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Abstract: In this work, we present numerical results concerning a multilayer “deep” photonic 

spiking convolutional neural network, arranged so as to tackle a 2D image classification task. The 

spiking neurons used are typical two-section quantum-well vertical-cavity surface-emitting lasers 

that exhibit isomorphic behavior to biological neurons, such as integrate-and-fire excitability and 

timing encoding. The isomorphism of the proposed scheme to biological networks is extended by 

replicating the retina ganglion cell for contrast detection in the photonic domain and by utilizing 

unsupervised spike dependent plasticity as the main training technique. Finally, in this work we 

also investigate the possibility of exploiting the fast carrier dynamics of lasers so as to time-multiplex 

spatial information and reduce the number of physical neurons used in the convolutional layers by 

orders of magnitude. This last feature unlocks new possibilities, where neuron count and processing 

speed can be interchanged so as to meet the constraints of different applications. 
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1. Introduction 

Recent technological advances in terms of hardware and software over the last few 

decades have unleashed the computational capabilities of modern processors, so as to 

tackle stringent problems with unparalleled efficiency. These approaches combine the 

state-of-the-art in Complementary Metal Oxide Semiconductor (CMOS) technology with 

optimized von Neuman architectures. Despite their unprecedented high-speed 

performance, modern processors still stagger in addressing a vast area of computational 

problems within the discipline of machine learning, such as machine vision, natural 

language processing and decision making [1]. The main two limiting factors of 

conventional processing architectures are the memory bottleneck and the large energy 

consumption originating from the physical separation of the data-storing and data-

processing units [1]. In addition, well-studied impediments, such as the fan-in/bandwidth 

tradeoff, also hinder performance enhancement [2,3]. To overcome these restrictions, 

brain-inspired architectures such as spiking neural networks have risen as a promising 

alternative computational paradigm. Although the brain remains vastly unexplored, it is 

widely accepted that its neurosynaptic layout, where memory and processing units are 

collocated [4,5] can alleviate the aforementioned restrictions. By mimicking the brain’s 

framework and function, spiking neural networks encode incoming analogue data to a 

sparse train of spikes, where information resides in the temporal domain. These features 

result in a significant reduction of energy consumption while at the same time rendering 

the computational scheme resilient to noise [6–8]. 
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A crucial aspect of realizing such biomimicking neural networks is the choice of a 

technological platform that can efficiently address the above-mentioned issues. Photonic 

platforms, in particular, have drawn a lot of attention due to the similarity of the dynamics 

observed in their optical components to real biological neurons [9]. Moreover, inherent 

advantages such as the high firing rate, low propagation losses, high wall-plug efficiency 

and more importantly time/wavelength and space multiplexing capabilities, render 

photonics as one of the best platforms to emulate neural activity [10–12]. A multitude of 

photonic spiking neurons have therefore been studied both theoretically and 

experimentally, such as: two-section gain-absorber lasers [13], microring and disk lasers 

[14–16], single section quantum dot lasers [17,18], nanocavities based on 2D photonic 

crystals [19,20], optically injected lasers [21,22], lasers subjected to optical feedback [23,24] 

and vertical cavity surface emitting lasers (VCSELs) [9,25–33]. VCSEL neurons exhibit 

especially interesting aspects such as low power consumption, small footprint and 2D-

array integration capabilities [25]. On the other hand, despite their efficiency, previous 

works mainly focused on the observed dynamics of a single node, and evaluation of a full-

scale photonic spiking neural network (PSNN); the targeting of “real” applications is still 

limited [26–28]. 

Previous works targeting VCSEL networks consist of a two-layer network based on 

supervised learning aiming at digit classification [29] and a pattern detection network 

using a single time-multiplexed neuron without a sophisticated training technique [30,31]. 

Alternatively, similar VCSEL-networks have been tested in tasks such as mimicking basic 

mammalian vision functionalities [32] and in emulating logical gates [33]. An interesting 

PSNN aims at letter classification task, but involves phase changing materials and avoids 

using excitable optical neurons [34]. A critical aspect is that all the aforementioned 

approaches are limited to swallow neural architectures with one [30,31] or two layers 

[30,33]. On the other hand, multilayer networks, have been proven to be capable of feature 

extraction, which is a significant aspect of typical convolutional neural networks [35]. 

In this work, we present numerical results concerning a “deep” five-layer Photonic 

Spiking Convolutional Neural Network (PSCNN), realized with the help of two-section 

(gain-absorber) VCSEL photonic neurons. The proposed configuration is a photonic 

adaption of a software based Spiking Convolutional Neural Network (SCNN) capable of 

feature extraction [36]. Although software based SCNNs emulate the performance of their 

biological counterparts, they cannot exploit their full potential as they are equally as 

power hungry as typical convolutional neural networks and are subjected to latencies. 

The realization of a hardware version of the proposed network will alleviate these 

restrictions and in turn permit feature extraction from more complex images. Moreover, 

by exploiting the nanosecond refractory period of VCSELs, a time-multiplex scheme is 

incorporated, aiming to map spatial information to the temporal domain; meaning that 

different pixels’ contrasts are processed by the same neurons and are mapped to spike 

latency. Therefore, the number of physical neurons is reduced from 2020 nodes for a 

typical five-layer network [36] to only 62, resulting in a 96.93% decrease. Following this 

lead, processing speed is tunable; from the multi-Mframe/sec scale, where physical 

neurons are equal to the effective neurons, to the Kframe/sec rate by proportionally 

decreasing the number of physical neurons. Taken to the extreme, the processing speed 

can be reduced to an application related frame-rate (e.g., 120 frame/sec), in turn resulting 

in a tremendous decrease in the physical neuron count. In this work, the time-multiplexed 

PSCNN multilayer network is evaluated by tackling a basic image processing task that 

consists of classifying monochrome images representing digital digits. Contrary to 

previous approaches, the training in our case is based on purely unsupervised spike 

dependent plasticity (STDP) [37], which could, in future implementations, alleviate the 

need for complex offline processing and offer a photonic friendly solution [38]. Numerical 

simulations, through the help of a graphic processor unit (GPU) accelerator, provide 

evidence regarding the relationship between systematic amplitude variations in the target 

images and classification errors. Summarizing, this work provides the first, according to 
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our knowledge, investigation of a full-scale PSCNN that simultaneously merges 

approaches such as: multiple convolutional layers for feature extraction, unsupervised 

STDP as training technique, time multiplexing of incoming signals so as to reduce neuron 

count and finally retina-ganglion-cell based structures so as to replace costly digital 

processing with a bioinspired process. 

