, Poland; r.gerylo@itb.pl 
* Correspondence: p.wielgos@pollub.pl 

Abstract: The research paper presents a novel approach toward constructing motion equations for 
structures with attached MTMDs (multiple tuned mass dampers). A primary system with MDOF 
(multiple dynamic degrees of freedom) was reduced to an equivalent system with a SDOF (single 
degree of freedom) through the modal approach, and equations from additional MTMDs were 
added to a thus-created system. Optimization based on ℌ2 and ℌ∞ for the transfer function associ-
ated with the generalized displacement of an SDOF system was applied. The research work utilized 
GA (genetic algorithms) and SA (simulated annealing method) optimization algorithms to deter-
mine the stiffness and damping parameters for individual TMDs. The effect of damping and stiff-
ness (MTMD tuning) distribution depending on the number of TMDs was also analyzed. The paper 
also reviews the impact of primary system mass change on the efficiency of optimized MTMDs, as 
well as confirms the results of other authors involving greater MTMD effectiveness relative to a 
single TMD. 

Keywords: FEM analysis; vibration control; ℌ2 and ℌ∞ optimization; MTMD; parameter optimiza-
tion 
 

1. Introduction 
The first general formulation of the research problem involving the parameter opti-

mization in a tuned mass dampers (TMD) attached to a single degree of freedom (SDOF)  
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eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
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linear system to broadband response is different in the case of a harmonic excitation, be-
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tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
points A, B (just like Den Hartog), and one central, between the previous two. He derived 
a new optimal damping factor value, which is 15% higher than the classic result. 
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∞ optimization was also utilized in the
work by Zhao [17], for determining optimal ATID (active tuned inerter damper) parameters.
The article by Aggumus and Guclu [18] describes a study involving a single tuned mass
damper (STMD) using a model of a building with multiple degrees of freedom (MDOF).
It applied an optimization method based on the H∞ norm in the STMD control process.
Asami, in the work [19], presents an exact
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∞ optimal solution for a serial TMD with a
double mass connected to a damped primary system. In the optimization of
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∞ of the
transfer function, a very precise numerical solution was successfully obtained by solving
the sixth-order algebraic equation.

MTMD parameters were studied by Zuo and Nayfeh [20], who utilized
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2 optimiza-
tion. They demonstrated that optimal structures did not have uniformly distributed tuning
frequencies or identical damping factors for individual TMDs, and the applied optimization
of individual parameters within an MTMD system provided significant improvement of the
entire SDOF system with MTMD. In response to the aforementioned study, Li and Ni [21]
presented an optimization method for MTMDs with non-uniformly distributed mass, based
on a gradient with linear search of the objective function. By solving the problem of multi-
target optimization based on the objective function in the mode of maximum displacement
or frequency response, the authors obtained optimized, unevenly distributed MTMDs.
In work [22], Zuo and Nayfeh applied a method utilizing subgradients of a non-smooth
objective function. Besides the gradient methods, also genetic algorithms are used in terms
of MTMD optimization, for example, by Ok, Song, and Park [23]. Heuristic methods, such
as the particle swarm optimization (PSO), were also used. The PSO method for the deter-
mination of optimal MTMD parameters was used, among others, in the research by Leung
and Zhang [24] and Zhang et al. [25]. Other methods used for optimizing the objective
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function in MTMD issues include simulated annealing (SA) applied by Aydin et al. [26] for
optimizing the parameters in a multi-story building.

Recent works on MTMD include the one by Kim and Lee [27]. The article discusses
the analysis of linear MTMDs with numerous practical configurations, attached to an SDOF
structure, subjected to white noise input. Six practical configurations were developed and
analyzed comparatively, each of which was linearly restricted with distributed tuning
factors, mass ratios, damping factors, and their combinations. In [28], Stanikzai et al.
analyzed TMDs and MTMDs distributed at various degrees of freedom of an MDOF
system in a building with base isolation (BI). The analysis involved 40 earthquake ground
motions for the adopted pattern of an MDOF structure with attached TMD and MTMDs
and indicated the efficiency of the latter. In [29], Yin et al. analyzed a new type of TMD
system named pounding tuned mass damper (PTMD). The coupled equations were created
by combining the equations of motion of both the bridge and moving vehicles. In order
to compare the damping performance, a parametric study of the various numbers and
locations, mass ratio, and stiffness of the MPTMDs were investigated.

The article presents an alternative method for developing motion equations for a
MTMD structure. The method enables adding single TMDs or MTMD groups to completely
different degrees of freedom of the primary system. The system of equations allows for
easy MTMD tuning for complex vibrations modes, with MTMDs located in local maxima
of these vibrations modes, while still analyzing the SDOF system with attached MTMDs.
MTMD parameter optimization based on
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∞ norms for the transfer function
associated with the modal coordinate of an SDOF system was proposed. The research
work utilized GA (genetic algorithms) and SA (simulated annealing method) optimization
algorithms to determine the stiffness and damping parameters for individual TMDs. The
comparison and discussion were based on previously developed models of a primary
system with an attached MTMD.

2. Methods
2.1. Original Proposal of Motion Equations for a Primary System with Attached MTMDs,
Reduced to an SDOF System through the Modal Approach

In order to be able to model an equivalent system with a single degree of freedom
(SDOF) for a system with multiple degrees of freedom using the modal approach, several
conditions need to be satisfied, such as the spatial excitation force distribution must be
relatively uniform and, in the case of concentrated load, it should be located near the
highest ordinate of the first vibration mode and natural frequencies higher than ωi are not
close to this frequency.

Using this relationship enables obtaining an equation, which describes an equivalent
motion of a SDOF system, corresponding to a system with N degrees of freedom. The
primary system is reduced through the modal approach. The main assumption is the
orthogonality of the main structure C damping matrix and a main structure is treated as a
linear time-invariant system (LTI system). It is a system that produces an output from any
input signal subject to linearity and time constraints. In general, for N degrees of primary
system, the motion equation solution:

M
..
q(t) + C

.
q(t) + Kq(t) = p(t) (1)

expands into a series of eigenvectors

q(t) =
N

∑
i=1

aiψi(t) = Wψ(t), (2)

where ψ(t) is the modal coordinate vector and ai is i-th eigenvector, while W is the matrix
corresponding mode shapes in its columns.



Appl. Sci. 2021, 11, 1389 4 of 28

If we include the Ni mode of the vibrations, which have the greatest share in the
vibration system, the above equation can be expressed as:

q(t) =
Ni

∑
i=1

aiψi(t). (3)

If we normalize the eigenvectors in the manner shown below, we get the following
motion equations:

m̃i
..
ψi(t) + c̃i

.
ψi(t) + k̃iψi(t) = p̃i(t), (4)

where i = 1, 2, . . . Ni, m̃i = aT
i Mai = 1, c̃i = aT

i Cai = 2ζiωi, k̃i = aT
i Kai = ω2

i , and
p̃i(t) = aT

i p(t).
Designations as in Figure 1 were adopted for the analyzed situation. The diagram

shows a beam structure with eliminated degrees of rotation and degrees of freedom along
the X-axis direction of the global coordinate system.
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Figure 1. The primary system, adopted first, and i-th mode shape, together with an SDOF equiva-
lent system.

The following designations for the diagram above were adopted: j = 1,2 . . . N—
system degrees of freedom; I = 1,2 . . . Ni– number of vibration modes taken into account
(further vibration eigenmodes not necessarily included in the analysis)—i index means any
subsequent mode number included; and qj(t)—displacement of j–th degree of freedom.

Assuming that natural frequencies corresponding to the modes, which are decisive
for structural vibrations, are separated from each other, the dynamic response in the case
of excitations with a selected vibration mode can be determined using the formula:

qj(t) =
Ni

∑
i=1

ajiψi(t), (5)

where ψi(t) is the modal coordinate associated with the i-th vibration eigenmode, aji is the
coordinate of the i-th vibration mode of the j–th degree of freedom, and Ni is the number
of vibration eigenmodes taken into account.

The S point to which the system is reduced is called the equivalent system mass
reduction point. It is adopted at the point of the highest coordinate of the ai mode shape
or the point of application of concentrated load within the system, including, e.g., force
originating from a mechanical vibration damper.

