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Abstract: This article studies a composer style classification task based on raw sheet music images.
While previous works on composer recognition have relied exclusively on supervised learning, we
explore the use of self-supervised pretraining methods that have been recently developed for natural
language processing. We first convert sheet music images to sequences of musical words, train
a language model on a large set of unlabeled musical “sentences”, initialize a classifier with the
pretrained language model weights, and then finetune the classifier on a small set of labeled data.
We conduct extensive experiments on International Music Score Library Project (IMSLP) piano data
using a range of modern language model architectures. We show that pretraining substantially
improves classification performance and that Transformer-based architectures perform best. We also
introduce two data augmentation strategies and present evidence that the model learns generalizable
and semantically meaningful information.

Keywords: sheet music; style recognition; composer identification; language model; pretraining;
self-supervised

1. Introduction

While much of the research involving sheet music images revolves around optical
music recognition (OMR) [1], there are a lot of other interesting applications and problems
that can be solved without requiring OMR as an initial preprocessing step. Some recent
examples include piece identification based on a cell phone picture of a physical page
of sheet music [2], audio-sheet image score following and alignment [3,4], and finding
matches between the Lakh MIDI dataset and the International Music Score Library Project
(IMSLP) database [5]. This article explores a composer style classification task based on
raw sheet music images. Having a description of compositional style would be useful in
applications such as music recommendation and generation, as well as an additional tool
for musicological analysis of historical compositions.

Many previous works have studied various forms of the composer classification or
style recognition task. Previous works generally adopt one of three broad approaches to
the problem. The first approach is to extract manually designed features from the music
and then apply a classifier. Some features that have been explored include chroma infor-
mation [6,7], expert musicological features [8–10], low-level information such as musical
intervals or counterpoint characteristics [11,12], high-level information such as piece-level
statistics or global features that describe piece structure [7,13], and pre-defined feature sets
such as the jSymbolic toolbox [14,15]. Many different classifiers have been explored for this
task, including more interpretable models like decision trees [12,14] and KNN [16], simple
classifiers like logistic regression [10] or SVMs [8,14], and more complex neural network
models [7,17]. The second approach is to feed low-level features such as notes or note
intervals into a sequence-based model. The two most common sequence-based models
are N-gram language models [13,18–20] and Markov models [21,22]. In this approach,
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an N-gram model or Markov model is trained for each composer, and a query is classified
by determining which model has the highest likelihood. The third approach is to feed the
raw data into a neural network model and to learn meaningful feature representations
directly from the data. While this approach is not new (e.g., [23]), most recent works on
composer classification have adopted this approach by applying a convolutional neural
network (CNN) to a piano roll-like representation of the data [24–26]. CNN models can be
considered the current state-of-the-art in composer classification.

This article differs from previous work in two significant ways. First, we study the
composer classification task using raw sheet music images rather than symbolic music
formats such as MIDI, MusicXML [27], **kern [28], or MEI [29]. This arguably makes the
problem much more challenging, but it comes with one very significant advantage: data.
Most previous works are highly constrained by the scarcity of symbolic music data, which
leads to a reliance on manually designed features, overly simplistic model architectures,
and/or a focus on narrowly defined classification tasks (e.g., Mozart vs. Haydn string
quartet binary classification task [8,10,13,26]). In contrast, there is an enormous quantity
of sheet music image data available on IMSLP. Second, our approach seeks to leverage
unlabeled data to improve classification performance. Rather than relying exclusively on
supervised learning, we explore self-supervised pretraining approaches to take advantage
of the vast quantities of data available online. In our experiments, we use all solo piano
sheet music images in IMSLP.