This work is organized as follows. In Section 2, the methods used are presented in 

detail. In particular, we presented the numerical model used to simulate VCSEL’s neural 

operation and analyzed the structure and operation of every layer of the proposed 

network during training and inference mode. In Section 3, we present the numerical 

results from our network and analyze the impact of noise, processing time and actual 

number of neurons on our network’s performance. Moreover, a detailed comparison 

between our work and other VCSEL networks is presented. 

2. Neural Network Architecture 

In this section, the hardware architecture of the proposed PSCNN is presented. At 

first, we describe in detail the model used to simulate the VCSEL’s dynamics [38] with all 

its mathematical equations and parameters. Then, the architecture and function of every 

layer is extensively explained during the two modes of operation (training and inference). 

2.1. VCSEL-Neuron Modeling and Dynamic Regimes 

The model used to describe the two-section VCSEL-neuron is described by the 

following rate equations [38]: 

𝑑𝑛𝑔

𝑑𝑡
= −𝛤𝑔𝑔𝑔 (𝑆 −

𝑘𝑒𝜏𝑝ℎ𝜆

ℎ𝑐𝑉𝑔
𝑃𝐼𝑁 − ∑

𝜔𝑖𝜏𝑝ℎ𝜆

ℎ𝑐𝑉𝑔

𝑁
𝑖=1 𝑃𝑖𝑜) (𝑛𝑔 − 𝑛0𝑔) −

𝑛𝑔

𝜏𝑔
+

𝐼𝑔

𝑒𝑉𝑔
  (1) 

𝑑𝑛𝑎

𝑑𝑡
=  −𝛤𝑎𝑔𝑎(𝑛𝑎 − 𝑛0𝑎)𝑆 −

𝑛𝑎

𝜏𝑠
  (2) 

𝑑𝑆

𝑑𝑡
= 𝛤𝑔𝑔𝑔(𝑛𝑔 − 𝑛0𝑔)𝑆 + 𝛤𝑎𝑔𝑎(𝑛𝑎 − 𝑛0𝑎)𝑆 −

𝑆

𝜏𝑝ℎ
+ 𝛽𝐵𝑟𝑛𝑔

2  (3) 

The subscript 𝑔 and 𝑎 refer to gain and absorber area, respectively. S represents the 

photon density in the cavity and 𝑛𝑔 𝑎⁄  is the electron density in the corresponding area. 

The term 
𝑘𝑒𝜏𝑝ℎ𝑃𝐼𝑁𝜆

ℎ𝑐𝑉𝑔
  in (1) simulates the electrically injected input, where 𝑘𝑒  is the 

coupling strength of the external signal, τ𝑝ℎ the photon lifetime, 𝑃𝐼𝑁 is the power of the 

input electric signal, ℎ is the Plank’s constant, 𝑐 is the speed of light, 𝜆 is the VCSEL’s 

wavelength and 𝑉𝑔 is the cavity volume. The term  ∑
𝜔𝑖𝜏𝑝ℎ𝑃𝑖𝑜𝜆

ℎ𝑐𝑉𝑔

𝑁
𝑖=1  represents the weighted 

sum of electrical inputs from presynaptic neurons where 𝜔𝑖  is the weight of the 𝑖𝑡ℎ 

synapses and 𝑃𝑖𝑜 =
𝜂𝑐𝛤𝑔𝑆𝑖𝑉𝑔ℎ𝑐

𝜏𝑝ℎ𝜆
 is the power originating form the 𝑖𝑡ℎ presynaptic neuron, 

where 𝜂𝑐  is the power coupling coefficient, 𝛤𝑔  is the confinement factor and 𝑆𝑖  is the 

photon density at the 𝑖𝑡ℎ presynaptic neuron. Other parameters used in this work are the 

electron’s charge 𝑒 , pump current 𝐼𝑔 , the spontaneous emission coefficient 𝛽 , the 

bimolecular recombination coefficient 𝐵𝑟, the differential gain at every section 𝑔𝑔/𝑎 and 

the transparency carrier density 𝑛0𝑔/0𝑎. There parameters used in this work are typical 

quantum-well VCSEL parameters and are provided in Table 1. 

Table 1. Typical vertical cavity surface emitting lasers (VCSEL) parameters used in the simulation. 