After bilaterally dividing the modal motion Equation (4) by the coordinate of the
i-th mode shape of the equivalent system mass reduction point aji and after normalizing
eigenvectors in the form of m̃i = aT

i Mai = 1, we get an equivalent system motion equation:

m̃i
aji

2 aji
..
ψi(t) +

c̃i
aji

2 aji
.
ψi(t) +

k̃i
aji

2 ajiψi(t) =
1
aji

p̃i(t), (6)
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or
mji

..
qji(t) + cji

.
qji(t) + kjiqji(t) = pji(t), (7)

where i = 1, 2, .., Ni, qji(t) = ajiψi(t) is the equivalent system displacement,
mji = m̃i/aji

2 = 1/aji
2 is the equivalent mass, cji = c̃i/aji

2 = 2ζiωi/aji
2 is the equiva-

lent damping of system, kji = k̃i/aji
2 = ωi

2/aji
2 is the equivalent stiffness of system, and

pji(t) = p̃i(t)/aji is the equivalent force of system.
A new tuned mass damper (TMD) or multiple TMDs (MTMDs) can be attached to

the new system. The well-known Kelvin–Voigt model was adopted for the description of
each TMD. In general, attached TMDs do not have to be located at the S system reduction
point. If the S system reduction point is an attachment point for a single TMD, we get a
2DOF system, which is a well-known issue addressed by Den Hartog in [1], in the case
of no damping of the primary system. Of course, TMD is tuned to a frequency near ωi,
for which the equivalent system was determined. The case of using MTMDs located in
various degrees of freedom of the primary system requires a separate discussion. MTMD
arrangement diagram is shown in Figure 2. Of course, each TMD shall be tuned to near
frequency ωi.
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The following designations for the above diagram were adopted: k = 1,2 . . . Nk is
the TMD degrees of freedom; mt

k, ct
k, kt

k are the mass, damping, and stiffness of the k-th
damper; and ξk(t), qt

k(t) is the relative and absolute displacement of the k-th TMD. If we
add an Nk number of tuned mass dampers to the created system, the new system will have
Nk + 1 degrees of freedom (each TMD is an additional degree of freedom).

If we introduce location vectors for each MTMD, with the value 1 present on the
degree of freedom to which the tuned mass damper is attached, we can write the following
structural displacement equation for a degree of freedom to which the k-th TMD is attached:

q̃t
k(t) = ek

Taiψi(t) = ãkiψi(t), (8)

where ek
T = [0, 0, 1, . . . , 0] is the location vector of the k–th damper. The value 1 is present

on the degree of freedom to which the k-th TMD is attached and ãki = ek
Tai is the ordinate

of the i-th eigenvector at the TMD attachment point.
We also have to introduce the value of the displacements, velocity, and relative ac-

celeration, which describe the motion of additional MTMDs. Generalized displacements,
velocities, and relative accelerations for the dampers can be expressed with the follow-
ing formulas:

ξk = qt
k − q̃t

k = qt
k − ãkiψi = qt

k −
ãki
aji

qji, (9)

.
ξk =

.
qt

k −
.
q̃

t
k =

.
qt

k − ãki
.
ψi =

.
qt

k −
ãki
aji

.
qji, (10)
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..
ξk =

..
qt

k −
..
q̃

t
k =

..
qt

k − ãki
..
ψi =

..
qt

k −
ãki
aji

..
qji. (11)

A system of motion equations for such a case, with the number of degrees of freedom
of Nk + 1, is shown by the formula below:

mji
..
qji(t) + cji

.
qji(t) + kjiqji(t) = pji(t) + Tji

mt
k

..
qt

k + ct
k

(
.
qt

k −
.
q̃

t
k

)
+ kt

k
(
qt

k − q̃t
k
)
= 0

(12)

The force from each damper, which needs to be attached to the degree of freedom
associated with the k–th TMD, taking into account absolute values, can be expressed with
the following formulas:

Tk = −mt
k

..
qt

k, (13)

Tk = ct
k

(
.
qt

k −
.
q̃

t
k

)
+ kt

k
(
qt

k − q̃t
k
)
= ct

k

(
.
qt

k −
ãki
aji

.
qji

)
+ kt

k

(
qt

k −
ãki
aji

qji

)
. (14)

Changing to generalized force, for absolute values we get:

Tji =
1
aji

Nk

∑
k=1

ãkiTk = −
Nk

∑
k=1

ãki
aji

mt
k

..
qt

k, (15)

Tji =
1
aji

Nk

∑
k=1

ãkiTk =
Nk

∑
k=1

ãki
aji

ct
k

(
.
qt

k −
ãki
aji

.
qji

)
+

Nk

∑
k=1

ãki
aji

kt
k

(
qt

k −
ãki
aji

qji

)
. (16)

By substituting the additional damping force values to motion equations, and by
using the relationships for absolute values in Equations (15) and (16), we get:

mji
..
qji(t) + cji

.
qji(t) + kjiqji(t) +

Nk
∑

k=1

ãki
2

aji
2 ct

k

.
qji −

Nk
∑

k=1

ãki
aji

ct
k

.
qt

k +
Nk
∑

k=1

ãki
2

aji
2 kt

kqji −
Nk
∑

k=1

ãki
aji

kt
kqt

k = pji

mt
k

..
qt

k + ct
k

( .
qt

k −
ãki
aji

.
qji

)
+ kt

k

(
qt

k −
ãki
aji

qji

)
= 0

(17)

Motion equations in matrix form, for the most general case, with absolute values, are
shown by the relationship below:

M
..
q + C

.
q + Kq = p, (18)

where M, C, and K are positive-defined mass, damping, and stiffness matrices, respectively
(it is impossible to assume negative values of stiffness and damping of individual TMDs).

From the generalized displacement and excitation forces’ vector let us separate
vector blocks associated with the equivalent displacement modal ordinate and actual
TMD displacements:

..
q =

[ ..
q1..
q2

]
,

.
q =

[ .
q1.
q2

]
, q =

[
q1
q2

]
, p =

[
p1
p2

]
, (19)

where: ..
q1 =

[ ..
qji

]
,

.
q1 =

[ .
qji

]
, q =

[
qji

]
, p =

[
pji

]
, (20)
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..
q2 =



..
qt

1..
qt

2
...

..
qt

k
...

..
qt

Nk


,

.
q2 =



.
qt

1.
qt

2
...
.
qt

k
...

.
qt

Nk


, q2 =



qt
1

qt
2
...

qt
k
...

qt
Nk


, p2 =



0
0
...
0
...
0


. (21)

Similarly, the blocks associated with the discussed degrees of freedom shall also be
separated from the matrix M, C, K:

M =

[
M11 M12
M21 M22

]
, C =

[
C11 C12
C21 C22

]
, K =

[
K11 K12
K21 K22

]
. (22)

The size of blocks M11, C11, K11 is 1× 1; M12, C12, K12 is 1× Nk; M21, C21, K21 is
Nk × 1; and of M22, C22, K22 is Nk × Nk. Below you can find the forms of individual blocks
of matrices M, C, K.

M11 =
[
mji
]
, M22 =



mt
1 0 · · · 0 · · · 0

0 mt
2 · · · 0 · · · 0

...
...

. . .
...

. . .
...

0 0 · · · mt
k · · · 0

...
...

. . .
...

. . .
...

0 0 · · · 0 · · · mt
Nk


, (23)

M12 = MT
21 =

[
0 0 · · · 0 · · · 0

]
, (24)

C11 =

[
cji +

Nk

∑
k=1

ãki
2

aji
2 ct

k

]
, C22 =



ct
1 0 · · · 0 · · · 0

0 ct
2 · · · 0 · · · 0

...
...

. . .
...

. . .
...

0 0 · · · ct
k · · · 0

...
...

. . .
...

. . .
...

0 0 · · · 0 · · · ct
Nk


, (25)

C12 = CT
21 =

[
− ã1i

aji
ct

1 − ã2i
aji

ct
2 · · · − ãki

aji
ct

k · · · − ãNki
aji

ct
Nk

]
, (26)

K11 =

[
kji +

Nk

∑
k=1

ãki
2

aji
2 kt

k

]
, K22 =



kt
1 0 · · · 0 · · · 0

0 kt
2 · · · 0 · · · 0

...
...

. . .
...

. . .
...

0 0 · · · kt
k · · · 0

...
...

. . .
...

. . .
...

0 0 · · · 0 · · · kt
Nk


, (27)

K21 = KT
12 =

[
− ã1i

aji
kt

1 − ã2i
aji

kt
2 · · · − ãki

aji
kt

k · · · − ãNki
aji

kt
Nk

]
. (28)

The new system suggested by the authors significantly limits the time consumption of
the calculations and also enables the optimization of MTMD parameters discussed below.
In general, Ni equivalent systems can be created (as many as natural frequencies are taken
into account). Each of these systems, with the number i, is a system with Nk + 1 degrees of
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freedom. Achieving full displacement at the S reduction point requires determining the
response for each of the created systems and then applying the formula:

qj(t) =
Ni

∑
i=1

qji(t). (29)

This approach is obviously not convenient. However, the method of reducing the sys-
tem to an SDOF is very useful for structures with simple static diagrams (beams, cantilever
structures such as chimneys, and masts), when the lowest vibration natural frequency is
taken into account. Next, let us determine the parameters of an SDOF equivalent system.
For such a system, using the aforementioned equations, we can create new motion equa-
tions with attached single TMDs or MTMDs tuned to a distinguished natural frequency.

