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Abstract: It has been pointed out that the act of carrying a heavy object that exceeds a certain
weight by a worker at a construction site is a major factor that puts physical burden on the worker’s
musculoskeletal system. However, due to the nature of the construction site, where there are a large
number of workers simultaneously working in an irregular space, it is difficult to figure out the
weight of the object carried by the worker in real time or keep track of the worker who carries the
excess weight. This paper proposes a prototype system to track the weight of heavy objects carried by
construction workers by developing smart safety shoes with FSR (Force Sensitive Resistor) sensors.
The system consists of smart safety shoes with sensors attached, a mobile device for collecting initial
sensing data, and a web-based server computer for storing, preprocessing and analyzing such data.
The effectiveness and accuracy of the weight tracking system was verified through the experiments
where a weight was lifted by each experimenter from +0 kg to +20 kg in 5 kg increments. The results
of the experiment were analyzed by a newly developed machine learning based model, which adopts
effective classification algorithms such as decision tree, random forest, gradient boosting algorithm
(GBM), and light GBM. The average accuracy classifying the weight by each classification algorithm
showed similar, but high accuracy in the following order: random forest (90.9%), light GBM (90.5%),
decision tree (90.3%), and GBM (89%). Overall, the proposed weight tracking system has a significant
90.2% average accuracy in classifying how much weight each experimenter carries.

Keywords: weight tracking system; musculoskeletal disorders; construction worker’s health moni-
toring; FSR sensor; ML-based classification analysis

1. Introduction
1.1. Research Background and Object

Musculoskeletal disorders are health disorders that occur due to factors such as
improper posture, repetitive movements, or excessive use of force. It refers to diseases
that appear in the nerve muscles of the arms, legs, neck, lower back and their surrounding
body tissues [1–3]. According to Ode Hengel’s report, more than half of the workers in
the construction industry are now exposed to musculoskeletal disorders, which leads to a
reduction in the workers’ capacity and willingness to maximize productivity [4]. When
the Korea Occupational Safety and Health Agency survey evaluated the exposure to risk
factors in the construction industry, the results revealed that the work of handling heavy
objects was the biggest risk factor. In particular, the process of lifting or transporting heavy
objects accounted for 62.1% of the risk exposure [5].

In response, the Ministry of Employment and Labor in Korea issued a “notification on
the scope of work burdened by the musculoskeletal system and the method of investigating
harmful factors” to encourage efforts to find new methods of prevention. The standard to
calculate the burden on the musculoskeletal system is determined by the number of times
the worker lifts the heavy object and the weight of the heavy object [6]. However, given
the nature of the construction industry being carried out on a job site by a large number of
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workers simultaneously, it is difficult and inefficient for a site manager to monitor each
worker individually and check the weight or number of transports each of them carry [7].

In this study, in order to effectively solve these problems, we developed smart safety
shoes with FSR (Force Sensitive Resistor) fiber sensors attached to the standard shoes
always worn by construction site workers. The main purpose of this prototype system is
to determine whether a construction worker lifts more than a specific weight. This is to
induce construction workers not to carry more than the specified weight and ensure their
safety. The suitability of this system was verified through experiments. The verification
experiment was carried out on the assumption that the experimenters wearing a smart
safety shoe with an FSR sensor and an Arduino Nano attached were carrying heavy objects
that would sequentially increase in weight from +0 kg to +20 kg. The sensing information
measured through the experiment was collected and stored through the developed system,
and further analysis was performed for system verification. The first analysis of the sensing
data was performed through scatter plots and a regression analysis to determine the
propensity of the data, but due to a sensitive sensing data attribute, the weight estimate
was relatively low, at an average accuracy of 46.4%. Accordingly, the secondary analysis
was performed with an analysis model developed using valid machine learning (ML)
classification algorithms, such as decision tree, random forest, GBM, and light GBM,
programmed in Python, all of which were used to track the weight of the heavy objects
carried by construction workers. The results show that the estimated weight of the heavy
objects carried by construction workers have a relatively high average accuracy of 90.2%,
verifying the suitability and applicability of the developed system.