Parameter Gain Section Absorber Section 

Cavity Volume Vg,a 2.4 ∙ 10−18 m3 2.4 ∙ 10−18 m3 

Confinement factor Γg,a 0.06 0.05 

Carrier Lifetime τg,a 1 ns 100 ps 

Differential gain/loss gg,a 2.9 ∙ 10−12 m3 s−1  14.5 ∙ 10−12 m3 s−1 

Carriers at transparency n0g,a 1.1 ∙ 1024 m−3  0.89 ∙ 1024 m−3 
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The utilized VCSELs are biased in two distinctive dynamic regimes: the excitable 

regime and the spiking regime. In general, VCSELs in the excitable regime produce a spike 

only if the injected electrical stimuli exceed a certain threshold (integrate-and-fire) [9]. For 

example, for an electrical input power (bias current) of PIN = 0.1 mW or lower no spike is 

detected (subthreshold input) while for higher PIN, the threshold condition is satisfied and 

the VCSEL produces a single spike (Figure 1a). Moreover, as the power level increases the 

latency of the spike decreases, encoding the input’s strength in the timing of the spikes 

(temporal encoding). On the other hand, a VCSEL in the spiking regime constantly 

produces spikes of period Tsp, where Tsp is the interspike interval [9]. Figure 1b 

demonstrates that for the investigated VCSELs, the variation of the Tsp is inversely 

proportional to the input power. Before presenting a layer-by-layer analysis, it is critical 

to highlight that the proposed neural structure relies on electro-optic synapses (Figure 1c); 

meaning that the optical output of each VCSEL is recorded by a photodiode (PD) with a 

bandwidth that is matched by spike duration. The electrical signal generated by the PDs 

is fed to an analogue driving circuit that weighs, sums and modifies the electrical bias of 

subsequent photonic neurons. This approach is considered very efficient in terms of 

bandwidth and flexibility, whereas it allows a straightforward implementation of neural 

excitation and inhibition. Moreover, it is by far more beneficial compared to power 

hungry digital solutions. In particular, a positive weight (excitation) corresponds to an 

increase in the forward bias of the VCSEL, while a negative weight (inhibition) is linked 

to a decrease in the bias current, driving the laser away from its threshold [9]. 

 

Figure 1. (a) VCSEL operation in excitable regime for different levels of input power. For PIN = 0.1 mW no spike is generated 

(under threshold stimuli) while for higher PIN values a spike is fired. Higher PIN decreases the latency and enables the 

timing encoding of the input’s power level. The bias current is Ib = 2.32 mA while the duration of the applied stimuli is TON 

= 0.5 ns. (b) VCSEL operation in spiking regime for different biases. Higher Ib decreases the Tsp (interspike interval). (c) 

Photonic VCSEL neurons and Radio Frequency (RF) synapse configuration, PD stands for photodiode. 

2.2. Building Blocks of the Network 

As already mentioned, the proposed PSCNN network is a photonic adaption of [36]. 

It consists of five layers designated as the Contrast Detection Layer (CDL), the First 

Convolutional Layer (CL1), the Second Convolutional Layer (CL2), the Third 

Convolutional Layer (CL3) and the Output-Classification Layer as shown in Figure 2. Each 

of these layers consists of neurons, which in our approach are assumed to be two-section 

gain-absorber VCSELs. Furthermore, between two consecutive layers a synchronization 

layer is used. This modification is imperative for the proper function of the PSCNN due 

to the time-multiplexing; it ensures the simultaneous injection of spikes at every layer. To 

shed light on every aspect of our network an extensive description of each layer’s 

structure and function follows. 
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Figure 2. Photonic Spiking Convolutional Neural Network (PSCNN) architectural view. External electrical pulses 

according to the pixel’s intensity are inserted at the Contrast Detection Layer (CDL). White pixels are encoded as 

rectangular pulses with power of 0.2 mW whereas black pixels are encoded as rectangular pulses with power equal to 2 

μW. CDL’s output consists of spike trains with latency proportional to each pixel’s intensity. Different pixels are processed 

by the same neuron in a sequential function and output spikes are multiplexed in time. When CDL’s processing is complete 

then the output electrical spikes are inserted in the Synchronization Layer (Synch) in order to synchronize the spikes from 

different pixels and fit them to a specific time frame. After the synchronization is completed, spikes are inserted into the 

First Convolutional Layer (CL1) which detects spike patterns (features) according to their timing. When a pattern is 

detected the corresponding neuron of CL1 fires a spike (feature extraction). These new spikes originating from CL1 are 

transmitted to the Second Convolutional Layer (CL2) in order to detect more complex patterns. The same procedure is 

repeated in the Third Convolutional Layer (CL3). At the Classification Layer the network is able to classify the incoming 

image based on the detected patterns from all CL3. Throughout the network, synchronizing procedures are necessary in 

order for the spikes to coincide at the next layer. 

2.2.1. Contrast Detection Layer (CDL) 

As stated above, the proposed network is a photonic adaptation of a SCNN [36]. In 

this case, the first step of processing incorporates a difference of gaussian filter (DoG) that 

encodes the pixel’s contrast to the spike latency. In our case, we replace this digital 

processing step with a bioinspired neural structure that partially mimics the operation of 

the retina ganglion cell (RGC) in the mammalian eye. In order to demonstrate the 

similarity of the digital filters with RGC, we provide an in-depth overview of its function. 

In biological systems, RGC’s task is to transform the analogue optical signals from the 

eye’s retina into a series of spikes (electric potentials) which can then be processed by the 

brain. The contrast of the input image is encoded to the repetition frequency of these 

spikes (rate encoding). More specifically, each RGC has its own receptive field which 

receives optical input from a specific area of the eye retina. The RGC’s receptive field is 

divided into two regions, namely the Center (C) and the Surround (S) (see Figure 3). The 

firing rate is governed by the intensity contrast of inputs in the S and C regions [39]. 
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Figure 3. VCSEL based retina ganglion cell (RGC) calculating the contrast of a specific pixel (green box). Each VCSEL takes 

input from a specific pixel of the SW (red box). Depending on that input, the first 9 VCSEL-neurons, which realize the 

receptive field of the human eye, produce spikes or remain stable. The outputs of C and S VCSELs are integrated by two 

photodiodes (PD) whose outputs are weighted and summed before they are injected into the RGC VCSEL. The C-VCSEL 

(green) has an excitatory effect (positive weight) on the RGC-VCSEL while the outputs of the S-VCSELs (red) have an 

inhibitory effect (negative weight). The RGC-VCSEL produces a spike for each pixel and according to the spatial 

distribution of the black and white pixels the spike latency is increased or decreased. 