Our approach utilizes recent advances in transfer learning in natural language process-
ing (NLP). Prior to 2018, transfer learning in NLP primarily consisted of using pretrained
word embeddings such as word2vec [30,31] or GloVe [32]. Classifiers would use the pre-
trained word embeddings as the first layer in the model, and the weights in all remaining
layers would be trained on task-specific labeled training data. In 2018, Howard and Ruder
proposed ULMFit [33], in which they first trained an LSTM-based language model on a
large set of unlabeled data, and then added a classification head on top of the pretrained
language model. While this paradigm was not novel (e.g., [34]), Howard and Ruder’s
study was significant in that they were able to achieve state-of-the-art results on a range of
NLP tasks using this approach. Many other language model approaches were developed
soon after that utilized the Transformer architecture [35], such as GPT-2 [36] and BERT [37].
These Transformer-based architectures have been the basis of many recent extensions and
variants (e.g., [38–40]). Virtually all modern NLP systems utilize this type of self-supervised
language model pretraining.

Our approach to the composer style classification problem is to represent sheet music
images in a bootleg score feature representation [41], convert the bootleg score information
into characters or words in a musical language, and then treat the task as a text classification
problem. Our text classifier can be pretrained by training a language model on a large set
of unlabeled musical “sentences” and then finetuned on a small set of labeled data.

This article has three main contributions. First, we propose an approach to the com-
poser style classification problem that utilizes self-supervised language model pretraining
on a large set of unlabeled data. Our approach can therefore be trained effectively with
only a small set of labeled data. Second, we provide extensive experimental results with a
range of modern language model architectures. In particular, we show that pretraining
significantly boosts classification performance and that Transformer-based architectures
substantially outperform LSTM and CNN-based models. Third, we conduct several anal-
yses to provide deeper insight into model performance. This includes best practices for
data augmentation, evidence that the model is learning semantically meaningful represen-
tations, and proof that the model captures a more general notion of compositional style
that extends beyond the composers in the classification task.

This article is a conference-to-journal extension of Tsai and Ji [42]. It extends this
previous work in the following ways: (a) it proposes two different forms of data augmenta-
tion that lead to dramatically improved results (Sections 3.2 and 3.3), (b) characterizes the
impact of these data augmentation strategies (Section 4.1), (c) visualizes a t-SNE plot of
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selected bootleg score features (Section 4.3) in order to gain intuition about what the model
is learning, (d) explores the importance of left and right hand information in classifying
queries (Section 4.2), and (e) conducts experiments on unseen composers using the trained
models as feature extractors in order to show that the models learn a generalizable notion of
compositional style that extends beyond the composers in the labeled dataset (Section 4.4).

2. Materials and Methods

Figure 1 shows an overview of our proposed approach to the composer style classifica-
tion task. There are three main stages: pretraining, finetuning, and inference. We describe
each of these in detail in the next three subsections.

Figure 1. Overview of approach to composer style classification of sheet music images. The input x
is a raw sheet music image, and the label y indicates the composer.

2.1. Pretraining

The first stage is to pretrain the model using self-supervised language modeling.
Given a set of unlabeled sheet music images, the output of the pretraining stage is a trained
language model. The pretraining consists of four steps, as shown at the top of Figure 1.

The first step of pretraining is to convert each sheet music image into a bootleg score
representation. The bootleg score [41] is a mid-level feature representation that encodes the
sequence and positions of filled noteheads in sheet music. It was originally proposed for
a sheet image-MIDI retrieval task, but has been successfully applied to other tasks such
as sheet music identification [2] and audio-sheet image synchronization [43]. The bootleg
score itself is a 62 × N binary matrix, where 62 indicates the total number of possible staff
line positions in both the left- and right-hand staves and N indicates the total number of
grouped note events after collapsing simultaneous note onsets (e.g., a chord containing
four notes would constitute a single grouped note event). Figure 2 shows a short excerpt
of sheet music and its corresponding bootleg score which contains N = 23 grouped note
events. The bootleg score is computed by detecting three types of musical objects in the
sheet music: staff lines, bar lines, and filled noteheads. Because these objects all have simple
geometric shapes (i.e., straight lines and circles), they can be detected reliably and efficiently
using classical computer vision techniques such as erosion, dilation, and blob detection.
The feature extraction has no trainable weights and only about 30 hyperparameters, so it is
very robust to overfitting. Indeed, the feature representation has been successfully used
with very different types of data, including synthetic sheet music, scanned sheet music,
and cell phone pictures of physical sheet music. For more details on the bootleg score
feature representation, the reader is referred to [41].
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Figure 2. A short excerpt of sheet music and its corresponding bootleg score. Filled noteheads in
the sheet music are identified and encoded as a sequence of binary columns in the bootleg score
representation. The staff lines in the bootleg score are shown as a visual aid, but are not present in
the actual representation.

