
applied  
sciences

Article

Pose Measurement for Unmanned Aerial Vehicle Based on
Rigid Skeleton

Jingyu Zhang , Zhen Liu * and Guangjun Zhang

����������
�������

Citation: Zhang, J.; Liu, Z.; Zhang, G.

Pose Measurement for Unmanned

Aerial Vehicle Based on Rigid

Skeleton. Appl. Sci. 2021, 11, 1373.

https://doi.org/

10.3390/app11041373

Academic Editor: Lidia

Jackowska-Strumillo

Received: 30 December 2020

Accepted: 1 February 2021

Published: 3 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Ministry of Education Key Laboratory of Precision Opto-Mechatronics Technology, Beihang University,
Beijing 100191, China; zhangjingy@buaa.edu.cn (J.Z.); gjzhang@buaa.edu.cn (G.Z.)
* Correspondence: liuzhen008@ buaa.edu.cn

Abstract: Pose measurement is a necessary technology for UAV navigation. Accurate pose mea-
surement is the most important guarantee for a UAV stable flight. UAV pose measurement meth-
ods mostly use image matching with aircraft models or 2D points corresponding with 3D points.
These methods will lead to pose measurement errors due to inaccurate contour and key feature point
extraction. In order to solve these problems, a pose measurement method based on the structural
characteristics of aircraft rigid skeleton is proposed in this paper. The depth information is introduced
to guide and label the 2D feature points to eliminate the feature mismatch and segment the region.
The space points obtained from the marked feature points fit the space linear equation of the rigid
skeleton, and the UAV attitude is calculated by combining with the geometric model. This method
does not need cooperative identification of the aircraft model, and can stably measure the position
and attitude of short-range UAV in various environments. The effectiveness and reliability of the
proposed method are verified by experiments on a visual simulation platform. The method proposed
can prevent aircraft collision and ensure the safety of UAV navigation in autonomous refueling or
formation flight.

Keywords: machine learning; computer vision; stereo; pose estimation

1. Introduction

UAVs are unmanned aircraft operated by radio remote control equipment and self-
provided program control devices. They are widely used in aerial photography, agriculture,
express transportation, disaster relief, surveying and mapping, news reporting, disas-
ter relief, and other fields [1,2]. Safety and stability are the most basic and important
requirements for a UAV in flight. Therefore, flight control of the UAV is a particularly
essential feature. Attitude calculation is an imperative aspect of flight control [3]. The esti-
mated attitude is released to the attitude controller [4] to ensure stable flight. Therefore,
the attitude estimation is the most important guarantee of flight stability.

The measurement of aircraft position and attitude can be divided into contact mea-
surement and non-contact measurement according to the type and position of sensors.
The classification of pose measurement methods is shown in Table 1. Contact measurement
is also called attitude internal measurement. The measurement sensor used in this method
is attached to the aircraft and moves with it. Non-contact measurement is also called
attitude external measurement. In this case, the measurement sensor is not in contact with
the aircraft; instead, it is usually placed on the ground or some other platform.

Several mature sensing instruments for attitude internal measurement are available,
such as global navigation satellite system (GNSS) [5,6] and inertial navigation equipment
(IMU) [7,8]. These equipment can directly give high-precision attitude parameters but
also present a number of obvious shortcomings in their attitude internal measurement
methods, which are mainly reflected in the robustness of the measurement method and
measurement accuracy will become worse under certain conditions. At the same time,
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the attitude measurement method is affected by factors such as calculation frequency and
signal reception.

Table 1. Classification of pose measurement methods.

contact GNSS In ref. [5,6], GNSS is used to solve the aircraft pose, but the data update fre-
measurement quency of GNSS is slow, and the signal transmission is easily affected.

(attitude internal IMU In ref. [7,8], IMU is used to calculate aircraft pose, but the positioning error
measurement) of IMU increases with time, and the long-term accuracy is poor.

Ref. [9] proposed SoftPOSIT, which can solve pose parameters iteratively.
Ref. [10] proposed the N-point perspective problem, which is a PNP problem.