In our work, a set of 10 VCSELs-neurons is used so as to emulate the RGC. More 

specifically, the first nine neurons realize the RGC’s receptive field while the 10th neuron 

emulates the operation of a single RGC cell. As far as the receptive field is concerned, the 

9 VCSEL-neurons are organized in a 3 × 3 layout, where each one is associated with a 

specific area of the receptive field. In this scheme, the C area is implemented by a single 

excitatory neuron (Figure 3 green C-VCSEL) located at the center of the 3 × 3 layout, 

whereas the S area is implemented by 8 inhibitory neurons (Figure 3 red S-VCSELs) 

surrounding the C-neuron. C-VCSEL and S-VCSELs are biased at the excitable regime 

which corresponds to an integrate-and-fire operation [9]. Their outputs are integrated by 

two photodiodes, PD1 for the S-neurons and PD2 for the C-neuron (Figure 3). The electrical 

outputs from the two PDs are weighted and summed (the negative weight for PD1 and 

the positive weight for PD2) before driving the RGC neuron, which is biased at the spiking 

regime, meaning that it fires spikes at a constant firing rate under no injection [9]. 

However, DοG filters dictate for a slightly different operation [36], for this reason, 

we modified the typical RGC so as to act as a Contrast Detection Layer (CDL). This 

variation of the typical RGC encodes the information-contrast of the images not at the 

firing rate, but on the latency of the generated spikes [40]. 

In detail, CDL, in our case, scans the image pixel by pixel and encodes the contrast of 

each pixel (injected to C-VCSEL) with respect to its surrounding ones (injected to the S-

VCSELs) at the latency of the generated spike event. In order to accomplish this, a 

scanning window (SW) (Figure 3 red box in input image) of 3 × 3 pixels is formed with the 

processing pixel located at the center. When a pixel in the SW is white, then its input 

power is a rectangular pulse of 0.2 mW with 5 ns duration. When a pixel is black, then the 

input power is set to a lower power amplitude 2 μW while having the same duration as 

before. The 5 ns time slot will be referred as Tep and is linked to the inherent refractory 

period of the VCSEL-neurons used in this work. These electrical input signals associated 

with each SW drive the C and S neurons of the CDL, whose optical outputs are integrated, 

weighted and summed before they are injected in the RGC neuron. In the 5 ns time 

window the RGC is able to produce only a single spike in contrast to the rate encoding 



Appl. Sci. 2021, 11, 1383 7 of 18 
 

scheme of biological RGC. The latency of this specific spike encodes the contrast of the 

center pixel of the SW that is imposed on the CDL. 

Τo understand the way in which CDL encodes pixel’s contrast at the timing of the 

spikes, the following analysis is given. When the input of a C-neuron corresponds to a 

white pixel whereas the S-neurons have no input (black pixels) (Figure 4 case 1) the RGC 

will generate a pulse at t1 (C-ON and S-OFF). In this case, the central pixel has the greatest 

possible contrast with respect to its surrounding pixels. However, apart from the C-

neuron, if one of the S-neurons is also stimulated (Figure 4 case 2) then the pulse will be 

produced at a time t2 > t1. If two S-neurons are stimulated (Figure 4 case 3) then the spike 

will be produced at t3 > t2 > t1. The more S-neurons are stimulated, the greater the latency 

will be. The delay is attributed to the inhibitory effect of the S-neurons (negative weight). 

On the contrary if the C-neuron has no input but all of the S-neurons are stimulated 

(Figure 4 case 7) then the spike will be produced at a time t7 (t7 > t3 > t2 > t1) (C-OFF and S-

ON). In this case, the central pixel exhibits the highest negative possible contrast with 

respect to its surrounding pixels. Moreover, if one of the S-VCSELs has no input, then the 

pulse of the RGC neuron will be produced at t6 (t7 > t6 > t3 > t2 > t1) (Figure 4 case 6). 

Therefore, by varying the spatial information, the latency of the produced spike event by 

the RGC neuron decreases or increases. 

 

Figure 4. Output power of the CDL for different input cases. Black boxes represent black pixels of the scanning window 

(SW) (no light input) while white boxes represent white pixels of the image (presence of light). While C-neurons receive 

input the latency is decreased. However, the activation of S-neurons augments the latency. On the contrary, when all S-

neurons receive light but C-neurons do not, the latency is increased, while the activation of fewer S-neurons accelerates 

the produced spike. 

In a typical implementation each pixel will be processed by a different CDL, which 

will increase the number of physical neurons. Nonetheless, by exploiting the nanosecond 

refractory period of VCSELs, we devise a more hardware friendly approach, employing 

only a single CDL which serially scans every pixel of the input image. When the 

processing of a single pixel is completed, the SW is shifted by one pixel to the right and 

the same procedure is repeated for all the pixels of the image. In the case that the target 

pixel is located at the edge of the image, the missing SW’s pixels are assumed to be black. 