The second step in pretraining is to augment the data by pitch shifting. One interesting
characteristic about the bootleg score representation is that key transpositions correspond
to shifts in the feature representation. Therefore, one easy way to augment the data is to
consider shifted versions of each bootleg score up to a maximum of ±K shifts. For example,
when K = 2, this augmentation strategy will result in five times more data: the original data
plus versions with shifts of +2, +1, −1, and −2. When pitch shifting causes a notehead to
“fall off” the bootleg score canvas (e.g., a notehead near the top of the left-hand staff gets
shifted up beyond the staff’s range), the notehead is simply eliminated. In our experiments,
we considered values of K up to 3.

The third step in pretraining is to tokenize each bootleg score into a sequence of words
or subwords. This is done in one of two ways, depending on the underlying language
model. For word-based language models (e.g., AWD-LSTM [44]), each column of the
bootleg score is treated as a single word. In practice, this can be done easily by simply
representing each column of 62 bits as a single 64-bit integer. Words that occur fewer than
three times in the data are mapped to a special unknown token <UNK>. For subword-
based language models (e.g., GPT-2 [36], RoBERTa [45]), each column of the bootleg score
is represented as a sequence of 8 bytes, where each byte constitutes a single character.
The list of unique characters forms the initial vocabulary set. We then apply a byte pair
encoding (BPE) algorithm [46] to iteratively merge the most frequently occurring pairs
of adjacent vocabulary items until we reach a desired subword vocabulary size. In our
experiments, we use a vocabulary size of 30,000 subwords. The (trained) byte pair encoder
can be used to transform a sequence of 8-bit characters into a sequence of subwords. This
type of subword tokenization is commonly used in modern language models. At the end
of this third step, each bootleg score is represented as a sequence of word or subword units.

The fourth step in pretraining is to train a language model on the sequence of words
or subwords. In this work, we consider three different language models: AWD-LSTM [44],
GPT-2 [36], and RoBERTa [45]. The AWD-LSTM is a 3-layer LSTM model that incorporates
several different types of dropout throughout the model. The model is trained to predict the
next word at each time step. The GPT-2 model is a 6-layer Transformer decoder model that
is trained to predict the next subword at each time step. The subword units are fed into an
embedding layer, combined with positional word embeddings, and then fed to a sequence
of six Transformer decoder layers. Though larger versions of GPT-2 have been studied [36],
we only consider a modestly sized GPT-2 architecture for computational and practical
reasons. The RoBERTa model is a 6-layer Transformer encoder model that is trained on
a masked language modeling task. During training, a certain fraction of subwords in
the input are randomly masked, and the model is trained to predict the identity of the
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masked tokens. Note that, unlike the transformer decoder model, the encoder model uses
information from an entire sequence and is not limited only to information in the past.
RoBERTa is an optimized version of BERT [37], which has been the basis of many recent
language models (e.g., [47–49]). For both GPT-2 and RoBERTa, the context window of
the language model was set very conservatively (1024) to ensure that all sequences of
interest would be considered in their entirety during the classification stage (i.e., no inputs
would be shortened due to being too long). Note that, though we focus only on these three
language model architectures in this work, our general approach would be compatible
with any model that can process sequential data (e.g., GPT-3 [38], temporal convolutional
networks [50], quasi-recurrent neural networks [51]).

2.2. Finetuning

The second stage is to finetune the pretrained classifier on labeled data. The finetuning
process consists of five steps, as shown in the middle row of Figure 1.