1.2. Research Scope and Methodology

The scope of this study is to develop prototype smart sensing safety shoes with FSR
sensors to effectively distinguish whether a construction site worker is carrying a heavy
object that can burden the worker’s musculoskeletal system. In addition, a mobile app
was developed to primarily store pressure strength data measured from a total of seven
channels of fiber pressure sensors attached to the left and right insoles of the smart sensing
safety shoes that then transmits them to a web-based DB (Database). Depending on how
the worker lifts the object, pressure may not be applied evenly to both feet. Therefore, the
sensing data values measured from the seven FSR sensors may not be completely uniform.
However, the sum of the pressure transmitted to both feet can be seen as a direct reflection
of the weight of the object. Therefore, in this study, rather than using each sensor value,
we mainly use the sum of the sensor values to determine the weight of the heavy object.
Finally, a machine-learning-based sensing data analysis model created by Python was
developed to track how much weight a construction worker lifted while wearing the smart
sensing safety shoes.

In order to verify the effectiveness of the smart sensing safety shoes (shoe size:
275–280 mm) developed in this study, an experiment was conducted on five healthy adult
males between the ages of 25 to 36 under the assumption that construction site workers
carry heavy objects. The experiment was carried out in such a way that collected pressure
change data measured by the FSR sensors when a construction worker was standing with-
out weight (body weight +0 kg) and when the worker was standing with additional weight
(increased up to 20 kg in 5 kg increments (+)).

The collected data was analyzed to determine the correlation between the sensing
data and the weight of the object held by the construction worker through the primary
analysis of a scatter diagram (scatter plot) and linear regression. However, due to the
nature of sensitive sensing data, it was found that the R2 value for explaining the degree of
estimating the weight of a heavy object appears relatively low due to the distribution of the
wide data value. In order to solve this problem, the second analysis of the experiment was
carried out through the development of an analysis model applying ML (machine learning)
classification algorithms. The results show that it is possible to obtain higher accuracy in
estimating the weight of the package carried by the construction worker.
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2. Materials and Methods
2.1. Trends and Limitations of Existing Musculoskeletal Burden Work Prevention Methods

Figuring out risk factors for musculoskeletal disorders of construction site workers,
and doing research to prevent and improve conditions are being conducted in a wide
variety of forms. Previously, methods to prevent major harmful factors of musculoskeletal
disorders of construction workers were identified by statistical methods through direct
observation, questionnaires, and expert interviews. The scope of musculoskeletal burden
work was identified, and then the systematic method of investigating harmful factors was
established and improved [1,5,6,8].

In recent years, with the rapid development of Internet of Things technology, the
development and expansion of various types of smart sensors are being actively used in
various fields such as smart healthcare and industrial sites [9]. In particular, the possibility
of collecting, constructing, analyzing, and utilizing big data according to a given purpose
through data collected from such smart sensors is gradually expanding [10]. For example,
in order to recognize the awkward posture of construction workers that can affect the
musculoskeletal disorders of construction workers in the short or long term, it has been
suggested that a supervised motion sensor decomposition with a multi-classification
algorithm can improve the shortcomings of the existing motion capturing system [11]. The
focus of this study was to develop a method for quickly and accurately distinguishing
specific postures of construction workers. In addition, a musculoskeletal burdened work
measurement device using acceleration sensors (accelerometers) has been developed and
presented to improve the working posture and work efficiency of construction workers [12].
The purpose of this study was also to analyze the motions that generate labor load on
the wrists, elbows and shoulders of construction workers using accelerometer sensors.
However, there are few attempts and efforts to monitor early on, by sensing the weight
of a heavy object carried by a construction worker, which is one of the major causes of
musculoskeletal disorders in construction workers. Payal (2017) proposed an electronic
insole system using FSR sensors to monitor pressure wirelessly [13]. This system showed
the possibility for measuring the foot pressure distribution to detect the abnormalities
of patients. The experimental results in this study showed that the resistance values of
the FSR sensor (kilo-ohm) decreased with the weight applied to the sensor. However,
this experiment was not measured by a person wearing shoes with an FSR sensor insole.
Instead, the experiment was performed through mechanical pressure on the FSR sensor
using a dead weight pressure gauge on a laboratory table, which sets a practical limitation.