2.2. Determination of a Transfer Matrix Used to Determine the Objective Function in
Optimization Issues

For a model described with the general motion equation, which is a system with N
degrees of freedom, the transfer matrix H(s), the single element of which Hik(s) is called a
transfer function, is a Laplace transform of the impulse response hik(t).

Hik(s) =
∫ ∞

−∞
hik(t)e−stdt, (30)

where impulse response hik(t) is the i-th response of the system to the k–th excitation in
the form of a unit impulse function δk (Dirac delta) applied at the initial moment t = 0,
j means an imaginary unit, and s is complex variable s = σ + jω. Therefore, in order to
determine impulse responses in the i points of the system, the excitation shall be adopted
in the following form:

p(t) = [0, 0, . . . , 0, δk(t), 0, . . . , 0]T . (31)

In the specific case in which σ = 0, the input is a complex integral e−jωt at frequency
ω and Hik(jω), viewed as function of ω, is known as the frequency response function (FRF)
of the system and is given by the Fourier transform. The below Equations (32) and (33)
show a pair of Fourier transforms, which can be found in the work by Bendat [30]:

Hik(jω) =
∫ ∞

−∞
hik(t)e−jωtdt, (32)

hik(t) =
1

2π

∫ ∞

−∞
Hik(jω)ejωtdω. (33)

By substituting the excitation force vector (31) to the Equation (1) and after applying
the Fourier transform we get:

(K−ω2M + jωC)H(jω) = I. (34)

In general, Hik(jω) is the complex quantity and can be presented as:

Hik(jω) = |Hik|ejΘik = ReHik + jImHik, (35)

|Hik(jω)| =
√
(ReHik)

2 + (ImHik)
2, argHik = Θik = arctg

ReHik
ImHik

, (36)

where |Hik(jω)|, Θik are the frequency response function module and argument, respectively.
If we assume the denotation of the dynamic stiffness matrix in the form:

G(jω) = K−ω2M + jωC = ReG + jImG, (37)



Appl. Sci. 2021, 11, 1389 9 of 28

we get a complex equation:

ReGReH− ImGImH + j[ImGReH + ReGImH] = I, (38)

and after breaking down, two real equations:

ReGReH− ImGImH = I, (39)

ImGReH + ReGImH = 0. (40)

Ultimately, we get a matrix of the real and imaginary section of the full frequency
response matrix H(jω):

ReH =
{

ReG + ImG[ReG]−1ImG
}−1

I, (41)

ImH = [ReG]−1ImGReH. (42)

Of course, with an appropriate computational procedure, we can directly determine a
complex frequency response matrix from the formula:

H(jω) = (G(jω))−1. (43)

Knowing the frequency response matrix, it is possible to determine the structural
response within the frequency domain in the form of:

q(jω) = H(jω)p(jω), (44)

where q(jω), p(jω) are the Fournier transforms of the displacement and vector of excita-
tion forces.

The structure’s load Fourier transform is expressed by the formula:

p(jω) =
∫ ∞

−∞
p(t)e−jωtdt. (45)

If we determine the Fourier retransform of the structure’s excitation forces vector, we
get the following relationship:

q(t) =
1

2π

∫ ∞

−∞
H(jω)

(∫ ∞

−∞
p(t)e−jωtdt

)
ejωtdω. (46)

The equation for q(t) determination based on the Duhamel integral is often used in
the literature. The matrix form of the equation is expressed by the formula:

q(t) =
∫ t

0
h(t− τ)p(τ)dτ, (47)

where q(t) is a response vector, h(t) is a matrix of impulse response, and p(t) is the vector
of excitation forces. Since it was assumed that the random excitation is a stationary process,
the dynamic response is also a stationary process. Due to this fact, the correlation matrix of
dynamic response of structure can be written as:

Rq(t1, t2) = E
[
q(t1)qT(t2)

]
. (48)

Inserting the Equation (47) into the Equation (48), we assume:

Rq(t1, t2) =
∫ t1

0

∫ t2

0
h(t1 − τ1)E

[
p(t1)pT(t2)

]
h(t2 − τ2)dτ1dτ2. (49)
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If we assume that the correlation of excitation forces is:

E
[
p(t)pT(t− τ)

]
= Rp(τ) =

1
2π

∫ ∞

−∞
Sp(jω)ejωτdω, (50)

we can write the formula (49) in the form:

Rq(τ) =
1

2π

∫ ∞

−∞
H(jω)Sp(jω)HH(jω)ejωτdω, (51)

where HH(jω) denotes the complex conjugate and transpose of frequency response matrix
H(jω) (Hermitian matrix) and Sp(jω) is a full matrix of spectral density of random excita-
tion. If we determine the values of correlation matrix at the moment τ = 0, the dependency
for a matrix of variance of a dynamic response of a system is obtained:

σ2
q = Rq(0) =

1
2π

∫ ∞

−∞
H(jω)Sp(jω)HH(jω)dω =

1
2π

∫ ∞

−∞
Sq(jω)dω, (52)

where Sq(jω) is a matrix of double-sided spectral density of responses Sq(jω) =

H(jω)Sp(jω)HH(jω).
In the case of acting on the system of excitation of white noise nature Sp(ω) = I, the

matrix of spectral densities of response is the product of frequency response matrix H(jω)
and a matrix conjugated and transposed to HH(jω). The standard deviation of response
can be expressed by the formula:

σq =

(
1

2π

∫ ∞

−∞
H(jω)HH(jω)dω

)1/2
. (53)

Now consider the p-norm of matrix A =
[
Aij
]
. Let p≥ 1 be a real number. The p-norm

(also called Lp-norm) is expressed by the formula:

‖A‖Lp
=

(
n

∑
i=1

m

∑
j=1

∣∣Aij
∣∣p)1/p

. (54)

For p = 2, we get the L2-norm:

‖A‖L2
=

(
n

∑
i=1

m

∑
j=1

∣∣Aij
∣∣2)1/2

. (55)

For a multivariable (multiple inputs and multiple outputs (MIMO)), LTI system with
transfer matrix H(s) =

[
Hij(s)

]
, the definition (55) generalizes to
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1. Introduction 
The first general formulation of the research problem involving the parameter opti-

mization in a tuned mass dampers (TMD) attached to a single degree of freedom (SDOF)  
structure was suggested by Den Hartog [1]. He determined known formulas for TMD 
tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom) 
system with harmonic excitation. Recommendations in terms of the optimal TMD param-
eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
when the main mass of a SDOF system undergoes harmonic excitation. The response of a 
linear system to broadband response is different in the case of a harmonic excitation, be-
cause the first one occurs at system’s natural frequencies. In cases where broadband exci-
tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
points A, B (just like Den Hartog), and one central, between the previous two. He derived 
a new optimal damping factor value, which is 15% higher than the classic result. 

The most recent work that needs mentioning includes the one by Batou and Adhikari 
[7], which focused on an SDOF system with an attached viscoelastic damper. A standard 
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1
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tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom) 
system with harmonic excitation. Recommendations in terms of the optimal TMD param-
eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
when the main mass of a SDOF system undergoes harmonic excitation. The response of a 
linear system to broadband response is different in the case of a harmonic excitation, be-
cause the first one occurs at system’s natural frequencies. In cases where broadband exci-
tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
points A, B (just like Den Hartog), and one central, between the previous two. He derived 
a new optimal damping factor value, which is 15% higher than the classic result. 

The most recent work that needs mentioning includes the one by Batou and Adhikari 
[7], which focused on an SDOF system with an attached viscoelastic damper. A standard 
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2 (instead of L2) is due to the fact that the function spaces that, in
addition to having finite Lp norms on the imaginary axis, are bounded and analytic
functions in the right-half plane (RHP) (i.e., with no poles in the RHP) are called Hardy
spaces
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structure was suggested by Den Hartog [1]. He determined known formulas for TMD 
tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom) 
system with harmonic excitation. Recommendations in terms of the optimal TMD param-
eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
when the main mass of a SDOF system undergoes harmonic excitation. The response of a 
linear system to broadband response is different in the case of a harmonic excitation, be-
cause the first one occurs at system’s natural frequencies. In cases where broadband exci-
tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
points A, B (just like Den Hartog), and one central, between the previous two. He derived 
a new optimal damping factor value, which is 15% higher than the classic result. 