The first step is to compute bootleg score features on the labeled sheet music images.
Because each piece (i.e., PDF) contains multiple pages, we concatenated the bootleg scores
from all labeled pages in the PDF into a single, global bootleg score. At the end of this first
step, we have a set of M bootleg scores of variable length, where M corresponds to the
number of pieces in the labeled dataset.

The second step is to randomly select fixed-length fragments from the bootleg scores.
This can be interpreted as a data augmentation strategy analogous to taking random crops
from images. This approach has two significant benefits. First, it allows us to train on a
much larger set of data. Rather than being limited to the number of actual pages in the
labeled data set, we can aggressively sample the data to generate a much larger set of
unique training samples. Second, it allows us to construct a balanced dataset. By sampling
the same number of fragments from each classification category, we can avoid many of the
problems and challenges of imbalanced datasets [52]. In our experiments, we considered
fragments of length 64, 128, and 256. Figure 3 shows several example fragments from
different composers.

Figure 3. Several examples of fixed-length bootleg score fragments.

The third step is to augment the labeled fragment data through pitch shifting. Similar
to before, we consider multiple shifted versions of each fragment up to ±K shifts. This is
an additional data augmentation that increases the number of labeled training samples by
a factor of 2K + 1.

The fourth step is to tokenize each fragment into a sequence of words or subwords.
The tokenization is done in the same manner as described in Section 2.1. For word-based
models, each fragment will produce sequences of the same length. For subword-based
model, each fragment will produce sequences of (slightly) different lengths based on the
output of the byte pair encoder. At the end of the fourth step, we have a set of labeled data
that has been augmented, where each data sample is a sequence of words or subwords.

The fifth step is to finetune the pretrained classifier. We take the pretrained language
model, add a classification head on top, and train the classification model on the labeled



Appl. Sci. 2021, 11, 1387 6 of 16

data using standard cross-entropy loss. Because the language model weights have been
pretrained, the only part of the model that needs to be trained from scratch is the classifi-
cation head. For the AWD-LSTM model, the classification head consists of the following:
(a) it performs max pooling along the sequence dimension of the outputs of the last LSTM
layer, (b) it performs average pooling along the sequence dimension of the outputs of the
last LSTM layer, (c) it concatenates the results of these two pooling operations, and (d)
passes the result to two dense layers with batch normalization and dropout. For the GPT-2
model, the classification head is a simple linear layer applied to the output of the last
Transformer layer at the last time step. For the RoBERTa model, the classification head is a
single linear layer applied to the output of the last Transformer layer at the first time step,
which corresponds to the special beginning-of-sequence token <s>. This is the approach
recommended in the original paper.

The finetuning is done using the methods described in [33]. First, we use a learning
rate range finding test [53] to determine a suitable learning rate. Next, the classifier is
trained with the pretrained language model weights frozen, so that only the weights in
the classification head are updated. This prevents catastrophic forgetting in the pretrained
weights. As training reaches convergence, we unfreeze more and more layers of the model
backbone using discriminative learning rates, in which earlier layers use smaller learning
rates than later layers. All training is done using 1 cycle training [54], in which the global
learning rate is varied cyclically. These methods were found to be effective for finetuning
text classifiers in [33].

At the end of this stage, we have a finetuned classifier that can classify fixed-length
fragments of bootleg score data.

2.3. Inference

The third stage is to classify unseen sheet music images using our finetuned classifier.
This inference consists of six steps, as shown at the bottom of Figure 1. The first step is
to compute bootleg score features on the sheet music image. This is done in the same
manner as described in Section 2.1. The second step is to perform test time augmentation
using pitch shifting. Multiple shifted versions of the bootleg score are generated up to
±L shifts, where L is a hyperparameter. Each of these bootleg scores is processed by the
model (as described in the remainder of this paragraph), and we average the predictions
to generate an ensembled prediction. The third step is to extract fixed-length fragments
from the bootleg score. Because the bootleg score for a single page of sheet music will
have variable length, we extract a sequence of fixed-length fragments with 50% overlap.
Each fragment is processed independently by the model and the results are averaged.
Note that the second and third steps are both forms of test time augmentation, which is a
widely used technique in computer vision (e.g., taking multiple crops from a test image
and averaging the results) [55,56]. The fourth step is to tokenize each fixed-length fragment
into a sequence of words or subwords. This is done using the same tokenization process
described in Section 2.1. The fifth step is to process each fragment’s sequence of words
or subwords with the finetuned classifier. The sixth step is to compute the average of the
pre-softmax outputs from all fragments across all pitch-shifted versions to produce a single
ensembled pre-softmax distribution for the entire page of sheet music.