2.2. Classification Algorithms for Big Data Analysis Using ML
2.2.1. Decision Tree

Decision tree is an analysis method that performs classification and prediction by
plotting decision rules in a tree structure. It has both characteristics of exploration and
modeling. It breaks down the population of interest into smaller and smaller unitary
subgroups by specific target variables [14]. This method has the advantage of being able
to understand and explain the process more easily than neural networks or discriminant
analysis methods, since the process of classification or prediction is expressed by the
induction rules in the form of a tree structure [15].

Decision tree is a hierarchical model composed of decision rules that classify vari-
ous variables into homogeneous regions, as well as an algorithm widely used for both
classification and regression problems [16–18]. The decision tree model consists of nodes,
and the separation step from the root node to the end is known as depth. The end node
refers to a node in which each branch is not separated by splitting criterion, stopping
rule, pruning, etc. In general, the analysis process of the decision tree model is performed
through the processes of the decision tree formation, pruning, validity evaluation, analysis
and prediction.

During pruning, the decision tree learns in the direction of minimizing impurity (or
maximizing purity). The entropy, which is a numerical measure of impurity, is given by the
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following Equation (1). High entropy means high impurity, with a maximum value of 1.
On the other hand, low entropy means low impurity where the minimum value becomes 0.

e = −∑n
i=0 pi log pi (1)

p(ci): the probability/percentage of class i in a node; n: the number of classes.
When dividing the branches of a tree, the amount by which the entropy decreases

is based on a feature of the data at a node, and can be known through the information
gain as shown in Equation (2). The first-order classification is performed when the feature
with the highest IG (Information Gain) value is placed at the top of the decision tree.
Thereafter, classification is performed repeatedly for each classified subgroup until the
entropy becomes 0.

IG(S, F) = e(S)−∑ f∈F

∣∣∣S f

∣∣∣
|S| e

(
S f

)
(2)

S: the whole set of events; F: feature, f : feature attribute; Sf: set of events with the f attribute;
|X|: size of set X (number of elements); e(X): the entropy of the set of events named X.

The decision tree is advantageous in some ways because it is easy to visualize the
trained model and it is not affected by the scale of the data. Thus, a pre-processing process
is unnecessary. However, due to the tendency of over-fitting to the training data, the
generalization performance is degraded [19]. Random forest is a model that compensates
for the shortcomings of such decision trees, and it solves the over-fitting problem by
creating a final model using multiple decision trees and the ability to predict missing
values [20–23].

2.2.2. Random Forest

Random Forest is “a collection or ensemble of Classification and Regression Trees
(CART) trained on datasets of the same size as a training set, also known as bootstrap,
created from a random resampling on the training set itself [24].” The ensemble is a
technique that creates a more powerful final prediction model by creating several prediction
models using given data and then combining these prediction models into one. The
ensemble technique, which ultimately aims to achieve better performance, is in the spotlight
within the field of prediction [25]. The formula used in the case of classification analysis is
as shown in Equation (3).

p(c |v ) = 1
T ∑T

t=1 pt(c |v ) (3)

p(c): probability mass function for each class; T: number of trees (the size of forest); v:
vector (the points of data); c: set of full classes

There are a wide variety of ways to implement this ensemble method, but the most
commonly encountered algorithms are bagging and boosting. Bagging recovers and
extracts certain information from the data to create several sub data sets, applies a model to
calculate each predicted value, and finally averages such values to create a final predicted
value. Boosting updates the model while continuing to modify the original data. That is,
after constructing the first model, the model is modified by updating the residual, not the
dependent variable Y.

Random forest corresponds to an algorithm using the bagging method. Meanwhile,
gradient boosting, light gradient boosting, AdaBoosting, etc., uses a boosting algorithm.
In this study, some of these algorithms are selected and applied to yield results that can
then be compared.

2.2.3. GBM (Gradient Boosting Algorithm)

Frideman (2001) proposed a method that uses a gradient descent algorithm as a
boosting method to encompass classification and regression. In other words, for a given
loss function and weak prediction model, a model that can minimize the loss function is
found, and the resulting variable is initialized with an equation that can best predict the
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result. Thereafter, the slope or residual is calculated, and a model suitable for the residual
that can minimize the loss function is constructed. The obtained model is added to the
previous model, and this process is repeated. Like this, gradient boosting is a generalization
of a boosting algorithm, and it is a method of learning a model focusing on errors [26].