The most recent work that needs mentioning includes the one by Batou and Adhikari 
[7], which focused on an SDOF system with an attached viscoelastic damper. A standard 
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p. Thus, stable transfer functions belong to these spaces, provided the associated
integral is finite. So we can see that the
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1. Introduction 
The first general formulation of the research problem involving the parameter opti-

mization in a tuned mass dampers (TMD) attached to a single degree of freedom (SDOF)  
structure was suggested by Den Hartog [1]. He determined known formulas for TMD 
tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom) 
system with harmonic excitation. Recommendations in terms of the optimal TMD param-
eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
when the main mass of a SDOF system undergoes harmonic excitation. The response of a 
linear system to broadband response is different in the case of a harmonic excitation, be-
cause the first one occurs at system’s natural frequencies. In cases where broadband exci-
tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
points A, B (just like Den Hartog), and one central, between the previous two. He derived 
a new optimal damping factor value, which is 15% higher than the classic result. 

The most recent work that needs mentioning includes the one by Batou and Adhikari 
[7], which focused on an SDOF system with an attached viscoelastic damper. A standard 
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2-norm of the transfer matrix H(s) is the sum of
diagonal values of the standard deviations σq matrix for white noise excitation obtained

from the formula (53). Most of the authors ([16,20]) often use the expression ‖H‖2
H2

, which
is actually the square of the ‖H‖H2

norm, so it is not the
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1. Introduction 
The first general formulation of the research problem involving the parameter opti-

mization in a tuned mass dampers (TMD) attached to a single degree of freedom (SDOF)  
structure was suggested by Den Hartog [1]. He determined known formulas for TMD 
tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom) 
system with harmonic excitation. Recommendations in terms of the optimal TMD param-
eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
when the main mass of a SDOF system undergoes harmonic excitation. The response of a 
linear system to broadband response is different in the case of a harmonic excitation, be-
cause the first one occurs at system’s natural frequencies. In cases where broadband exci-
tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
points A, B (just like Den Hartog), and one central, between the previous two. He derived 
a new optimal damping factor value, which is 15% higher than the classic result. 

The most recent work that needs mentioning includes the one by Batou and Adhikari 
[7], which focused on an SDOF system with an attached viscoelastic damper. A standard 
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For a stable single input and single output (SISO) linear system with transfer function
H(s), the
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structure was suggested by Den Hartog [1]. He determined known formulas for TMD 
tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom) 
system with harmonic excitation. Recommendations in terms of the optimal TMD param-
eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
when the main mass of a SDOF system undergoes harmonic excitation. The response of a 
linear system to broadband response is different in the case of a harmonic excitation, be-
cause the first one occurs at system’s natural frequencies. In cases where broadband exci-
tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
points A, B (just like Den Hartog), and one central, between the previous two. He derived 
a new optimal damping factor value, which is 15% higher than the classic result. 

The most recent work that needs mentioning includes the one by Batou and Adhikari 
[7], which focused on an SDOF system with an attached viscoelastic damper. A standard 
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2-norm is defined as:
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structure was suggested by Den Hartog [1]. He determined known formulas for TMD 
tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom) 
system with harmonic excitation. Recommendations in terms of the optimal TMD param-
eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
when the main mass of a SDOF system undergoes harmonic excitation. The response of a 
linear system to broadband response is different in the case of a harmonic excitation, be-
cause the first one occurs at system’s natural frequencies. In cases where broadband exci-
tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
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a new optimal damping factor value, which is 15% higher than the classic result. 
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2-norm, which gives a characterization of the average gain of a
system, a more fundamental norm for systems is the
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∞-norm is defined as:

‖H‖H∞
= max

ω∈R
|H(jω)|, (58)

or, in the event that the maximum may not exist, more correctly as:

‖H‖H∞
= sup

ω∈R
|H(jω)|. (59)

Recall that |H(jω)| is the factor by which the amplitude of a sinusoidal input with
angular frequency ω is magnified by the system.

For multivariable MIMO systems, the

 
 

 

 
Appl. Sci. 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci 

Article 

Optimization of Multiple Tuned Mass Damper (MTMD) 
Parameters for a Primary System Reduced to a Single Degree of 
Freedom (SDOF) through the Modal Approach 
Piotr Wielgos 1,* and Robert Geryło 2 

1 Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40,  
20-618 Lublin, Poland 

2 Building Research Institute, Filtrowa 1, 00-611 Warsaw, Poland; r.gerylo@itb.pl 
* Correspondence: p.wielgos@pollub.pl 

Abstract: The research paper presents a novel approach toward constructing motion equations for 
structures with attached MTMDs (multiple tuned mass dampers). A primary system with MDOF 
(multiple dynamic degrees of freedom) was reduced to an equivalent system with a SDOF (single 
degree of freedom) through the modal approach, and equations from additional MTMDs were 
added to a thus-created system. Optimization based on ℌ2 and ℌ∞ for the transfer function associ-
ated with the generalized displacement of an SDOF system was applied. The research work utilized 
GA (genetic algorithms) and SA (simulated annealing method) optimization algorithms to deter-
mine the stiffness and damping parameters for individual TMDs. The effect of damping and stiff-
ness (MTMD tuning) distribution depending on the number of TMDs was also analyzed. The paper 
also reviews the impact of primary system mass change on the efficiency of optimized MTMDs, as 
well as confirms the results of other authors involving greater MTMD effectiveness relative to a 
single TMD. 

Keywords: FEM analysis; vibration control; ℌ2 and ℌ∞ optimization; MTMD; parameter optimiza-
tion 
 

1. Introduction 
The first general formulation of the research problem involving the parameter opti-

mization in a tuned mass dampers (TMD) attached to a single degree of freedom (SDOF)  
structure was suggested by Den Hartog [1]. He determined known formulas for TMD 
tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom) 
system with harmonic excitation. Recommendations in terms of the optimal TMD param-
eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
when the main mass of a SDOF system undergoes harmonic excitation. The response of a 
linear system to broadband response is different in the case of a harmonic excitation, be-
cause the first one occurs at system’s natural frequencies. In cases where broadband exci-
tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
points A, B (just like Den Hartog), and one central, between the previous two. He derived 
a new optimal damping factor value, which is 15% higher than the classic result. 

The most recent work that needs mentioning includes the one by Batou and Adhikari 
[7], which focused on an SDOF system with an attached viscoelastic damper. A standard 

Citation: Wielgos, P.; Geryło, R.  

Optimization of Multiple Tuned 

Mass Damper (MTMD) Parameters 

for a Primary System Reduced to a 

Single Degree of Freedom (SDOF) 

Through the Modal Approach.  

Appl. Sci. 2021, 10, x. 

https://doi.org/10.3390/xxxxx 

Received: 4 December 2020 

Accepted: 28 January 2021 

Published: 3 February 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 

∞-norm is defined in an analogous way:

‖H‖H∞
= sup

ω∈R
σ(H(jω)), (60)

where σ is the maximum singular value σ(H(jω)) of the matrix H(jω).
The system represented by Equation (18) can be considered as a SISO system with

additional forces from installed TMDs. The form of the objective function proposed for the
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2 optimization issue will have the following form:

minJ1 = ‖H‖H2
=

(
1

2π

∫ ∞

−∞

∣∣∣H jj(jω)
∣∣∣2dω

)1/2
. (61)
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∞ optimization issue was also proposed.
In this case, the optimization criterion is the minimization of the maximum values of the
FRF |H(jω)| (see Figure 3), which can be described by the formula:

minJ2 = ‖H‖H∞
= sup

ω∈R

∣∣∣H jj(jω)
∣∣∣. (62)
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Both cases of the FRF form and optimization included the FRF of the equivalent
system

∣∣∣H jj(jω)
∣∣∣, associated with the j degree of freedom, which was adopted as the

equivalent system reduction point, and with the i-th mode of structural natural vibrations
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and the corresponding value of modal displacement, associated with the primary ordinate
qji(t) = ajiψi(t).

2.3. The Issue of Optimization

The analysis used two optimization methods in the form of a standard genetic algo-
rithm (GA), and a simulated annealing (SA) algorithm. Ready libraries for the DELPHI
software environment were used.