Monocular Ref. [11] proposed a method to generate a template to estimate the target pose.
non-contact Ref. [12] performed pose measurement based on contour matching method.

measurement Ref. [13] recognized the lines of aircraft to realize the structure extraction.

Ref. [14] proposed a method to solve aircraft pose by using the line feature.
(attitude external Ref. [15] proposed a method to compare simulated images with real model.

measurement) Binocular or Ref. [16] proposed a combined vision technology based on a multi-camera.
multiocular Ref. [17,18] proposed optimization-based methods to estimate aircraft pose.

Ref. [19] extracted and clustered image line features to solve aircraft pose.
Proposed Method proposes pose measurement based on rigid skeleton.

The attitude external measurement of UAV algorithms has been studied by research
institutes worldwide. Some methods measure the aircraft’s pose by monocular. These meth-
ods usually need measuring equipment such as theodolite and radar. Dementhon and
Davis [9] proposed SoftPOSIT, an improved algorithm of POSIT. In this algorithm, the tar-
get pose parameters can be solved iteratively when the corresponding 2D–3D points are
unknown. Fishler et al. [10] proposed the N-point perspective problem, which is a PNP
problem. The coordinates of N points in the target coordinate system, as well as those of
the projection points on the image plane, are determined to solve the relative position and
attitude relationship. Hinterstoisser et al. [11] proposed a method to generate a template
according to the viewpoint and match real images to estimate the target pose. Sample tem-
plates, which include color and depth gradients, are obtained from different perspectives.
The real image is matched with templates from different viewpoints, thresholds are set to
obtain ideal matching results, and pose estimation is completed. The robust ICP algorithm
is used to achieve 3D point set matching. Liebelt performed pose measurement based on the
target contour matching method [12]. Given an initial value, iterative optimization is used
to minimize deviations by calculating the deviation between the result of the target edge
reprojection and the actual imaging result of the target edge. The target pose is then solved.
In this method, the target edge contour need to be obtained. Luo et al. [13] adopted a line
segment detector to extract line segment features, mean-shift and k-means++ approaches
are applied to group line segments. This method recognized the lines corresponding to the
fuselage and wing in the image to realize the structure extraction of straight wing aircraft.

Studies on attitude external measurement of UAV based on multiple cameras have
been conducted. Wang Bin proposed a method to solve aircraft attitudes by using the
straight-line feature information of the aircraft [14]. The rotation matrix obtained by the
angle bisector method is used as an initial value, and the coplanar error formula of the
linear feature space of multiple camera images is established. The spatial coplanar error
of all observed straight lines is used as an objective function to solve the optimal rotation
matrix iteratively. Finally, the attitude parameters are analyzed. This calculation process
requires the assistance of a theodolite. Li Guorong [15] proposed a method to compare
simulated images with real ones and invert the target flight attitude. The pyramid-based
regional matching algorithm may be used to determine the initial value of the target’s
pose parameters, after which the iterative optimization algorithm is refined and optimized
on the basis of outer contour point set matching. Yuan et al. [16] proposed a combined
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vision technology based on a multi-camera, which combines multi-view and mono-view
constraints for UAV attitude estimation. The particle filter framework combined with
constraints to improve the accuracy of the algorithm. Zhang et al. [17,18] combined
stereo vision with the geometric information of the object, proposed a method based on
optimization to measure the position and attitude of the spacecraft and realized the attitude
solution of the spacecraft with the non-cooperative target. Teng et al. [19] extracted and
clustered image line features based on two widely separated cameras, combined with
the common geometric constraints of straight wing aircraft to solve the aircraft attitude.
The aircraft attitude measurement is realized under the condition of the large field of view
and long-distance.

In practical applications, an image may be unavailable or the target may not be cap-
tured when a photometric device is used to capture images. Furthermore, algorithms that
rely on 2D images usually need other information or equipment to solve the spatial pose
accurately. Existing multi-eye measurement methods mainly match images with models or
seek the correspondence between 2D and 3D points. These methods are negatively affected
by factors such as inaccurate contour extraction, occlusion of key feature points, and in-
correct matching in complex environments. Therefore, the pose measurement accuracy of
these methods is low, and knowledge of the aircraft model information must be available.