3. Results

In this section we describe our experimental setup and present our results on the
composer style classification task.

3.1. Experimental Setup

There are two sets of data that we use in our experiments: an extremely large unlabeled
dataset and a smaller, carefully curated labeled dataset.

The unlabeled dataset consists of all solo piano sheet music images in IMSLP. We used
the instrument metadata to identify all solo piano pieces. Because popular pieces often
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have many different sheet music editions, we selected one sheet music version (i.e., PDF)
per piece to avoid overrepresentation of a small number of popular pieces. We computed
bootleg score features for all sheet music images and discarded any pages containing less
than a threshold number of bootleg score features. This threshold was selected as a simple
heuristic to remove non-music pages such as title page, forematerial, and other filler pages.
The resulting set of data contains 29,310 PDFs, 255,539 pages, and 48.5 million bootleg score
features. We will refer to this unlabeled dataset as the IMSLP data. 90% of the unlabeled
data was used for language model training and 10% for validation.

The labeled dataset is a carefully curated subset of the IMSLP data. We first identified
nine composers who had a substantial amount of piano sheet music. (The limit of 9
was chosen to avoid extreme imbalance of data among composers.) We constructed an
exhaustive list of all solo piano pieces composed by these nine composers, and then selected
one sheet music version per piece. We then manually identified filler pages in the resulting
set of PDFs to ensure that every labeled image contains actual sheet music. The resulting
set of data contains 787 PDFs, 7151 pages, and 1.47 million bootleg score features. Table 1
shows a breakdown of the labeled dataset by composer. The labeled data was split by piece
into training, validation, and test sets. In total, there are 4347 training, 1500 validation,
and 1304 test images. This dataset will be referred to as the full-page data.

Table 1. Overview of the labeled (full-page) dataset used for classifier finetuning.

Composer Pieces Pages Features

Bach 176 969 245k
Beethoven 70 666 153k

Chopin 82 665 118k
Haydn 50 347 88k
Liszt 169 2272 394k

Mozart 54 468 116k
Schubert 75 578 139k

Schumann 37 500 105k
Scriabin 74 686 108k

Total 787 7151 1.47M

The full-page data was further preprocessed into fragments as described in Section 2.2.
In our experiments, we considered three different fragment sizes: 64, 128, and 256. We
sampled the same number of fragments from each composer to ensure balanced classes.
For fragment size of 64, we sampled a total of 32,400, 10,800, and 10,800 fragments across
all composers for training, validation, and test, respectively. For fragment size of 128, we
sampled 16,200, 5400, and 5400 fragments across all composers for training, validation,
and test. For fragment size of 256, we sampled 8100, 2700, and 2700 fragments for training,
validation, and test. This sampling strategy ensures the same “coverage” of the data
regardless of the fragment size. These datasets will be referred to as the fragment data.

3.2. Fragment Classification Results

We compare the performance of four different models: AWD-LSTM, GPT-2, RoBERTa,
and a baseline CNN model. The CNN model follows the approach described by [24] for a
composer classification task using **kern scores. Their approach is to feed a piano roll-like
representation into two convolutional layers, perform average pooling of the activations
along the sequence dimension, and then apply a final linear classification layer. This CNN
model can be interpreted as the state-of-the-art approach as of 2019.