The procedure for the numerical determination of the optimal parameters can be
summed up in the following steps:

1. Calculations of the eigenvalues and eigenvectors in Finite Element (FEM) software,
adopting baseline frequency ωi, to which MTMDs will be tuned;

2. Adopting a point for reducing a system to an equivalent SDOF system, normalization
of eigenvectors and determination of the parameters for the Equation (7);

3. Adopting a TMD number and initial parameters mt
k, ct

k, kt
k for the TMDs;

4. Adopting variables, which will be subject to the optimization process, e.g., ct
k, kt

k for a
constant value of mt

k (different constant parameter options possible);
5. Selection of the optimization method (GA or SA) and the optimization issue, calcula-

tions of the equivalent system FRF
∣∣∣H jj(jω)

∣∣∣, and the determination of values using
the Equations (61) or (62) at each optimization step;

6. After reaching the desired calculation accuracy (change of the J1 or J2) value, sav-
ing the obtained MTMD parameters, and calculations of the equivalent system FRF∣∣∣H jj(jω)

∣∣∣ associated with the j degree of freedom, which was adopted as the equiva-
lent system reduction point.

3. Numerical Example 1
3.1. Input Data

The analysis adopted a cantilever structure in the form of a chimney made of S235 steel,
with a height of h=160 m. The chimney parameters were selected so as to obtain the
first circular natural frequency equal to ω1 = 1 rad/s. The chimney diameter and its
wall thickness were adopted as a constant, along its entire height. These values equal
to, respectively, D = 4010 mm, g = 25.5 mm. The cantilever structure was divided into
40 beam elements with the following parameters: Young modulus E = 210 GPa, Poisson
coefficient ν = 0.3, and density ρ = 7850 kg/m3. First three natural vibration modes and their
corresponding eigenvalues were calculated. FE software was used to import a normalized
eigenvector for the first mode of the natural vibrations, which was then used to construct
motion equations for the structure reduced to SDOF system with attached TMD.

Figure 4 shows a FEM model with the numberings of the bars and modes, and a
presentation of the first three mode shapes and normalized eigenvectors.

The analysis adopted the issue of tuning TMD and MTMDs to the first natural fre-
quency ω1 = 1 rad/s. For this frequency, the adopted structural damping was in the
form of a damping ratio ζ1 = 0.02. The chimney tip (node 41) was selected as the
S point for reducing the structure to an SDOF equivalent system. The problem involved
finding optimal parameters for a single TMD and MTMDs in the form of 2, 4, 8, and
20 TMDs located also at the place of the highest ordinate of the first vibration mode,
which was node 41. New M, C, K matrices for the equivalent system were determined
based on the presented modal reduction equations. The equivalent mass determined from
the formula mji = m̃i/aji

2 = 1/aji
2 (where j is the system point of reduction, namely,

node 41, whereas i = 1 corresponds to the first natural vibration mode) amounted to
m41,1 = m̃1/a41,1

2 = 105 kg, equivalent stiffness was k41,1 = k̃1/a41,1
2 = 100 kN/m, and

equivalent damping was c41,1 = c̃1/a41,1
2 = 2ζ1ω1/a41,1

2 = 4× 103 kg/s. Numerical opti-
mization was conducted for all cases. For each case, the total MTMD mass was equal to the
mass of the single TMD, which was adopted as equal to m1

t = 2× 103 kg. Therefore, the
mass factor was µ = m1

t/m41,1 = 0.02. For all other cases, TMD masses were determined
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from the formula mk
t = µ ·m41,1/Nk. The natural circular frequency for a single TMD was

determined from the formula ωk
t =

√
kk

t/mk
t, whereas the damping factor values for in-

dividual TMDs were determined from the formula ck
t = 2ζk

tmk
tωk. Stiffness kk

t was used
to determine the dimensionless tuning ratio for a single TMD βk = ωk

t/ω1. Initial tuning
adopted for all dampers within the optimization amounted to βk = 1. This constituted a
base to adopt the starting values kk

t. Table 1 shows the adopted constant masses of a single
TMD and the adopted starting values of the kk

t and ζk
t MTMD parameters (values subject

to optimization), depending on the TMD number.
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TMD Number mk
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2 TMDs 1000 1.00 0.05
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The calculation process involved using the aforementioned GA and SA optimization
methods and the objective functions based on

 
 

 

 
Appl. Sci. 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci 

Article 

Optimization of Multiple Tuned Mass Damper (MTMD) 
Parameters for a Primary System Reduced to a Single Degree of 
Freedom (SDOF) through the Modal Approach 
Piotr Wielgos 1,* and Robert Geryło 2 

1 Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40,  
20-618 Lublin, Poland 

2 Building Research Institute, Filtrowa 1, 00-611 Warsaw, Poland; r.gerylo@itb.pl 
* Correspondence: p.wielgos@pollub.pl 

Abstract: The research paper presents a novel approach toward constructing motion equations for 
structures with attached MTMDs (multiple tuned mass dampers). A primary system with MDOF 
(multiple dynamic degrees of freedom) was reduced to an equivalent system with a SDOF (single 
degree of freedom) through the modal approach, and equations from additional MTMDs were 
added to a thus-created system. Optimization based on ℌ2 and ℌ∞ for the transfer function associ-
ated with the generalized displacement of an SDOF system was applied. The research work utilized 
GA (genetic algorithms) and SA (simulated annealing method) optimization algorithms to deter-
mine the stiffness and damping parameters for individual TMDs. The effect of damping and stiff-
ness (MTMD tuning) distribution depending on the number of TMDs was also analyzed. The paper 
also reviews the impact of primary system mass change on the efficiency of optimized MTMDs, as 
well as confirms the results of other authors involving greater MTMD effectiveness relative to a 
single TMD. 

Keywords: FEM analysis; vibration control; ℌ2 and ℌ∞ optimization; MTMD; parameter optimiza-
tion 
 

1. Introduction 
The first general formulation of the research problem involving the parameter opti-

mization in a tuned mass dampers (TMD) attached to a single degree of freedom (SDOF)  
structure was suggested by Den Hartog [1]. He determined known formulas for TMD 
tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom) 
system with harmonic excitation. Recommendations in terms of the optimal TMD param-
eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
when the main mass of a SDOF system undergoes harmonic excitation. The response of a 
linear system to broadband response is different in the case of a harmonic excitation, be-
cause the first one occurs at system’s natural frequencies. In cases where broadband exci-
tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
points A, B (just like Den Hartog), and one central, between the previous two. He derived 
a new optimal damping factor value, which is 15% higher than the classic result. 

The most recent work that needs mentioning includes the one by Batou and Adhikari 
[7], which focused on an SDOF system with an attached viscoelastic damper. A standard 

Citation: Wielgos, P.; Geryło, R.  

Optimization of Multiple Tuned 

Mass Damper (MTMD) Parameters 

for a Primary System Reduced to a 

Single Degree of Freedom (SDOF) 

Through the Modal Approach.  

Appl. Sci. 2021, 10, x. 

https://doi.org/10.3390/xxxxx 

Received: 4 December 2020 

Accepted: 28 January 2021 

Published: 3 February 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 

2 and

 
 

 

 
Appl. Sci. 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci 

Article 

Optimization of Multiple Tuned Mass Damper (MTMD) 
Parameters for a Primary System Reduced to a Single Degree of 
Freedom (SDOF) through the Modal Approach 
Piotr Wielgos 1,* and Robert Geryło 2 

1 Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40,  
20-618 Lublin, Poland 

2 Building Research Institute, Filtrowa 1, 00-611 Warsaw, Poland; r.gerylo@itb.pl 
* Correspondence: p.wielgos@pollub.pl 

Abstract: The research paper presents a novel approach toward constructing motion equations for 
structures with attached MTMDs (multiple tuned mass dampers). A primary system with MDOF 
(multiple dynamic degrees of freedom) was reduced to an equivalent system with a SDOF (single 
degree of freedom) through the modal approach, and equations from additional MTMDs were 
added to a thus-created system. Optimization based on ℌ2 and ℌ∞ for the transfer function associ-
ated with the generalized displacement of an SDOF system was applied. The research work utilized 
GA (genetic algorithms) and SA (simulated annealing method) optimization algorithms to deter-
mine the stiffness and damping parameters for individual TMDs. The effect of damping and stiff-
ness (MTMD tuning) distribution depending on the number of TMDs was also analyzed. The paper 
also reviews the impact of primary system mass change on the efficiency of optimized MTMDs, as 
well as confirms the results of other authors involving greater MTMD effectiveness relative to a 
single TMD. 

Keywords: FEM analysis; vibration control; ℌ2 and ℌ∞ optimization; MTMD; parameter optimiza-
tion 
 

1. Introduction 
The first general formulation of the research problem involving the parameter opti-

mization in a tuned mass dampers (TMD) attached to a single degree of freedom (SDOF)  
structure was suggested by Den Hartog [1]. He determined known formulas for TMD 
tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom) 
system with harmonic excitation. Recommendations in terms of the optimal TMD param-
eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
when the main mass of a SDOF system undergoes harmonic excitation. The response of a 
linear system to broadband response is different in the case of a harmonic excitation, be-
cause the first one occurs at system’s natural frequencies. In cases where broadband exci-
tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
points A, B (just like Den Hartog), and one central, between the previous two. He derived 
a new optimal damping factor value, which is 15% higher than the classic result. 