Gradient boosting (GBM), a method proposed by Friedman (2001), is one of the
ensemble techniques that improves the accuracy of classification by synthesizing the
predictions of multiple classifiers compared to a decision tree that uses a single classifier.
Boosting is an iterative procedure used to change the distribution of data so that the basic
classifier focuses on hard-to-classify data. Among them, gradient boosting (GBM) forms a
final classifier by repeating the process of giving a high weight for the incorrectly classified
observation value, but a low weight for the correctly classified observation value to the next
observation by starting with the same weight for the observed data [27]. It approximates
the function f, which is as shown in Equation (4), based on a linear combination of weak
learners h. It is optimized in a greedy manner by selecting parameter θj and weight αj of a
weak learner iteratively [28].

f (x) = ∑M
j=1 αjhj

(
x; θj

)
(4)

f : Rn → R ; h : Rn → R ; x ∈ Rn: input vector; αj ∈ R: real-valued weight; M: the
number of weak learners.

Gradient boosting is a widely used method, and it has excellent predictive power in
binary data or continuous data. However, it has its own disadvantages, given that the
parameters need to be adjusted well and the training time is long. In addition, due to the
nature of the tree-based model, the predictive power tends to be poor in high-dimensional
data retrieval [19].

2.2.4. LightGBM (Light Gradient Boosting Algorithm)

LightGBM is a decision tree-based model that uses a boosting method, and is an
algorithm that uses both a method of reducing the number of training samples and a
method of reducing the number of predictors to quickly and accurately learn large amounts
of data. The GOSS (Gradient-based One-Side Sampling) technique is used to reduce the
number of data, and the EFB (Exclusive Feature Bundling) technique is used to reduce the
number of predictors for split point calculation [29].

Previous decision tree-based models used a method (level wise, depth first) in which
nodes of the decision tree first traverse nodes close to the root node and grow horizontally.
On the other hand, lightGBM uses a leaf segmentation method (leaf wise, best first) that
divides and grows at the node with the greatest loss change, which quickly converges to
the optimal performance and is mostly better. In addition, it is an algorithm that is widely
used in the fields of big data and machine learning because it has the advantage of being
able to quickly learn a large amount of data in parallel.

2.3. Configuration and Experiment of Weight Tracking System
2.3.1. Hardware/Software Configuration Diagram of Weight Tracking System by
FSR Sensing

The system configuration diagram for tracking the weight of an object to be carried by
a construction worker using smart safety shoes is shown in Figure 1. The developed system
consists of smart safety shoes with sensors attached, a mobile device part for collecting
sensing data, and a web-based server computer for storing, preprocessing and analyzing
such sensing data.

The smart safety shoes consist of 7 pressure (FSR) sensors (manufacturer: Marveldex,
model name: RA12P) on the left and right insoles, and Arduino Nano (manufacturer: SMG,
model name: FT232RL) chips on each shoe. The Arduino Nano converts analog signals into
digital signals through Analog-to-Digital Converter (its parameter is raw data which has
only magnitude value) and transmits sensor values to mobile devices through Bluetooth
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(module, OEM, HC-06 (DIP) firmware v.3.0, SZH-EK105). The transmitted sensing data
values are primarily stored through an APP developed on a mobile device (manufacturer:
Samsung, model name: Galaxy S8) possessed by the construction worker. The stored data
values of L1–L7 and R1–R7 are transmitted to and collected on the web-based DB along
with the measured time through a wireless network or LTE network as shown in Figure 1.
This transmitted data is used for analysis to estimate the weight of an object carried by
construction workers.
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2.3.2. Test Scenarios

Experiments to verify the effectiveness of the weight tracking system when a con-
struction worker wearing smart sensing safety shoes transports heavy objects were carried
out as shown in Table 1. First, the data measured by the FSR sensor were collected when
the experimenters wearing the smart sensing safety shoes were pressurized by their own
weight in the state that they are not holding any object (action status: (1) 1, +0 kg). The
sensing data values measured at this time were used as reference data for classifying with
the sensing data values measured by assuming that each experimenter carried the heavy
object by increasing the weight by 5 kg each (action status: (2)–(5), +5 kg–+20 kg).