For each of the four models, we compare the performance under three different
pretraining conditions. The first condition is no pretraining, in which the model is trained
from scratch on the labeled fragment data. The second condition is target pretraining,
in which a language model is first pretrained on the labeled (full-page) dataset, and then
the pretrained classifier is finetuned on the labeled fragment data. The third condition is



Appl. Sci. 2021, 11, 1387 8 of 16

IMSLP pretraining, which consists of three steps: (1) training a language model on the full
IMSLP dataset, (2) finetuning the language model on the labeled dataset, and (3) finetuning
the pretrained classifier on the labeled fragment data. The third condition corresponds to
the ULMFit [33] method. Comparing the performance under these three conditions will
allow us to measure how much pretraining improves the performance of the classifier.

Figure 4 shows the performance of all models on the fragment classification task.
While our original goal is to classify full-page images, the performance on the test fragment
data is useful because the dataset is balanced and more reliable due to its much larger
size (i.e., number of samples). The three groups in the figure correspond to fragment sizes
of 64 (left), 128 (middle), and 256 (right). For a given fragment size, the bars indicate
the classification accuracy of all models, where different colors correspond to different
pretraining conditions. Note that the CNN model only has results for the no pretraining
condition, since it is not a language model. The bars indicate the performance of each
model with training data augmentation K = 3 and test time augmentation L = 2. These
settings were found to be best for the best-performing model (see Section 4.1) and were
applied to all models in Figure 4 for fair comparison. The performance with no data
augmentation (K = 0, L = 0) is also overlaid as black rectangles for comparison.

Figure 4. Results on the fragment classification task. For each model architecture, the green (leftmost),
blue (center), and red (rightmost) bars show the performance with no pretraining, target pretraining,
and full IMSLP pretraining, respectively. Colored bars indicate performance with both training and
test time data augmentation (K = 3, L = 2), and black rectangles indicate performance without
augmentation (K = 0, L = 0).

There are four things to notice about Figure 4. First, pretraining makes a big difference.
For all language model architectures, we see a large and consistent improvement from pre-
training. For example, for the RoBERTa model with fragment size 64, the accuracy improves
from 50.9% to 72.0% to 81.2% across the three pretraining conditions. Second, the augmen-
tation strategies make a big difference. Regardless of model architecture or pretraining
condition, we see a very large improvement in classification performance. For example,
the AWD-LSTM model with IMSLP pretraining and fragment size 64 improves from 53.0%
to 75.9% when incorporating data augmentation. The effect of the training and test-time
augmentation will be studied in more depth in Section 4.1. Third, the Transformer-based
models outperform the LSTM and CNN models. The best model (GPT-2 with IMSLP
pretraining) achieves a classification accuracy of 90.2% for fragment size 256. Fourth,
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the classification performance improves as fragment size increases. This is to be expected,
since having more context information should improve classification performance.

3.3. Full-Page Classification Results

Figure 5 shows the performance of all models on the full-page classification task. This
is the original task that we set out to solve. Note that the y-axis is now macro F1, since
accuracy is only an appropriate metric when the dataset is approximately balanced. These
results should be interpreted with caution, keeping in mind that the test (full-page) dataset
is relatively small in size (1304 images) and also has class imbalance.

Figure 5. Results on the full-page classification task. For each model architecture, the green (leftmost),
blue (center), and red (rightmost) bars show the performance with no pretraining, target pretraining,
and full IMSLP pretraining, respectively. Colored bars indicate performance with both training and
test time data augmentation (K = 3, L = 2), and black rectangles indicate performance without
augmentation (K = 0, L = 0).

There are a few things to point out about Figure 5. Most of the trends observed in the
fragment classification task hold true for the full-page classification task: pretraining helps
significantly, data augmentation helps significantly, and the Transformer-based models
perform best. However, one trend is reversed for the full-page classification task: longer
fragments sizes yield worse full-page classification performance. This suggests a mismatch
between the fragment dataset and the fragments in the full-page data. Indeed, when we
investigated this issue more closely, we found that many sheet music images had less than
128 or 256 bootleg score features on the whole page. This means that the fragment datasets
with sizes 128 and 256 are biased towards sheet music containing a very large number of
note events on a single page, and are not representative of single pages of sheet music.
For this reason, the fragment classification with length 64 is most effective for the full-page
classification task.
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4. Discussion

In this section we perform four additional analyses to gain deeper insight and intuition
into the best-performing model: GPT-2 with IMSLP pretraining and fragment size 64.