The most recent work that needs mentioning includes the one by Batou and Adhikari 
[7], which focused on an SDOF system with an attached viscoelastic damper. A standard 

Citation: Wielgos, P.; Geryło, R.  

Optimization of Multiple Tuned 

Mass Damper (MTMD) Parameters 

for a Primary System Reduced to a 

Single Degree of Freedom (SDOF) 

Through the Modal Approach.  

Appl. Sci. 2021, 10, x. 

https://doi.org/10.3390/xxxxx 

Received: 4 December 2020 

Accepted: 28 January 2021 

Published: 3 February 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 

∞ norms in the form of J1 and J2.
The frequency range when determining the objective function was (0.0 rad/s:π rad/s).

3.2. Numerical Optimization Results—Comparison of the GA and SA Heuristic Methods

Both heuristic methods do not guarantee finding an exact solution, which is the
consequence of the very specificity of the methods. The optimization procedures GA and
SA were validated on the 1TMD, 2TMD, and 4TMD models. The parameters of stiffness
and damping ratio obtained from both GA and SA optimization methods did not differ.
Additionally, both methods were compared for the case of 10TMD (Zuo and Nayfeh [20])
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attached to an undamped primary system. Figure 5 shows the optimal TMD parameter
values obtained using both methods. Compared to SA, the GA method did not provide
results convergent with the results presented in the work by Zuo and Nayfeh [20], while the
obtained values of TMDs’ parameters form SA were completely convergent. Unfortunately,
with a greater number of optimization variables, the GA algorithm was less stable than the
SA algorithm. The obtained results are discussed in greater detail in Section 5. Only the SA
optimization method was applied in the further part of the optimization calculations.
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3.3. Numerical Optimization Results—SA Method

Optimal MTMD parameters, which are discussed below, were obtained as a result
of computations. Table 2 shows the end values of the J1 and J2 objective functions, after
the completion of the SA optimization process, using the J1 and J2 objective functions. In
addition, it also specifies the percentage change of the objective function value, relative to
a 1TMD system. Computation accuracy was adopted at a level of 10−10.

Table 2. The value of the J1 and J2 functions after completed optimization with the SA method.

TMD Number J1 Value J1 Change J2 Value J2 Change

[m/(kN*sˆ0.5)] [%] [m/kN] [%]

SDOF 2.4910 × 10−2 2.5005 × 10−1

1 TMD 1.5515 × 10−2 0.00% 7.4579 × 10−2 0.00%
2 TMDs 1.5203 × 10−2 −2.01% 6.8248 × 10−2 −8.49%
4 TMDs 1.5001 × 10−2 −3.31% 6.4091 × 10−2 −14.06%
8 TMDs 1.4875 × 10−2 −4.12% 6.1620 × 10−2 −17.38%

20 TMDs 1.4783 × 10−2 −4.72% 6.0202 × 10−2 −19.28%

Tables 3 and 4 show optimal MTMD parameters obtained with optimized J1 and J2
objective functions. A tabular presentation of the 20 TMDs was omitted due to the high
number of the results. Results for these cases are shown as drawings in the next section.
Figure 6a shows a graph of the FRF module for an equivalent system

∣∣H41,41
∣∣, for a different

number of TMDs, and with applied J1 objective function, while Figure 6b shows the same
for the J2 objective function.

3.4. Impact of Primary System Mistuning

The analysis also covered the impact by the changing mass of the equivalent structure
m41,1, on the value of the equivalent structure FRF

∣∣H41,41
∣∣ for a structure with attached

MTMDs with optimal parameters, predetermined based on the J1 and J2 objective functions.
A 10% reduction and increase in the equivalent structure mass was assumed, which resulted
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in the change of the natural circular frequencies to a value of ω1
−10% = 1.05409 rad/s and

ω1
+10% = 0.95346 rad/s, respectively. Figure 7a shows a graph of the FRF module for

an equivalent system
∣∣H41,41

∣∣, for a mass reduction of 10% and a different number of
TMDs, and with applied J1 objective function, while Figure 7b shows the same for the J2
objective function. Figure 8a,b shows analogous graphs but for a mass increase of 10%
(designation +10% and −10% means an increase and reduction of the m41,1 equivalent
mass, respectively).

Table 3. Optimal kk
t, ζk

t, βk values obtained for the J1 objective function.

MTMD No.
mk

t kk
t ζk

t βk

[kg] [kN/m] [–] [–]

1 TMD 1 2000 1.960905 0.068462 0.990178

2 TMDs
1 1000 0.895498 0.041605 0.946307
2 1000 1.096614 0.044381 1.047193

4 TMDs

1 500 0.419478 0.025349 0.915945
2 500 0.470454 0.025186 0.970004
3 500 0.526416 0.025998 1.026076
4 500 0.595890 0.028082 1.091687

8 TMDs

1 250 0.200353 0.016536 0.895215
2 250 0.214738 0.014990 0.926796
3 250 0.228431 0.014593 0.955889
4 250 0.242203 0.014669 0.984282
5 250 0.256858 0.015086 1.013624
6 250 0.273079 0.015356 1.045139
7 250 0.291974 0.015877 1.080691
8 250 0.316299 0.017789 1.124809

Table 4. Optimal kk
t, ζk

t, βk values obtained for the J2 objective function.

MTMD No.
mk

t kk
t ζk

t βk

[kg] [kN/m] [–] [–]

1 TMD 1 2000 1.905820 0.089169 0.976171

2 TMDs
1 1000 0.878697 0.056278 0.937388
2 1000 1.046257 0.062921 1.022867

4 TMDs

1 500 0.413107 0.036608 0.908964
2 500 0.456409 0.038155 0.955415
3 500 0.503223 0.039621 1.003218
4 500 0.560626 0.041295 1.058892

8 TMDs

1 250 0.198173 0.023339 0.890332
2 250 0.210676 0.024023 0.917988
3 250 0.222606 0.025988 0.943624
4 250 0.233932 0.028452 0.967329
5 250 0.245215 0.028899 0.990383
6 250 0.258339 0.027081 1.016542
7 250 0.274253 0.026689 1.047383
8 250 0.293970 0.026947 1.084380
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3.5. Discussion

The analyses presented in Section 3 were used as a base to compare the application of
the SA optimization method and the J1 and J2 objective functions with known analytical
solutions in terms of a single TMD. Table 5 shows known formulas for the determination
of the optimal parameters for TMD usually determined from a TDOF system, with stated
values of the optimal parameters. The table also presents original results for 1 TMD, taking
into account natural damping of the primary system, as well as without it. Figure 8 shows
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an equivalent system FRF module graph for optimal TMD parameters. When analyzing
the obtained solution (see Table 5 and Figure 9a), in the case of no damping of the primary
system ζ1 = 0 and in comparison with the Den Hartog solution [1], which has been known
for years, one can state very good conformity of the optimal tuning parameters β1 and the
TMD damping factor ζ1

t, whereas optimal TMD parameters proposed by Warburton [2],
upon a harmonic excitation, are close to the parameters obtained through calculations of
the J2 objective function optimization. The solution proposed by Ren [31] suits a different
kind of TMD, where the damping element is not connected with the primary mass but
with the substrate (other motion equations); hence, it is impossible to directly apply the
optimal parameter formulas proposed in this study as parameters for a standard TDOF
system. Furthermore, please note that optimal TMD parameters based on the
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2 norm
(white noise input), i.e., determined from the J1 objective function, provided similar TMD
efficiency, as suggested by Warburton in [3].

Table 5. Optimal parameters and J1 and J2 objective function values for 1TMD, based on various authors (values for
µ = 0.02).