In the process of flight, the skeleton structure of UAVs is rigid and almost not affected
by external factors. Therefore, the attitude of UAV can be solved by the spatial straight line
in the rigid skeleton.

This paper proposes a measurement method for the position and attitude of UAV
based on a rigid skeleton that integrates 2D images and 3D point cloud information without
requiring aircraft size or model information and then solves the problem of UAV aircraft
attitude determination. The main contributions of this article are as follows:

• A method framework based on the structural characteristics of a rigid skeleton of the
aircraft is proposed to solve the position and attitude of short-range UAVs without
knowledge of the aircraft model and size.

• A key point screening method that combines 2D and 3D information is proposed
for aircraft pose measurement. The method in this paper is based on a stereo vision
measurement system. Depth information is combined with edge contour and corner
point information to reduce the mismatch of aircraft key feature points effectively.

• The proposed method can solve the online attitude of UAVs without identification
and other auxiliary equipment, thereby effectively improving the reliability and
robustness of the attitude calculation algorithm. Thus, the method can be applied to
low-consumption airborne environments.

The rest of this article is organized as follows. Section 2 introduces the related knowl-
edge and system framework. Section 3 describes the algorithm in detail. Section 4 shows
the simulation experiment. The results of the entire method and comparative experiments
are provided in Section 5. Finally, Section 6 summarizes the article.

2. System Framework

The attitude of an aircraft refers to the state between the three axes of the aircraft’s
coordinate system and a fixed coordinate system. The flight attitude of an aircraft affects
the altitude and direction of the flight. A pilot can judge the airplane’s flight attitude
through the horizon when flying at low speed. However, because the attitude of the pilot
body changes with the attitude of the aircraft, this type of experience-based judgment is
unreliable and prone to misjudgment. Therefore, the measurement of aircraft attitude is a
very important research topic in efforts to ensure the safety of aircraft navigation.

2.1. Definition of Aircraft Attitude Angle

We define the aircraft local coordinate system Op − xpypzp, as shown in Figure 1.
The center point (center of mass) of the aircraft is taken as the origin of its local coordinate
system Op, the direction of the wing (pointing to the right wing) is defined as the Opxp axis,
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the direction of the nose is the Opyp axis, and the direction perpendicular to the aircraft is
the Opzp axis. This coordinate system changes as the aircraft attitude changes. Solving the
aircraft attitude is equivalent to finding the rotation angle between the current coordinate
system and the initial coordinate system. In this system, the three Euler angles, namely,
pitch, yaw, and roll, are used to describe the attitude of the aircraft. Pitch refers to rotation
around the X axis and is also called the pitch angle θ. Yaw refers to rotation around the Z
axis and is also called the yaw angle ϕ. Roll refers to rotation around the Y axis and is also
called the roll angle γ.

Figure 1. Definition of aircraft attitude angle.

2.2. Proposed Architecture

The position and attitude measurement of UAVs is mainly used for formation flying
and autonomous refueling in the air. During this process, the rear aircraft must sail
at a speed slightly faster than that of the front aircraft. The two aircraft are constantly
approaching, and the observation angle and relative distance between them may change
remarkably over the course of flight. Thus, measuring the relative distance and attitude
between the two aircraft is necessary to ensure safe navigation.

This paper focuses on the online measurement of the position and attitude of short-
range UAVs. The measurement system is shown in Figure 2. Two cameras are placed on
the rear machine, video streams acquired by cameras are used as input. Our method solves
the pose of the front UAV by each pair of images.

Figure 2. Measuring system.

The algorithm fuses 3D point cloud data with 2D information, such as image edges
and feature points. Two cameras complete the acquisition of target images. Aircraft target
positioning and tracking and 3D reconstruction are completed in the image. The set of
points on the wing edge and plane are extracted according to the 3D point cloud and 2D
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images, and the straight-line equation of the wing edge space, the intersection line of the
two wing planes, and the position of the front aircraft tail are subsequently calculated. Inte-
grating the straight-line equation of the wing edge and the plane’s intersection line realizes
the calculation of the three attitude angles. In the next section, the specific implementation
of the proposed method will be described in detail.