4.1. Effect of Data Augmentation

The first analysis is to characterize the effect of the training and test time augmentation
strategies. Recall that the bootleg scores are shifted by up to ±K shifts during training,
and that shifted versions of each query up to ±L shifts are ensembled at test time. Figure 6
shows the fragment classification performance of the GPT-2 model with IMSLP pretraining
across a range of K and L values. Figure 7 shows the performance of the same models on
the full-page classification task.

There are two notable things to point out in Figures 6 and 7. First, higher values of
K lead to significant increases in model performance. For example, the performance of
the GPT-2 model with L = 0 increases from 0.67 to 0.88 macro F1 as K increases from 0 to
3. Based on the trends shown in these figures, we would expect even better performance
for values of K greater than 3. We only considered values up to 3 due to the extremely
long training times. Second, test time augmentation helps significantly but only when
used in moderation. For most values of K, the optimal value of L is 2 or 3. As L continues
to increase, the performance begins to degrade. Combining both training and test time
augmentation, we see extremely large improvements in model performance: the fragment
classification accuracy increases from 57.3% (K = 0, L = 0) to 84.2% (K = 3, L = 2), and the
full-page classification performance increases from 0.67 macro F1 (K = 0, L = 0) to 0.92
macro F1 (K = 3, L = 2).

The takeaway from our first analysis is clear: training and test time augmentation
improve the model performance significantly and should always be used.

Figure 6. Effect of data augmentation on fragment classification performance (fragment length 64).
K specifies the amount of training data augmentation and L specifies the amount of test time data
augmentation. Within each grouping, the bars correspond to values of L ranging from 0 (leftmost) to
4 (rightmost).



Appl. Sci. 2021, 11, 1387 11 of 16

Figure 7. Effect of data augmentation on full-page classification performance (fragment length 64).
K specifies the amount of training data augmentation and L specifies the amount of test time data
augmentation. Within each grouping, the bars correspond to values of L ranging from 0 (leftmost) to
4 (rightmost).

4.2. Single Hand Models

The second analysis is to quantify how important the right hand and left hand are
in classification. The bootleg score contains 62 distinct staff line positions, of which 34
come from the right hand staff (E3 to C8) and 28 come from the left hand staff (A0 to G4).
To study the importance of each hand, we trained two single-hand models: a right hand
model in which any notes in the left hand staff are zeroed out, and a left hand model in
which any notes in the right hand staff are zeroed out. We trained a BPE for each hand
separately, pretrained the GPT-2 language model on the appropriately masked IMSLP
data, finetuned the classifier on the masked training fragment data, and then evaluated the
performance on the masked test fragment data.

Figure 8 compares the results of the right hand and left hand models against the
full model containing both hands. We see that, regardless of the pretraining condition,
the right hand model outperforms the left hand model by a large margin. This matches our
intuition, since the right hand tends to contain the melody and is more distinctive than the
left hand accompaniment part. We also see a big gap in performance between the single
hand models and the full model containing both hands. This suggests that a lot of the
information needed for classification comes from the polyphonic, harmonic component of
the music. If our approach were applied to monophonic music, for example, we would
expect performance to be worse than the right hand model.

4.3. t-SNE

The third analysis is to visualize a t-SNE plot [57] of selected bootleg score features.
Specifically, we extracted the learned embeddings for all bootleg score columns containing
a single notehead, and then visualized them in a t-SNE plot. Because byte pair encoding
(in the subword-based language models) makes it difficult to examine a single bootleg
score column, we focus on the word-based AWD-LSTM model (trained on fragments of
length 64) for this analysis. Note that our model does not explicitly encode any musical
domain knowledge, so any relationships that we discover are an indication that the model
has learned semantically meaningful information from the data.
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Figure 8. Comparison of GPT-2 model on fragment classification using left hand information only
(green bars, leftmost in each group), right hand information only (blue bars, center in each group),
and information from both hands (red bars, rightmost in each group). The three groups of bars
correspond to different pretraining conditions.