Tuning
βopt

Damping
ζopt

J1 Value
ζ1 = 0

J2 Value
ζ1 = 0

J1 Value
ζ1 = 0.02

J2 Value
ζ1 = 0.02

[m/(kN*s0.5] [m/kN] [m/(kN*s0.5] [m/kN]

Den Hartog
1

1+µ

0.9803922

√
3µ

8(1+µ)

0.0870388
1.886 × 10−2 1.005 × 10−1 1.559 × 10−2 7.676 × 10−2

Warburton
(1981)

1
1+µ

√
2+µ

2

0.9852819

√
µ(4+3µ)

8(1+µ)(2+µ)

0.0701871
1.866 × 10−2 1.091 × 10−1 1.550 × 10−2 8.176 × 10−2

Warburton
(1982)

1
1+µ

√
2−µ

2

0.9754779

√
3µ

8(1+µ)(1−µ/2)

0.0861813
1.891 × 10−2 1.057 × 10−1 1.560 × 10−2 7.497 × 10−2

Ren

√
1

1−µ

1.0101525

√
3µ

8(1−µ/2)

0.0870388
1.941 × 10−2 1.366 × 10−1 - -

Nishihara and
Matsuhisa

1
1+µ

(
1− ζ1

√
µ

1+µ−ζ1
2

)
0.9776460

ζ1+
√

µ(1+µ−ζ1
2)

1+µ

0.1596084
- - 1.677 × 10−2 9.865 × 10−2

Proposed J1
ζ1 = 0

-
0.9890635

-
0.0682140 1.885 × 10−2 1.148 × 10−2 - -

Proposed J2
ζ1 = 0

-
0.9803647

-
0.0853719 1.868 × 10−2 1.006 × 10−2 - -

Proposed J1
ζ1 = 0.02

-
0.9901779

-
0.0684623 - - 1.563 × 10−2 8.521 × 10−2

Proposed J2
ζ1 = 0.02

-
0.9761710

-
0.0891687 - - 1.552 × 10−2 7.458 × 10−2

In the case of an analysis covering a structure including natural damping of the
primary system, we can observe that FRF module graphs, developed based on optimal
Den Hartog and Warburton parameters, are no longer consistent with the graphs based on
the parameters obtained through the
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∞ methods, that is, the J1 and J2 objective
functions. This, of course, stems from the fact that these formulas do not include natural
damping ζ1, whereas, when comparing to the Matsuhis solution [32], where the optimal
parameters were obtained based on the stability criterion, taking into account ζ1, it should
be concluded that his solution was optimal neither for harmonic excitations nor for white
noise input.
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2 norm and used
state space equations for an SDOF system with attached MTMDs. The work also presents
tuning increment graphs for individual TMDs in the form of βk − βk−1. The authors of that
article also conducted such simulations for n = 10 (number of TMD), ζ1 = 0, and µ = 0.05.
Figure 10 shows tuning βk and damping ratio ζk distribution based on the number of
TMDs, while Figure 11 shows tuning increments and tuning factor for individual TMDs
in the form of βk − βk−1 and ζk − ζk−1. The obtained βk, ζk

t and βk − βk−1 parameters
exhibited very good conformity with the results of Zuo and Nayfeh [20].
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Figure 10. Optimal tuning ratios βk and damping ratios ζk
t of the individual TMD for µ = 0.05 and ζ1 = 0 obtained on the

basis of J1.
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In the course of analyzing the results shown in Section 3, which concern the opti-
mization of MTMDs located at the tip of a h = 160-m-high chimney, higher effectiveness
of MTMDs relative to a single TMD can be confirmed (see Table 2 and Figure 6). This is
particularly clear to optimal parameters determined with the J2 objective function, where
the location of the flat section of graph

∣∣H41,41
∣∣ in the area of ω1 can be seen increasingly

lower (Figure 6b). Another issue that needs to be stressed are the graphs
∣∣H41,41

∣∣ (Figure 6a)
for TMD tuning in the form of white noise
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1. Introduction 
The first general formulation of the research problem involving the parameter opti-

mization in a tuned mass dampers (TMD) attached to a single degree of freedom (SDOF)  
structure was suggested by Den Hartog [1]. He determined known formulas for TMD 
tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom) 
system with harmonic excitation. Recommendations in terms of the optimal TMD param-
eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
when the main mass of a SDOF system undergoes harmonic excitation. The response of a 
linear system to broadband response is different in the case of a harmonic excitation, be-
cause the first one occurs at system’s natural frequencies. In cases where broadband exci-
tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
points A, B (just like Den Hartog), and one central, between the previous two. He derived 
a new optimal damping factor value, which is 15% higher than the classic result. 

The most recent work that needs mentioning includes the one by Batou and Adhikari 
[7], which focused on an SDOF system with an attached viscoelastic damper. A standard 
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Furthermore, Figure 12 shows a function variability graph depending on the number
of TMDs. Of course, higher MTMD efficiency relative to TMDs can be observed for both
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∞ (J2 function).
It can be seen (see Figure 12a) that in the case of random excitation, which corresponds to
the value of the J1 function and TMDs tuned to harmonic excitation (optimal parameters
based on the optimization of function J2), we get a lower MTMD efficiency. Figure 12b
indicates an inverse relationship.
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When analyzing the results concerning the primary system mass change (see
Figures 7 and 8), for an approximately 5% difference in the value of ω1 (“structural mis-
tuning”), MTMDs are more effective than a single TMD. A lower effectiveness with a
higher number of TMDs tuned to harmonic excitations can be observed only in the case
of TMDs tuned based on J2 optimization and reducing the primary system mass increase
in frequency ω1

−10% = 1.05409 rad/s. In the event of such a primary system mistuning,
better effectiveness was exhibited by MTMDs tuned based on J1, which resulted from the
aforementioned broadband excitation on the side of frequencies higher than ω1. It can also
be concluded that a reduction in the primary system mass had a more adverse influence
on the structural response and MTMD operation than mass increase. These relationships
are shown in Figure 13. It can also be assumed that with a low difference (below 5%)
between the calculated natural frequencies of the structure and the ones determined for a
real structure, it is advisable to use MTMDs instead of a single TMD. The aforementioned
analyses confirm the general conclusions included in the works by Zuo and Nayfeh [20] as
well as Li and Ni [21] concerning the higher effectiveness of MTMDs relative to TMDs.
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∞ norm. As far as the tuning
distribution is concerned, we can observe increased factor βk for TMDs tuned above
and below the ω1 frequency. The area of TMDs tuned to values beyond ω1 exhibited a
significantly higher growth of the value βk, especially for the parameters obtained from the
J1 objective function, which is particularly well illustrated by the graphs βk − βk−1. If we
consider the optimal tuning ratio graphs for individual ζk

t, we can observe a derivative
characteristic, but only for the J1 function, although the increments ζk

t − ζt
k−1 no longer

show a similar dependency as βk − βk−1. On the other hand, the optimal parameters ζk
t

obtained based on the J2 function look completely different. In this case, the graph shows a
significant drop in the ζk

t values for “central” TMDs tuned on ω1.
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Office “A” located in the city of Lublin in Poland. The building is set on a foundation slab 
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ries are 3.5 m and the overground stories are 3.9 m. The total height of the building is 56.55 
m. Figure 17a shows the architectural visualization of the building, while Figure 17b 
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t and damping

ratios’ spacings ζk − ζk−1 of the individual TMD for Nk = 8, µ = 0.02, and ζ1 = 0.02.
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t and damping

ratios’ spacings ζk − ζk−1 of the individual TMD for Nk = 20, µ = 0.02, and ζ1 = 0.02.

4. Numerical Example 2
4.1. Input Data

The next analysis is an example of the optimization of MTMD mounted on a complex,
reinforced concrete structure in the form of a tall building. The analysis included Gray
Office “A” located in the city of Lublin in Poland. The building is set on a foundation slab
with two underground and 13 aboveground stories. The heights of the underground stories
are 3.5 m and the overground stories are 3.9 m. The total height of the building is 56.55 m.
Figure 17a shows the architectural visualization of the building, while Figure 17b shows
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the structural plans of floors 3 and 13. The main load-bearing system is the reinforced
concrete core of the building (modified for the present analysis by adding walls in the E-H
axes), with wall thicknesses from 20 cm to 65 cm. The remaining load-bearing structure
is a reinforced concrete slab ceiling (ceilings thickness from 25 cm to 45 cm), based on
reinforced concrete pillars of various dimensions from 60–100 cm.

Figure 18 shows the FEM model of the system. The used beam and shell elements
with concrete parameters C25/C30 are Young modulus E = 32 GPa, Poisson coefficient
ν = 0.2, and density ρ = 2870 kg/m3 (increasing the density to accommodate the flooring
layers). The number of nodes in the model was 11,894, and the total number of equations
in the modal analysis was 69,912.

The first 11 corresponding natural vibration modes and their eigenvalues were calcu-
lated. Table 6 presents the description of particular modes of vibration below the value
of f < 5 Hz, while Figure 19 shows selected modes’ shapes, disregarding the local natu-
ral frequencies (f 4 to f 8) of the cantilever beams located on the last floor of the building.
The frequencies of natural vibrations were separated. The first flexural form of natural
vibrations in the Y direction corresponded to f 1 = 0.8431 Hz, and the next bending form
of vibrations occurred at the frequency f 2 = 1.3476 Hz. FE software was used to import a
normalized eigenvector for the first mode of the natural vibrations, which was then used to
construct motion equations for the structure reduced to SDOF system with attached TMDs.