At this point we must stress the fact that after processing a pixel, an electrical reset signal 

(negative bias) should be applied to the RGC-VCSEL. Τhis reset signal forces the RGC to 

a subthreshold regime (resting state) so as to be able to process another pixel’s intensity 

originating from a different location of the image. Following this approach, the output of 

the CDL is a spike train. Each spike is fitted inside a specific time frame. This time-

multiplexing technique is similar to [30] and enables the decrease in the number of 

neurons needed to process the entire image. 
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2.2.2. Synchronizing Layer 

Due to the time multiplexed CDL’s output, the incorporation of a Synchronization 

Layer is imperative. When a Convolutional Layer processes an area of the input image, 

all spikes associated with this area must have a common time reference (frame) in order 

to properly apply the convolution function. In our case, each pixel has its contrast encoded 

in the timing of the generated spike events and is fitted inside a specific time slot of period 

Tep. So, the first spike, which encodes the contrast of the first pixel of the image, will be in 

the 0–Tep time slot, the second spike associated with the second pixel will be in the Tep–2Tep 

and in general the kth spike which encodes the contrast of the kth pixel will be inside the 

(k-1) Tep –kTep time slot. Consequently, the time reference for every spike is the beginning 

of each time slot (Tref = (k-1) Tep). However, as mentioned before, spikes corresponding to 

different pixels should have a common time reference when they coincide at the next 

neural layer. Therefore, a synchronization layer is necessary: its role is to impose a (m-l) 

Tep delay for the kth spike, where m is the size of the convolutional window (CW) in each 

layer and l is the remainder of k divided by m. Using this technique, a common time 

reference is applied to the spikes and proper convolutional processing is enabled. The 

synchronization layer, in the case of electro-optic synapses (see Figure 1c) can be easily 

implemented through a predetermined static electrical delay line. 

2.2.3. First Convolutional Layer (CL1) 

The task of the first convolutional layer (CL1) is to learn and detect the simplest and 

at the same time the most frequent spike patterns associated with the images of the 

training set. It consists of 33 VCSELs and its processing area, designated as the 

Convolutional Window (CW1) consists of a 3X3 pixel layout. Each VCSEL in the CL1 layer 

receives 9 inputs (one for every pixel of the CW1), has a dedicated Weight Bank (WB) and 

it is trained so as to detect a specific pattern (Figure 5). 

 

Figure 5. Block diagram of the first convolutional layer network during training. A specific area of 

the image is scanned by the contrast detection layer in order to detect pixels with high contrast (1 

for black pixels and 0 for white pixels). After that the generated spikes are synchronized and 

entered into the neuron-VCSELs. Each neuron has its weight stored in a weight bank. When a 

neuron detects a pattern (fires a spike) it sends a cancelling signal to all of the following neurons 

(dashed lines). 

The training of the CL1 layer is based on STDP rule [37]. According to STDP, a neuron 

(post synaptic) updates its synaptic weights each time it produces a spike event. More 

specifically, if the neuron fires a spike event at t1, then all the synapses that provided spikes 

which arrived at the neuron before t1 will have their corresponding synaptic weights 
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increased (Figure 6 PRE1). On the contrary, synapses that provided spikes that arrived 

after t1 will have their corresponding synaptic weights decreased (Figure 6 PRE2). 

 
(a) (b) 

Figure 6. (a) Timing of spikes originating from the neuron under training (POST) and two other 

presynaptic neurons (blue and red). (b) The spike dependent plasticity (STDP) weight 

modification curve. According to STDP, training w1 will be increased while w2 will be decreased. 

The update of the synaptic weights is summarized by the following rule  

𝑑𝑤 =  {
exp (𝑑𝑡) 𝑑𝑡 < 0

−exp (−𝑑𝑡) 𝑑𝑡 > 0
  (4) 

where dt = tX–t1 and tX is the timing of the spike associated with the Xth synapse. After the 

application of the STDP rule, the new weights will be updated as 

𝑤(𝑛+1)𝑋 = 𝑤𝑛𝑋 + 𝑑𝑤𝑋𝑎  (5) 

where w(n+1)X  is the updated weight of the 𝑋𝑡ℎ synapse, 𝑤𝑛𝑋 is its previous weight value 

and 𝑎 is the learning rate of the training procedure. It is worth mentioning that in our 

case STDP is implemented numerically, but the unsupervised nature of our scheme 

alongside the existence of photonic based STDP platforms [38,41], can provide hardware 

realizations that can offer on-chip training in near future. 

After the synchronization stage, the inputs are weighted and inserted in the first 

neuron of the CL1. If the Input Spike Pattern (ISP) surpasses its neural threshold, then a 

spike will be produced. The spike event designates the recognition of the ISP by the first 

neuron and triggers two additional processes. The first one is the reconfiguration of its 

weight bank according to the STDP training algorithm. Secondly, the first neuron sends 

an inhibitory (cancelling) signal to all subsequent neurons in order to make them ignore 

this particular ISP. The cancelling signal lowers the bias of all subsequent neurons, 

pushing them away from the excitable regime, thus making spiking impossible for them. 

On the contrary, if the ISP is not recognized by the first neuron, then it is transmitted 

to the second neuron after TD, which is the time needed for neuron to process the ISP, 

update its weights and produce the corresponding cancelling signal. The 2nd neuron then 

processes the ISP in a similar way as the first one. This process continues until the ISP is 

recognized by one of the 33 neurons of the CL1. After the ISP processing is completed, the 

CL1 scans the same CW1 spatial area of the next image. When all images of the training 

set have been scanned, the CW1 window is shifted by one pixel to the right and the whole 

process is repeated until all images are scanned. 

Finally, when the training of the CL1 layer is completed, a weight adjustment is 

needed in order to make the neurons more selective to their learned pattern. The weight 

adjustment is crucial because a specific ISP must be recognized only by a single specific 

neuron of the CL1 layer. In order to explain the importance of this adjustment we must 

analyze the STDP algorithm. More specifically, as a neuron is trained via the STDP 
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algorithm, its weights increase and decrease continuously. If this process continues 

indefinitely, then the STDP will eventually lock to the spike associated with the smallest 

latency and ignore all the others [38]. In order to avoid this issue and to force our system 

to take into account more than a single spike, the maximum and minimum weight values 

are set to WMAX and WMIN. In our simulation we set WMAX = 0.45 and WMIN = −1. Suppose for 

example that the WB of the first neuron after training acquires the following values w1 = 

[−1 −1 0.45 −1 −1 0.45 −1 −1 0.45]. 