The basic information of the experimenters and the number of data sets for each
experimenter collected through this experiment are as shown in Table 2. The sensing data
values measured in this way were saved as CVS files, and then they were reorganized,
using Pandas in the Python Library [30], into a database effective for classifying the weight
of heavy objects carried by construction workers.
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Table 1. Heavy object transport experiment for weight estimation.
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LSUM Conversion value of SumRawL to voltage Voltage 
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Table 2. The basic information of experimenter and the number of collected data sets.

Experimenter Body Weight Number of Data Sets

A 67 kg 97,589
B 70 kg 96,873
C 70 kg 99,090
D 78 kg 99,083
E 83 kg 99,033

Total 491,668

2.4. Analysis Methods Applied

To understand the analysis methods of the experimental results described in the next
following Sections 2.4.1 and 2.4.2, it is necessary to first understand the variables included
in one data set mentioned in Table 2. The types of variables included in one data set and
their definitions are described in Table 3 as follows:

Table 3. Definition of variables included in one data set.

Variable Definition Unit of Measure

L1–L7 Raw data measured from FSR sensors
attached to the left insole (L: Channel 1–7) Magnitude

R1–R7 Raw data measured from FSR sensors
attached to the right insole (R: Channel 1–7) Magnitude

SumRawL The total value from L1 to L7 Magnitude

SumRawR The total value from R1 to R7 Magnitude

SumRaw Sum of SumRawL and SumRawR Magnitude

LSUM Conversion value of SumRawL to voltage Voltage

RSUM Conversion value of SumRawR to voltage Voltage

ASUM Sum of LSUM and RSUM Voltage

Load The actual weight of the object each
experimenter is holding Kg



Appl. Sci. 2021, 11, 1378 8 of 15

The raw data values obtained from a total of 14 FSR sensors (L: ch1–7, R: ch1–7)
attached to the left and right insoles of safety shoes have only magnitude values. The
sum of the left raw data values is SumRawL, and the sum of the right raw data values is
SumRawR. SumRaw is the sum of these two values. LSUM, RSUM, and ASUM are the data
values converted into voltage values of SumRawL, SumrawR, and SumRaw, respectively,
for the analysis.

2.4.1. Statistical Analysis

The first analysis of the experimental results was performed statistically by analyzing
the scatter plots to visually check the distribution of FSR sensing data (ASUM) collected for
the actual weight each experimenter is holding (load). Also, the R2 values of a univariate
multiple linear regression was calculated to determine the correlation between the sensing
data values (LSUM, RSUM, ASUM) and the differential weights. However, the correlation
between the variables was found to be somewhat low because of the wide variation
characteristics of sensitive sensing data values. Therefore, a machine-learning-based
analysis method has been developed to increase the accuracy in classifying how much
weight is carried by construction workers wearing smart safety shoes.

2.4.2. Machine Learning (ML) Analysis Using Classification Algorithms

To complement the statistical analysis results, which are insufficient in accuracy, the
second analysis for the experiments was implemented by using a machine-learning-based
analysis model developed by Python as shown in Figure 2. This analysis model adopts
multiple classification analysis algorithms, which have been commonly used as of recent.
It tested the accuracy of classification to distinguish how much weight each construction
worker was lifting with the sum of the left and right FSR sensing values (LSUM, RSUM,
ASUM) measured, when a construction worker wearing smart safety shoes was not holding
a heavy object (body weight +0 kg) and holding a different heavy object (body weight
+5kg–+20 kg).

The analysis model consists of two major processes. The first process provides the
processes of pre-processing data so that raw data collected and transmitted from the FSR
sensors are effective for ML analysis. The second process provides the processes of perform-
ing ML-based classification analysis. The data preprocessing process includes the processes
of converting raw sensing values (magnitude) into the unit of voltage values, defining and
labeling variables necessary for analysis, setting independent variables (LSUM, RSUM,
ASUM) and dependent variables (load), and dividing the sensing data values into train set
and test set by using scikit-learn [31].