Figure 9 shows the t-SNE plot for the embeddings of single notehead bootleg score
features. We can see two distinct clusters: one cluster containing noteheads in the right
hand staff (lower left), and another cluster containing noteheads in the left hand staff
(upper right). Within each cluster, we see that noteheads that appear close to one another in
the sheet music are close to one another in the t-SNE plot. This results in an approximately
linear progression (with lots of zigzags) from low noteheads to high noteheads. This
provides strong evidence that the model is able to learn semantically meaningful relation-
ships between different bootleg score features, even though each word is considered a
distinct entity.

Figure 9. A t-SNE plot of the AWD-LSTM embeddings for bootleg score features containing a single
notehead. Note that some notehead positions in the middle register may appear in either the left-
hand staff or right-hand staff. With only a few exceptions, the notes cluster by left hand (upper
right) and right hand (lower left) staves.
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4.4. Unseen Composer Classification

The fourth analysis is to determine if the models learn a more generalizable notion
of style that extends beyond the nine composers in the classification task. To answer this
question, we perform the following experiment. First, we randomly sample C composers
from the full IMSLP dataset, making sure to exclude the nine composers in the training
data. Next, we assemble all sheet music images for solo piano works composed by these C
composers. For each page of sheet music in this newly constructed data set, we (a) pass
the sheet music image through our full-page classification model, (b) take the penultimate
layer activations in the model as a feature representation of the page, (c) calculate the
average Euclidian distance to the K = 5 nearest neighbors (each corresponding to a single
page of sheet music) for each of the C composers, and (d) rank the C composers according
to their KNN distance scores. For step (c), we exclude all other pages from the same piece,
so that the similarity to the true matching composer must be computed against other pieces
written by the composer. Finally, we repeat the above experiment S = 10 times and report
the mean reciprocal rank of all predictions.

Figure 10 shows the results of these experiments. We evaluate all four model architec-
tures with fragment size 64 (with data augmentation and IMSLP pretraining), along with a
random guessing model as a reference. The figure compares the results of all five models
for values of C ranging from 10 to 200. We can see that all four trained models perform
much better than random guessing, and that the GPT-2 model continues to perform the
best. This provides evidence that the models are learning a notion of compositional style
that generalizes beyond the nine composers in the labeled dataset. The trained models can
thus be used as a feature extractor to project a page of sheet music into this compositional
style feature space.

Figure 10. Comparison of models on a ranking task involving unseen composers. C composers are
randomly selected from IMSLP (excluding the original 9 composers in the labeled dataset), each
page of piano sheet music for these C composers is considered as a query, and the KNN distance
(excluding pages from the same piece) is used to rank the C composers. From left to right, the bars in
each group correspond to random guessing, CNN, AWD-LSTM, RoBERTa, and GPT-2 models. Each
bar shows the average of 10 such experiments.

5. Conclusions

We have proposed an approach to the composer style classification task based on raw
sheet music images. Our approach converts the sheet music images to a bootleg score
representation, represents the bootleg score features as sequences of words, and then treats
the problem as a text classification task. Compared to previous work, our approach is
novel in that it utilizes self-supervised pretraining on unlabeled data, which allows for
effective classifiers to be trained even with limited amounts of labeled data. We perform
extensive experiments on a range of modern language model architectures, and we show
that pretraining substantially improves classification performance and that Transformer-
based architectures perform best. We also introduce two data augmentation strategies and
conduct various analyses to gain deeper intuition into the model. Future work includes



Appl. Sci. 2021, 11, 1387 14 of 16

exploring additional data augmentation and regularization strategies, as well as applying
this approach to non-piano sheet music.
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