In this case, if the input is ISP1 = 0 0 1 0 0 1 0 0 1 (0 for black pixel 1 for a white pixel) 

then the neuron will be activated. However, if the input is ISP2 = 0 0 1 0 0 0 0 0 1 then there 

is a risk that the neuron will be activated again if WMAX is too high. For this reason, the 

final weights of each WB must be adjusted in such a way that only a single neuron will be 

able to respond to ISP1. In order to achieve the aforementioned spiking behavior, positive 

values of w1 must be decreased down to a certain level, which will permit the activation 

of the neuron by exactly three spikes. This weight adjustment depends on the number of 

weights which have a value between 0.9WMAX and WMAX and not on their exact spatial 

distribution. Depending on that number, the final weights are set as shown in Table 2 

below. 

Table 2. Weight value after the weight adjustment. 

White Pixels (Pixel Value = ‘1′) Wfinal 

3 0.43 

4 0.3 

5 0.2 

After the weight adjustment of the WBs of the CL1 layer is accomplished, the 

computed weight values will apply to the hardware synapses and the training of the CL1 

is complete. After the training phase, TD delays can be ignored, since the neurons in the 

CL1 layer at this point have successfully learned the input patterns. During the inference 

mode, the incoming SP is simultaneously inserted into all neurons of CL1. The maximum 

number of neurons that will fire a spike at every ISP is one and is the neuron that has 

successfully learned the incoming pattern. 

2.2.4. Second Convolutional Layer (CL2)  

The CL2 has 16 VCSELs and it receives inputs from 4 CW1s in a 2 × 2 layout. In this 

way, its processing area (CW2) is equivalent to a square area of 6 × 6 pixels in the original 

image. The CW2 window is similar to the CW1, but it has two major differences: a different 

total number of inputs and a modified training algorithm. With respect to the number of 

inputs, since the CW2 window receives 4 CW1 windows and since the CW1 windows will 

represent one of 33 learned patterns from CL1 each time, the total number of inputs at the 

CW2 window is equal to 4 × 33 = 132. Its first 33 inputs correspond to the first CW1, the 

next 33 inputs (Input No 34—No 66) correspond to the second CW1 and so on (Figure 7). 

With respect to the training algorithm, in CL1 every neuron receives nine inputs—

one for every pixel of the image. After the generation of a spike event, the STDP rule 

updates the weight values of the associated WB. However, in the case of CL2, each neuron 

receives only 4 synaptic inputs—one for every pattern in each separate CW1. When a 

neuron at the CL2 fires a spike, the weight of the synapse associated with the excitation of 

the neuron will be increased. However, the neuron will receive no input from the 

remaining synapses, which means that if the STDP rule is applied in this case, their 

corresponding weight values will stay unmodified. Thus, the decrease in the synaptic 

weights with this scheme is not possible. For this reason, at the CL2 layer a different 

training algorithm is used, according to which the weight of the synapse associated with 

the excitation of a neuron is increased by a constant value, while all others are decreased 

by the same value. The new training algorithm is given by the following rule 
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𝑑𝑊 = {
−0.1 𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒
0.1 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑝𝑖𝑘𝑒

  (6) 

After the training of the CL2 layer is completed, the weights have to be adjusted in a 

manner similar to the case of the CL1 layer. The TD delays corresponding to the previous 

synchronization layer that were required for the training procedure can again be safely 

ignored afterwards. 

 

Figure 7. CL2’s neurons layout. WPXCWZ represents weight for the input of the CL1’s neuron, which detects Pattern X in the 

area of CWY. 

2.2.5. Third Convolutional Layer (CL3)  

The CL3 has 8 neurons and its Convolutional Window (CW3) receives input from 2 

CW2 windows in a 1 × 2 layout, thus forming a window which corresponds to an area of 

6 × 12 pixels of the original image. The total number of inputs from the CL2 layer will be 

2 × 16 = 32, since CL2 consists of 16 neurons. The training rule used in this layer is identical 

to the one used in the CL2 layer. After the training of the CL3 is completed, the respective 

TD delays can be safely ignored and the training of the final Classification Layer can begin. 

2.2.6. Classification Layer 

The classification layer comprises 4 neurons, as the number of input images that are 

going to be classified by the PSCNN. Each neuron of this layer receives 2 × 8 = 16 inputs 

and its neural activity designates the classification of the input image to a specific class, 

meaning that the input image is successfully recognized. Its structure and training 

procedure is identical to the CL2 and CL3. When the final output layer is trained TD delays 

will be ignored and the inference and validation of the PSCNN can begin. 

3. Results 

In this section, the numerical results with regards to the training and inference 

operation of the proposed PSCNN will be presented. At first, details about training and 

inference operation are shown. After that, we clarify the limits of our network by 

performing a noise analysis on the PSCNN. Furthermore, we discuss the bandwidth 

limitations introduced by the photodiodes and the tuning capability of the PSCNN to 

reduce the number of neurons at the cost of processing time. Lastly, a comparison between 

the PSCNN and other equivalent networks is presented. 
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3.1. Training and Interference 

As a validation scenario, we trained the network with a set of 100 images depicting 

four 12 × 12 pixel, black and white decimal digits ranging from 5 to 8 (Figure 8a). The 

images were inserted to the network sequentially and the pixel values were mapped to 

the bias of the VCSELs at the CDL. It is of utmost importance to point out that no data-

labeling was performed, and weight adaptation occurred through an unsupervised 

version of STDP. The first convolutional layer aimed for 33 target patterns. Typical 

examples are shown in Figure 8b. In the CL2 the network was trained to detect 

combinations of patterns from the CL1 layer (Figure 8c). The shift of the CW2 was equal to 

the number of pixels per row (6 pixels horizontally). After the horizontal scanning of the 

image was completed, the CW2 was shifted 6 pixels downwards and the same procedure 

was repeated until all of the training images were scanned. The detailed scanning process 

of the CL1 alleviates the need for more complex training in the CL2 and CL3 and no spatial 

overlap is needed in them. The reason is that the CL1 identified most of the basic patterns 

of the images. Based on this, CL2 patterns are a combination of simpler patterns which 

are identified in an unsupervised manner in the CL1 (Figure 8c). The same applies to the 