The preprocessed data is subjected to a machine-learning-based classification analysis
process by applying effective and useful classification analysis algorithms such as decision
tree, random forest, GBM, and lightGBM. In the learning stage of this process, learning
is performed through model selection and cross-validation by applying valid machine-
learning algorithms. In the evaluation stage, the final model is selected, and finally, in the
classification stage, the label is classified with new data, and the accuracy of the result
is produced.

Through this process, the classifier accuracy of the ML analysis model adopting
each classification algorithm is confirmed by comparing and analyzing the actual weight
measurement data and the weight classification data of the analysis model. Basically, the
weight classification accuracy reveals how accurately the analysis model fits each weight
of the object carried by each experimenter.
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3. Results
3.1. Scatter Plots and Linear Regression Analysis Results

Table 4 shows the sum of the measured FSR sensor values (ASUM) as a scatter plot
where each experimenter (A–E) wearing smart safety shoes is not holding a heavy object
(body weight+0kg) and when each is holding a different weight of heavy objects (body
weight +5 kg, +10 kg, +15 kg, +20 kg). As shown in Table 4, when the weight of the heavy
object increases for each experimenter, the sensor values tend to increase slightly, even
though it cannot be said to appear clearly because of the wide distribution of sensing
data values. The wide distribution of the sum of the sensor values (ASUM) measured by
both smart safety shoes for each weight occurs due to the characteristics of sensing values
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having the potential to react sensitively, depending on the state of how the experimenter is
wearing the smart safety shoes or the degree of grounding on the floor.

Table 4. Scatter diagrams between the ASUM and Load by each experimenter.

A-Data B-Data C-Data
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To analyze their correlation in more detail, a univariate multiple linear regression was
performed as shown in Table 5. Herein, the independent variables were designated as the
sum of sensing data values collected from both the left and right smart safety boots and
the sum of all sensing data values (LSUM, RSUM, ASUM); the dependent variable was
designated as the differential weights (body weight +0 kg, +5 kg, +10 kg, +15 kg, +20 kg).
As a result, it was found that the R2 values for each experimenter were at the lowest level of
25%, the highest 69%, and the average level of 46%, indicating that the degree of explaining
the correlation is somewhat low. The statistical analysis results imply that the accuracy is
not very high in classifying how much weight is carried by construction workers wearing
smart safety shoes.

Table 5. Analysis of univariate multiple linear regression.

Experimenter A B C D E Average

R2-values 0.4221 0.6691 0.2926 0.6932 0.2447 0.4644

3.2. Machine Learning (ML) Analysis Results Using Classification Algorithms

Figure 3 shows the accuracy of an ML-based classification analysis model developed
by Python in this research. As described in Section 2.4.2, the accuracy means how accurately
the classification model distinguishes the actual weight with FSR sensing data values when
each experimenter wearing smart safety boots is not lifting weights (body weight itself) or
additionally carrying weights of +5 kg, +10 kg, +15 kg, and +20 kg. In other words, the
accuracy in this study refers to how well the model is able to classify different objects to its
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respective weight. For example, when the experimenter selects and holds one of 5, 10, 15,
and 20 kg objects, the accuracy of the analysis model reflects the accuracy of matching the
object to its weight.
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Figure 3. The accuracy of ML-analysis model developed for distinguishing the actual weights by classification algorithms.

As shown in Figure 3, the classification accuracy applying the four classification
algorithms shows a generally similar trend. In the case of experimenters B and D, the
accuracy of correctly classifying the weight of heavy objects is relatively higher than that of
experimenters A, C, and E. The accuracy of experimenters B and D’s weight estimation
is at least 94.0% and at most 95.2%. On the other hand, experimenters A, C, and E show
analysis results of at least 83.7% and at most 90.0%. This refers to the level of accuracy that
can be monitored through the developed model when the construction workers lift the
weight above the guidelines of Ministry of Employment and Labor in Korea. Specifically,
the accuracy of the model applying the random forest algorithm is slightly higher than that
of applying other classification algorithms.