3. Research Methodology

The algorithm proposed in this paper is divided into four parts, namely the initial
stage, the tracking and positioning stage, the 3D reconstruction stage, and the pose calcu-
lation stage. The algorithm framework is shown in Figure 3. In the initialization phase,
the candidate region can use the pre-trained model to perform initial frame processing on
the image and then apply the epipolar geometric constraints in stereo vision to detect the
consistency of the candidate image. In the tracking and positioning stage, the pre-training
model is used to detect the initial position of the target. The 3D positioning result obtained
by the detection result, the online tracking result, the target motion estimation, and the
stereo vision constitute a confidence determination formula. The confidence of the target
and final position are then located. In the 3D reconstruction stage, the tracking and position-
ing areas are matched in the binocular camera, and, finally, the 3D data of the target area
are formed. In the pose solution stage, 3D data and 2D information are combined. In the
disordered 3D data, the key points on the wings and fuselage are screened and marked
separately to form a key point set. The key point set is used to solve the intersection of the
wing edge line and wing plane, and the space line is used to calculate the attitude angle of
the target aircraft in three directions. Motion estimation and tracker module in the tracking
stage can use the target position information obtained in the solving stage to update.

Figure 3. Framework of the proposed method.

3.1. Initialization Stage

Before tracking and positioning, the tracking target needs to be initially positioned.
In the initialization phase, an offline trained classifier (offline model) is used to find possible
candidates in the image sequence that is input. Candidates we find are not all the region
we want to track. Therefore, the candidate regions need to be filtered [20].

{xt
li}

M
i=0 is the candidate found in the tth frame of the left image sequence. and {xt

rj}N
j=0

is the candidate region found in the tth frame of the right image sequence. M and N indicate
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the number of candidate regions detected. Each candidate area is xt =
(
at, bt, wt, ht), where

a, b, w, h denotes the column and row coordinates of the top left corner and the width and
height of the candidate, respectively. pli and prj are the center points of xt

li and xt
rj ,

respectively. wli and wrj are the widths of xt
li and xt

rj, respectively [21].
In a fixed binocular system, the target is a single-target detection. Therefore, in the

corresponding frame, in the M candidate regions {xt
li}

M
i=0 and N candidate regions {xt

rj}N
j=0

corresponding to all the left and right images, only one pair of candidates should satisfied
the following conditions: widths of candidates wli and wrj should satisfied wli − wrj <
0.05×max(wli, wrj). Based on the epipolar, the constraint shows that the relevant center
points pli and prj of should be satisfied pT

rjF pli < ε (where F is the fundamental matrix
and ε is a reliable threshold for judging). By applying binocular filtering, candidate in the
image can be determined, and the other candidates that are incorrect are filtered out.

3.2. Tracking Stage

After the initialization is complete, the algorithm enters the tracking stage. For the cor-
responding frame in each image sequence, the target position is located through detection
(that is, obtained by the offline classifier model), online tracking and motion estimation [22].
In this stage, the detection algorithm is the ADAboost algorithm [23] with haar feature.
The tracking algorithm which used is KCF [24] with hog feature.

For the target in each image sequence, Kalman filtering [25] and the position and
attitude of the target in the previous frame can be used to predict the current position of the
target, and and the position of the motion estimation is represented as xk = (ak, bk, wk, hk),
where ak, bk, wk, hk denotes the column and row coordinates of the top left corner and the
width and height of the motion estimation xk respectively. Furthermore, an ROI (region of
interest) is generated around the estimated position for subsequent local detection, which
is three times the size of the width wk and height hk .

The offline classifier is used to detect the target, and {xdi}M
i=0 is the candidate found in

the current frame. Each candidate area is xd = (ad, bd, wd, hd), where ad, bd, wd, hd denotes
the column and row coordinates of the top left corner and the width and height of the
candidate xd respectively. pd is the center point of xd. Furthermore, the spatial center
position pcen(xcen, ycen, zcen) of the previous frame is calculated to be projected onto the
image plane to obtain its coordinates ppcen(upcen, vpcen).