CL3 Figure 8d. Following these basic training rules and without labeling the data, the 

Classification Layer of the network self-constructed an abstract version of the original 

images and classified the input images based on their similarity with the abstracted 

versions (Figure 8e). In order to validate our method, we repeated the training process but 

in this case we changed the training set by using images illustrating the digits 1–4. The 

network adapted to new features and patterns, recalibrating the weights. Furthermore, it 

is worth mentioning that we have not used a data set comprising of all the digits (0–9) due 

to the fact that training even for such a small dataset was time-consuming. This stems 

from the fact that we realized a full-scale simulation, incorporating multiple layers and 

dozens of physically accurate VCSELs, instead of simplistic spiking models. Towards this 

direction, we adapted our PSCNN model to be compatible with parallel processing 

through 4352 GPU cores (Nvidia RTX 2080Ti) so as to speed-up computation [42]. 

Although, in principle, the whole network could be computed in parallel, we managed to 

evaluate only the first two layers (CDL and CL1). This stemmed from the need to keep 

long time-traces (temporal information) among layers that in turn lead to an extensive 

memory demand that could not be handled by our GPU system. Fortunately, CDL and 

CL1 have the vast majority of network’s neurons; thus, even with these restrictions, the 

overall speed enhancement achieved was ×30. This enhancement resulted in a training 

time of 25 min/image, which is acceptable considering the number and complexity of the 

simulated model. On the other hand, this execution speed increase, resulted in negligible 

inference time, even when using the whole dataset. 
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Figure 8. (a) Four numbers used as inputs for the training of the network. Learned patterns of (b) 

CL1, (c) CL2 and (d) CL3. (e) The abstract version of the digits that the network identifies. 

3.2. Noise Analysis 

In order to explore the performance of the trained PSCNN, we assumed typical 

thermal and shot noise at the photodiodes of the electro-optic synapses, as the dominant 

perturbing mechanism. We varied the level of noise and evaluated the impact to the 

classification error when the network was inferring a set of 100 images which consists of 

all the four digits (‘5′, ‘6′, ‘7′ and ‘8′). Simulations provided evidence that even for low 

Signal-to-Noise Ratio (SNR < 10dB) and for the above-described simple classification task, 

there was no impact in classification error. This resiliency can be attributed to the 

integrate-and-fire nature of the VCSEL-neurons and the relative, large integration time. 

In particular, even though the instant input power of the pixel may exhibit significant 

variation, the average input power remains approximately the same. Consequently, the 

timing of the produced spikes from CDL’s receptive field neurons is not severely affected. 

Since, the PD Gaussian noise did not affect the performance of our network, we took 

into consideration a different noise source that corresponds to mean intensity variation at 

each pixel. In this scenario, the intensity of each pixel is perturbed compared to the 

nominal value resulting in a distorted version of the original image (Figure 9). This type 

of perturbation affects the contrast in each SW and thus alters the timing of spikes. So as 

to model such an effect we added to the mean intensity of each pixel a random variation, 

drawn from a normal distribution with different standard deviations (see inset of Figure 

9). These intensity variations are mapped to the input power of the neurons at the CDL. 

The PSCNN is considered trained and in this case is set to an inference mode. 

a)

b)

c)

d)

e)
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Figure 9. PSCNN classification error for different values of the intensity noise. The intensity noise 

is drawn from a normal distribution whose standard deviation is expressed as a percentage of the 

nominal input power 𝑷𝑰𝑵 = 𝟎. 𝟐𝒎𝑾 (x-axis). For intensity noise values up to 6% (12μW) no 

classification error is monitored. However, for higher values of intensity noise there is a sharp 

increase in network’s classification error and for a standard deviation of 11% (22 μW) the system 

collapses since it cannot classify the input images. In this figure, digit ‘6′ is presented as an 

indicative example of the intensity noise’s impact. The left image of digit ‘6′ represents the case of 

no intensity noise while the right one corresponds to an intensity noise of 16%. 

The set of 100 images, which comprised all of equivalently distributed digits ‘5′ to ‘8′, 

was fed to the network and the classification error was computed in a set containing all 

possible digits. In Figure 9 the total classification error is presented (for all digits) versus 

the standard deviation of pixel noise. It can be seen that the classification error of our 

system remained low for perturbations with standard deviation up to 6% of the nominal 

value, while an abrupt increase can be observed for higher values. 

3.3. Bandwidth Limitations 

To evaluate bandwidth’s impact on the proposed PSCNN, an analysis of the two 

modes of operation, training and inference, is presented. When the network operates in 

inference or training mode then there are bandwidth limitations related to the electro-

optic synapses; meaning that optical spikes generated by the neurons are detected by 

analog PDs (with appropriate bandwidth). The electrical spikes generated are processed 

also in the analog domain and are used to modulate (excite) subsequent neurons; meaning 

that the spiking nature of the pulses can be reproduced with reliability by PDs and 

electronics of 20 GHz that can drive state of the art VCSELs of similar modulation 

bandwidth. Furthermore, aiming to render our scheme hardware-friendly and avoid high 

performance PDs, we can use photodiodes with lower bandwidth at the cost of lower 

spike amplitude. This drawback can be amended by scaling the synaptic weights, which 

will be realized using RF electronics [9]. More importantly, real-life VCSELs generate 

neural spikes with significantly broader temporal width (>200 ps) [43], compared to the 

VCSEL assumed in this work. In this case, the minimum bandwidth requirements drop 

significantly (1–5 GHz) and can be realized with low-cost PDs. This spike duration 

increase could also affect the refractory period of the VCSELs; thus, it could potentially 

affect time-multiplexing capabilities but not accuracy. Taking into consideration that 

nanosecond refractory period is extreme for realistic image processing, but the basic 

concept of this work remains valid even with such a modification. In terms of training, 

bandwidth demands are anticipated to be enhanced, mainly due to the STDP technique. 