4. Discussion
4.1. Discussion on the Experimental Results

The results of the first analysis for the experiments using univariate multiple linear
regression found that the correlation between the differential measured weights (exper-
imenter’s weight + heavy object weight: 5–20kg) and the corresponding sensing values
(only ASUM data were used) were insufficient because the degree to which the indepen-
dent variable explains the dependent variable is somewhat low. As shown in Table 4, the
R2 values of experimenter E and experimenter C were relatively low at 24.5% and 29.3%,
respectively, and the R2 value of experimenter A was 42.2%, which almost approaches
the total average of 46.4%. On the other hand, the R2 values of experimenter D and ex-
perimenter B were relatively higher at 69.3% and 66.9%, respectively. As shown in the
scatter plots in Table 3, the reason why the regression results are not so clearly explained is
due to the wide and overlapping distribution of sensor ASUM values measured for each
weight. This can be said to be a result of various factors, such as the behavioral characteris-
tics of each experimenter, their posture, shoe size, as well as the grounding status of the
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sensor-attached insole, all of which affect sensitive sensor values. Therefore, an effective
analysis method is required to monitor the actual weight lifted by construction workers
using the FSR sensing data. First, we tested the analysis method adopting logistic and
linear regression classification algorithms that are conventionally used. The test results are
shown in Table 6. The accuracy of classifying weight by logistic regression analysis (77.1%)
was found to be somewhat higher than that of weight classification by linear regression
analysis (46.5%). However, it was confirmed that the accuracy of the analysis using these
two classification algorithms was not satisfactory enough to distinguish the actual weight
of the object carried by the experimenter after analyzing the FSR sensing data values.

Table 6. The average of weight classification accuracy by using logistic and linear regression classifiers.

Classification Algorithms A B C D E Average

Logistic Regression 65.0% 89.3% 68.0% 91.1% 72.0% 77.1%

Linear Regression 42.4% 66.6% 29.1% 69.4% 24.9% 46.5%

Therefore, this research study has developed a ML-based classification analysis model
using Python. This model has been tested and developed by adopting the widely used
classification algorithms, which includes decision tree, random forest, GBM, and light GBM.
The accuracy of the test results using the ML-based analysis model is as shown in Table 7.
In the case of experimenter C, who showed relatively low accuracy in weight estimation
compared to the other experimenters, the average accuracy of estimation of applying the
four classification algorithms was about 85.4%, and the average accuracy of experimenters
B and D, which showed relatively high estimation accuracy, was 94.5% and 95.0%, respec-
tively. In the case of experimenters A and E, who both showed medium accuracy, they had
an average estimation accuracy of 89.0% and 87.0%, respectively. Therefore, the weight
estimation accuracy according to all experimenters was confirmed to have an average of
90.2%, which corresponds to a relatively high and meaningful level of accuracy.

Table 7. The average of weight classification accuracy of the developed ML-based analysis model.

Classification Algorithms A B C D E Average

Decision Tree 89.4% 94.7% 85.3% 95.2% 87.2% 90.3%

Random Forest 90.0% 94.7% 86.6% 95.2% 88.1% 90.9%

GBM 87.3% 94.0% 83.7% 94.6% 85.6% 89.0%

Light GBM 89.4% 94.7% 86.0% 95.1% 87.2% 90.5%

Average 89.0% 94.5% 85.4% 95.0% 87.0% 90.2%

In addition, when looking at the classification accuracy of the weight lifted by each
experimenter by each classification algorithm, the accuracy of the GBM classification
algorithm for experimenter C is the lowest at 83.7%. On the other hand, it is found that the
accuracy by decision tree and random forest for experimenter D is the highest at 95.2%. The
average accuracy classifying the weight by each classification algorithm showed similar, but
high accuracy in the following order as an experimental result: random forest (90.9%), light
GBM (90.5%), decision tree (90.3%), and GBM (89%). This means that the developed ML-
based analysis model can classify the actual weight of the object held by the experimenter
with an average accuracy of 90% or more.

As described in Section 2.3.2, this table shows the results of analysis with the sum
of sensor values (LSUM, RSUM, ASUM) among the FSR sensing data measured when
the experimenter is standing with a heavy object. This is the result of the experiments
considering that it is common for construction workers to lift heavy objects with one or
both hands while standing with their feet on the floor for a while. Of course, in some cases,
pressure may not be applied evenly to both feet. Therefore, the data values measured from
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the left and right FSR sensors attached to both insoles may not be uniform. However, the
sum of the pressure delivered to both feet can be said to be a result of direct reflection of
the weight of the heavy object. Therefore, it is more reasonable to use the sum of pressure
sensor values (LSUM, RSUM, or ASUM) obtained from the FSR sensors attached to both
insoles to distinguish the weight the experimenter is holding.