The shape and position of the drogue do not mutate throughout the process. Therefore,
the detection candidates which detected by detection algorithm close to the region given by
the motion estimation have high confidence. The judgment of confidence of the detection
candidate can be completed by the following:

cd = cds · cdc · s (1)

and cds and cdc are defined as

cds =
min(wd · hd, wk · hk)

max(wd · hd, wk · hk)
(2)

cdc = f (pN (ad, bd)) (3)

where pN ∼ N
((

ak
bk

)
,
(

σ2 0
0 σ2

))
, of which σ =

√
w2

k + h2
k . The function f is used

to remap the value of pN within 2σ of (ak, bk) to the interval [0, 1]. s is also a normal
distribution, which is given according to the distance from the center point pd to the pro-

jected point ppcen, similar as cdc, here σ =
√

u2
pcen + v2

pcen. If there are multiple candidates,
the value with the highest confidence is selected as the detection result.

Similarly, the confidence judgment formula for online tracking is as follows:

co = cos · coc · s (4)
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The parameter definition is similar to that in the confidence of the detection candidate.
For the positioning process of each frame, the target state can be defined as {x, c},

where x is the target position and c is the confidence of the position. Given motion
estimation xk, detection xd and online tracking xo, the confidence evaluation function is
as follows:

{
x, c
}
=


{

0, 1
}

if cd < θ1&co < θ2{
xd, cd

}
if cd ≥ θ1&co ≥ θ2&cd ≥ co‖ if cd ≥ θ1&co < θ2{

xo, co
}

if cd ≥ θ1&co ≥ θ2&cd < co‖ if cd < θ1&co ≥ θ2

(5)

where θ1 and θ2 are the reliability thresholds of detection and tracking confidence, re-
spectively. The confidence of detection and tracking is compared with a set reliability
threshold to locate the current frame target. If the detection confidence is 0 for 20 frames,
the confidence of the entire algorithm is considered to be 0, and the algorithm returns to
the initialization stage.

3.3. 3D Reconstruction Stage

This study uses a semi-global matching algorithm to solve the disparity problem
of input image pair [26]. The algorithm idea is to form a disparity map by selecting the
disparity of each pixel. The global energetic function associated with the disparity map is set
to minimize the energetic function to achieve the optimal goal of each pixel. The energetic
function that depends on the disparity image D is as follows:

E(D) = ∑
p
(C
(

p, Dp
)
+ ∑

q∈Np

P1T
[∣∣Dp − Dq

∣∣ = 1
]
+ ∑

q∈Np

P2T
[∣∣Dp − Dq

∣∣ > 1
]
) (6)

where p and q represent pixels. D represents the disparity image. DP and Dq represent
the disparity between p and q, respectively. C

(
p, Dp

)
is the matching cost of pixel p with

respect to disparity Dp, which can be solved by the sum of absolute differences. q is in the
neighborhood Np of p, and its disparity changes slightly (that is, 1 pixel). The operator
T[]) is the probability distribution of the corresponding intensity, which is 0 if its argument
is false and 1, otherwise. P1 and P2 represent a penalty coefficient of 1 and a disparity
difference greater than 1, respectively.

Solving using the energetic function in the Formula (6) is an NP-complete problem.
It is approximated as multiple one-dimensional problems and solved by dynamic pro-
gramming [27]. For example, considering the direction from left to right, each pixel is only
related to its coordinate pixel. The formula is as follows:

Lr(p, d) = C(p, d) + min

 Lr(p− r, d), Lr(p− r, d− 1) + P1,
Lr(p− r, d + 1) + P1,
min

i
Lr(p− r, i) + P2

−min
k

Lr(p− r, k) (7)

where Lr(p, d) represents the minimum cost of the current pixel when the disparity of the
current pixel is d. Here, r can be understood as the neighboring pixels of the pixel p in
this direction.

Costs in the eight directions are accumulated, and the smallest accumulated cost is
selected as the final disparity of the pixel. The cumulative formula is expressed as follows:

S(p, d) = ∑
r

Lr(p, d) (8)

A disparity map of the entire image can be obtained by performing the above operation
for each pixel in image.