Table 6. The compilation of dynamic characteristics of structure.

Item
No.

Frequency
[Hz]

Period of Vibrations
[s] Form of Vibration

1 0.8431 1.18607 flexural in the Y direction
2 1.3476 0.74207 torsional
3 1.4488 0.69022 torsional
4 2.5197 0.39688 local flexural form of cantilevers
5 2.5222 0.39647 local flexural form of cantilevers
6 2.9290 0.34141 local flexural form of cantilevers
7 2.9361 0.34059 local flexural form of cantilevers
8 2.9372 0.34046 local flexural form of cantilevers
9 4.0457 0.24717 flexural in the Y direction
10 4.3516 0.22980 torsional
11 4.8888 0.20455 flexural in the Z direction

The analysis adopted the issue of tuning MTMD to the first natural frequency
f 1 = 0.8431 Hz. The damping value was assumed in the form of a logarithmic damp-
ing decrement δ = 0.08. Node 11,110 was accepted was selected as the S point for reducing
the structure to an SDOF equivalent system. The problem involved finding optimal pa-
rameters for MTMDs in the form of 2, 4, and 6 TMDs located on the ceiling of the top floor.
There were three cases of TMDs attachment: 2 TMDs, at nodes 11,110 and 11,111; 4 TMDs,
at nodes 11,243, 10,977, 11,222, and 11,004; 6 TMDs, at nodes 11,243, 11,110, 10,977, 11,222,
11,111, and 11004. The Y direction was adopted as the operating direction of all TMDs. The
designations of the nodes are shown in Figure 20.

New M, C, K matrices for the equivalent system were determined based on the
presented modal reduction equations. The equivalent mass determined from the for-
mula mji = m̃i/aji

2 = 1/aji
2 (where j is the system point of reduction, namely, node

11,110, whereas i = 1 corresponds to the first natural vibration mode) amounted to
m11110,1 = m̃1/a2

11110,1 = 6.7449× 106 kg, equivalent stiffness was k11110,1 = k̃1/a2
11110,1 =

ω1
2/a2

11110,1 = 1.8909× 105 kN/m, and equivalent damping was c11110,1 = c̃1/a2
11110,1 =

2ζ1ω1/a2
11110,1 = 9.09× 102 kg/s. Numerical optimization was conducted for all cases. For

each case, the total MTMD stiffness was equal to the stiffness of the 1 TMD, which was
adopted as equal to k1

t = 120 kN/m. For all other cases, TMDs’ stiffness was determined
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from the formula kk
t = k1

t/Nk. In the optimization process, the variables were the mass
mk

t and the damping ratio ζk
t.

The calculation process involved using the aforementioned SA optimization methods
and the objective functions based on
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4.2. Numerical Optimization Results and Discussion

Optimal MTMD parameters were obtained as a result of computations. Tables 7 and 8
show optimal MTMD parameters obtained with optimized J1 and J2 objective functions.
Figure 21 shows plots of the FRF module for node 11,110 for X and Y direction, respectively
(for original system with a different number of TMDs and J1 optimization), while Figure 22
shows the same FRF module plots for the J2 objective function. From the analysis of plots
of the FRF module (Figures 21 and 22), it can be seen that for the X direction, we did
not observe changes in the FRF module value, while for the Y direction, we observed
a decrease in the FRF module value in the first natural frequency range f 1 = 0.8431 Hz.
Additionally, we can observe that the vibration frequencies f 4 to f 8 are not visible on the
FRF module plots.

Table 7. Optimal mk
t, ζk

t, βk values obtained for the J1 objective function.

MTMD No.
mk

t kk
t ζk

t βk

[103 kg] [kN/m] [–] [–]

2 TMDs
1 2.09840 60 0.007908 1.009423
2 2.18777 60 0.007888 0.988589

4 TMDs

1 1.03307 30 0.004949 1.017274
2 1.05885 30 0.004739 1.004811
3 1.08320 30 0.004698 0.993454
4 1.11004 30 0.005010 0.981369

6 TMDs

1 0.68397 20 0.003796 1.020795
2 0.69665 20 0.003459 1.011457
3 0.70786 20 0.003420 1.003420
4 0.71903 20 0.003489 0.995597
5 0.73084 20 0.003547 0.987518
6 0.74467 20 0.003926 0.978307

Figure 23 shows the FRF module in the Y direction for two nodes, 11,110 and 11,111,
in the frequency range 0.8 Hz to 0.9 Hz. As in the previous example, the same nature of the
FRF module plots for the optimal TMD parameters obtained from the functions J1 and J2
can be observed. However, it should be borne in mind that the optimization process was
carried out on the equivalent displacement of the SDOF system, while the FRF module
plots were presented for the original system with thousands of DOF. The presented graphs
also show the fact of greater efficiency of MTMD with an increasing number of TMDs.
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Table 8. Optimal mk
t, ζk

t, βk values obtained for the J2 objective function.

MTMD No.
mk

t kk
t ζk

t βk

[103 kg] [kN/m] [–] [–]

2 TMDs
1 2.10516 60 0.011970 1.007800
2 2.18180 60 0.011816 0.989942

4 TMDs

1 1.03823 30 0.008284 1.014739
2 1.06098 30 0.007508 1.003804
3 1.08231 30 0.007402 0.993861
4 1.10542 30 0.007627 0.983416

6 TMDs

1 0.68809 20 0.006004 1.017729
2 0.69927 20 0.005902 1.009561
3 0.70923 20 0.005837 1.002452
4 0.71897 20 0.005787 0.995633
5 0.72918 20 0.005922 0.988639
6 0.74093 20 0.006122 0.980767
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5. Conclusions

The adopted novel method for developing motion equations enables adding single
TMDs or MTMDs to completely different degrees of freedom of the primary system. The
system of equations allows for easy MTMD tuning for complex vibrations modes, with
MTMDs located in local maxima of these vibrations’ modes, while still analyzing the SDOF
system with attached MTMDs. Locating MTMDs at the tip of the chimney provided a
possibility to compare the results with studies on MTMD tuning. The next stage of the
research was to optimize MTMD parameters in a complex structure, but still analyze as an
SDOF system. Of course, the thesis of better effectiveness of MTMD over a single TMD
was confirmed.
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t free optimization was
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Abstract: The research paper presents a novel approach toward constructing motion equations for 
structures with attached MTMDs (multiple tuned mass dampers). A primary system with MDOF 
(multiple dynamic degrees of freedom) was reduced to an equivalent system with a SDOF (single 
degree of freedom) through the modal approach, and equations from additional MTMDs were 
added to a thus-created system. Optimization based on ℌ2 and ℌ∞ for the transfer function associ-
ated with the generalized displacement of an SDOF system was applied. The research work utilized 
GA (genetic algorithms) and SA (simulated annealing method) optimization algorithms to deter-
mine the stiffness and damping parameters for individual TMDs. The effect of damping and stiff-
ness (MTMD tuning) distribution depending on the number of TMDs was also analyzed. The paper 
also reviews the impact of primary system mass change on the efficiency of optimized MTMDs, as 
well as confirms the results of other authors involving greater MTMD effectiveness relative to a 
single TMD. 
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1. Introduction 
The first general formulation of the research problem involving the parameter opti-

mization in a tuned mass dampers (TMD) attached to a single degree of freedom (SDOF)  
structure was suggested by Den Hartog [1]. He determined known formulas for TMD 
tuning and a critical damping ratio in consideration of a TDOF (two degrees of freedom) 
system with harmonic excitation. Recommendations in terms of the optimal TMD param-
eter set can also be found in the work by Warburton [2] for a deterministic case, that is, 
when the main mass of a SDOF system undergoes harmonic excitation. The response of a 
linear system to broadband response is different in the case of a harmonic excitation, be-
cause the first one occurs at system’s natural frequencies. In cases where broadband exci-
tation has an almost constant spectrum within the natural frequency range, it is conven-
ient to replace it with white noise. In his work [3], Warburton provided formulas for op-
timal TMD parameters at exactly such excitation. Similar discussions were conducted by 
Bakre and Jangid in [4,5]. A different approach to the issue of determining TMD parame-
ter values was proposed by Krenk [6], who suggested aligning the ordinates of three 
points A, B (just like Den Hartog), and one central, between the previous two. He derived 
a new optimal damping factor value, which is 15% higher than the classic result. 

The most recent work that needs mentioning includes the one by Batou and Adhikari 
[7], which focused on an SDOF system with an attached viscoelastic damper. A standard 
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∞ norms,
especially for the ζk

t parameters, where the ζk
t − ζt

k−1 increments showed totally different
forms for both J1 and J2 objective functions.
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