However, it is effective to use the 14 channels of FSR sensing data values obtained from
safety shoes in order to distinguish a moment when a construction worker lifts or unloads a
heavy object from other moving actions. Table 8 shows the results of classification analysis
with four ML-based classification algorithms for distinguishing between the experimenter’s
standing and moving act. In this analysis, all data obtained by the 14 channels of FSR
sensors were utilized, since the purpose of the analysis is to classify the movement act of an
experimenter from the standing act while lifting a heavy object. As shown in Table 8, it is
found that random forest has the highest accuracy, at 99%, among ML-based classification
algorithms for distinguishing when an experimenter is moving and when the experimenter
is standing still. It can be seen that the remaining classification algorithms also show high
accuracy of over 97% on average. The result shows that it is not a problem for the algorithm
to distinguish when a construction worker is lifting a heavy object.

Table 8. The average classification accuracy between the standing and moving acts by the ML-based
analysis model.

A B C D E Average

Decision Tree 0.9988 0.9877 0.9743 0.9736 0.9718 0.9812

Random Forest 0.9997 0.9950 0.9881 0.9879 0.9875 0.9916

GBM 0.9935 0.9596 0.8854 0.9321 0.8709 0.9283

Light GBM 0.9993 0.9887 0.9533 0.9655 0.9392 0.9692

Average 0.9978 0.9828 0.9503 0.9648 0.9424 0.9676

4.2. Research Limitations and Further Studies

The result of this study shows only a prototype system that tracks the weight of heavy
objects carried by construction workers using safety shoes with FSR sensors. The main
scope of this study focuses mainly on determining whether construction workers lift heavy
objects above the safety guidelines. In order to practically apply this system to construction
sites, several limiting factors of this study should be improved through future studies from
at least the following points of view. First, further research is needed on the durability
of the sensor, the durability of the battery, and the convenience of wearing safety shoes
under various construction work environments in order to practically use the safety shoes
with FSR sensor. Second, continuous research efforts are needed to improve the accuracy
of the weight tracking system. For this, experiments and analyzes need to be conducted
under more diverse conditions, such as the different physical conditions of the construction
workers, the grounding condition of the shoes, the use of other types of sensors, etc. Third,
the experiment scenario adopted in this research was limited to 20 kg because the physical
safety of the experimenter was considered. However, it may be necessary to keep analyzing
the impact of various weights over 20 kg to see what those results can add to the study.
Recently, the introduction of IT/ICT application technology has been newly attempted at
construction sites, but the reality is that it is still insufficient. Therefore, this research result
is expected to be one of the efforts to overcome this.

5. Conclusions

In this study, we developed smart safety shoes with a conductive fiber sensor (FSR sen-
sor) that can track pressure strength. It has been verified through several experiments
whether it is possible to track the weight of a heavy object in order to prevent excess
burden on the musculoskeletal system when a construction worker lifts a heavy object
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on a construction job site. To this end, we developed a prototype weight tracking system
consisting of smart safety shoes with FSR sensors, a mobile application for primary data
collection, and a ML-based classification model based on a server computer for data storage
and analysis.

To verify this prototype weight tracking system developed in this study, five experi-
menters with different weights wearing smart safety shoes conducted an experiment in
which a weight was lifted from +0 kg to +20 kg in 5 kg increments. Through this, analysis
and verification were performed to verify how accurately the system classifies the weight
carried by each experimenter. It was found that the average weight estimation accuracy
for each classification algorithm showed similar results: random forest (90.9%), light GBM
(90.5%), decision tree (90.3%), and GBM (89%). Altogether, the weight tracking system
showed a meaningful level of 90.2% of the overall average accuracy in determining how
much weight each experimenter carries.

This means that when a construction worker lifts a heavy object at a construction
site, its weight can be tracked with a fairly high accuracy in real time without direct
supervision. Therefore, the results of this study are expected to be utilized as a basic study
for the development of a system to prevent and manage the degree of impact on the body
musculoskeletal burden work that can occur in the process of carrying out transport work
by construction workers at the construction job site.
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