In particular, hardware realizations of STDP dictate the precise knowledge of the time of 

arrival of each spike at each synapse, so as to preserve accuracy [38,41]. Taking into 

consideration that potentiation/depression window in our case is 1ns and the refractory 

period is 5 ns, then a 20 GHz bandwidth can guarantee temporal accuracy. An alternative 

approach could include offline training through a physically accurate model and limiting 

the hardware module in an inference mode. In this case, structural deviations could be 

fine-tuned through optimization of spike delays at the synchronization layer and by 

adjusting the synaptic weights. 



Appl. Sci. 2021, 11, 1383 15 of 18 
 

3.4. Processing Time versus Neuron Count 

One of the key aspects of our network is its ability to adjust the processing time by 

varying the number of pixels that are time-multiplexed and thus are processed by the 

same physical neuron. In Figure 10 this trade-off is illustrated by plotting the inference 

time for one typical image (12 × 12 pixel) versus the number of physical neurons in the 

network. The minimum number of neurons, for the five-layer network (maximum 

multiplexing) is 62, resulting in a processing time of 720 ns/image (12 × 12 × 5 ns). Moving 

to the other end, thus employing the maximum number of neurons (2020) leads to an 

inference time governed by the refractory period (5 ns). In this case, each pixel is processed 

by a specific CDL, while every Convolutional Window is processed by its own 

Convolutional Layer. Obviously, this trade-off can lead to larger networks with 

Mframe/sec capability suitable for demanding imaging applications such as aerospace, or 

to hardware-friendly realizations suitable for pragmatic applications (<200 frame/sec). For 

example, in this work, the fully multiplexed 62 neuron scheme can allow the processing 

of 144 pixels in 720 ns leading to a processing rate of 1.38 M frame/sec. 

 

Figure 10. Inference time of a single 12 × 12 pixel image alongside the number of physical neurons 

at the PSCNN. 

3.5. Comparative Study with Previous VCSEL-Based Neural Networks 

In [30], the experimental data from a VCSEL based neuron are presented. This 

implementation detects specific patterns at GHz rates. Moreover, the input images are 

processed via a time multiplexing technique, which uses the same neuron to process 

different areas of the image, reducing in this way the number of actual neurons. On the 

other hand, in this scheme synaptic weights are fixed in advance and no training takes 

place. In [29] numerical results from a two-layer VCSEL-based spiking network which 

classifies numerical digits (0–9) are presented. In particular, [29] uses a timing-encoding 

scheme for data encoding while training is accomplished under a supervised STDP 

algorithm. Except for the training algorithm, the two networks have some key differences. 

First of all, [29] deploys Convolutional Layers as a preprocessing step in order to moderate 

noise impact. In our work, Convolutional Layers are used to extract features from the 

input images, which offers our network the potential to be used in the classification of 

more complex images. Second, every pixel of the input image is processed by a different 

neuron. Since the input images have 400 pixels, a total of 410 neurons (400 neurons for 

pixel processing and 10 neurons for classification) is required to properly classify the 

images of the ten digits. In our network, thanks to time multiplexing only 62 are needed 

in order to classify 4 digits (‘5′, ‘6′, ‘7′ and ‘8′). Moreover, for the classification of all ten 

digits a total number of 87 neurons will be needed: specifically, 10 neurons for the 

Contrast Detection Layer, 32 at the first convolutional layer, 21 at the second, 14 neurons 

at the third and 10 neurons at the output layer. Moreover, [29] deploys a two-layer 

network while in our case a ‘deep’ five-layer convolutional neural network is 

implemented for the first time to our knowledge. Furthermore, the processing time of the 
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images is fixed to 30 ns per image. In our case, the insertion of multiple layers permits the 

tuning of the processing times ranging from 5 ns (full parallel processing) to 720 ns 

(minimum number of neurons used). Lastly, in [29] the classification error is linearly 

dependent on the network’s noise. On the other hand, our network has a sigmoid 

dependance from the noise (Figure 9). This makes our network better for low intensity 

conditions while [29] is better suited for noisy environments. 

4. Conclusions 

At a glance, the proposed neural scheme is an optical adaptation of a SCNN [36], 

aiming to inherent the performance of its software counterpart and at the same time 

provide radical new advantages by replacing software functions and nodes with photonic 

neurons. The resulting PSCNN comprises VCSEL neurons which are arranged in multiple 

“deep” neural layers. Each layer provides a different operation, ranging from pixel-

contrast encoding to spike-latency, spike time-multiplexing and SCNNs for pattern 

recognition. In our work, the training of the neuromorphic scheme relies on an 

unsupervised version of STDP, whereas each node’s response was computed through a 

physically accurate numerical model. Furthermore, in order to address the high neuron 

count dictated by SCNNs we realized a time-multiplexing strategy, where different pixels 

of the image are processed by the same physical laser-neurons. This technique allowed 

the replication of a software based SCNN with 2020 neurons with only 62 laser-nodes and 

an inference rate of 1.38 M frame/sec for 144 pixel images. Furthermore, we generated an 

artificial set of images depicting numerical digits so as to train/test the classification 

capabilities of the proposed network. The results confirm that the integrate-and-fire 

nature of the VCSEL neurons renders our scheme extremely resilient to typical white noise 

sources (shot, thermal noise), while variations at the mean intensity of pixels affect image 

contrast and thus impact spike timing, leading to high classification error. 
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