3.4. Solving Stage

Figure 4 shows an analysis of the airplane model. The space straight lines l1 and l2
where the rear edges of the left and right wings of the airplane are located are not collinear.
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Because the wing of the aircraft is symmetrical, according to the plane’s own coordinate
system and the plane’s top view, the straight lines l1 and l2 are in the plane coordinate
system Op − xpypzp in Opxpyp. The projected line on the plane has the same angle relative
to the xp axis and is axisymmetric about yp. Therefore, the aircraft yaw angle can be solved
according to the space straight lines l1 and l2. According to the rear view and coordinate
system of the aircraft, similar to the yaw angle solution, the roll angle of the aircraft can
be calculated on the basis of the space straight lines l1 and l2. The projections of the space
straight lines l1 and l2 on the Opypzp plane are challenging to distinguish and easily affected
by noise; thus, the pitch angle is unstable. From our analysis of the side view of the aircraft,
the intersection line of the left and right wing planes l3 on the Opypzp plane is parallel
to the fuselage line. Therefore, the pitch angle of the aircraft can be solved by the angle
between this intersection and the plane.

(a) Top view (b) Oblique view

(c) Side view (d) Rear view

Figure 4. Schematic diagram of aircraft attitude measurement.

In summary, the process of solving the 3D attitude angle of the aircraft is transformed
into the process of solving the space straight lines l1 and l2 where the rear edges of the
left and right wings of the aircraft are located, and the intersection line l3 of the two
wing planes.

The proposed method uses the disparity map Id to obtain the target area of the aircraft
and then count the points in this map according to the columns. The disparity map can be
divided into three regions according to the number of corresponding points in the columns,
namely, the left wing region Idl

, the fuselage area Idc , and the right wing area Idr .
The proposed method extracts the edge space points of the left wing of the aircraft,

that is, filter the edge point set in the left wing area. Next, the proposed method calculates
the corresponding depth map Idepthl

according to the disparity map Idl
. Because the wing

area is projected on the image plane according to the perspective projection, the order
of the wing part in each column of the image is from far to near. The input image has
a one-to-one correspondence with the disparity map; thus, the left wing edge point set
{pedgel

} can be filtered out according to the depth information of the corresponding points
obtained by the disparity map calculation. In the process of screening the edge point set,
the proposed method can judge whether the selected point is a noise point according to the
depth information in the neighborhood and the ordinate position of the point in the image
and filter out the relevant noise point.

The proposed method projects the extracted left wing edge point set {pedgel
} back to

the image plane, as shown in the Figure 5a. The “holes” generated by the stereo matching
algorithm can be clearly seen and lead to extraction The resulting edge point set is dis-
continuous and mixed with some non-edge points on the wing; such features can cause
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great errors in solving the straight-line equation of the edge of the aircraft wing. Therefore,
the proposed method combines the edge features of the image, correct each point in the left
wing edge point set {pedgel

}, and then correct the noise points back to the accurate edge
to obtain an accurate set of wing edge points {pedgel

}. The effect is shown in Figure 5b.
Canny algorithm [28] is used in image edge detection.

(a) Initial edge point set (b) Corrected edge point set

Figure 5. Edge point set projection.

According to the point set {pedgel
} fit the space straight line Ledgel

on the edge of the
left wing:

x− xedgel

Aedgel

=
y− yedgel

Bedgel

=
z− zedgel

Cedgel

(9)

Similar to the above solution process, the corresponding depth map Idr is calculated
for the right wing area Idepthr , and the right wing edge space point set {pedger} is obtained.
The fitting is the edge space line of the right wing Ledger :

x− xedger

Aedger

=
y− yedger

Bedger

=
z− zedger

Cedger

(10)

According to the linear equations of Ledgel
and Ledger , the angles ϕedgel

and ϕedger

between their projection lines in Opxpyp of the aircraft coordinate system (i.e., Oxz plane
of the camera coordinate system) and the axis of x can be solved. Given the symmetrical
properties of the wings, the initial state angle can be defined as ϕ0, and the yaw angle of
the aircraft is ϕ. The corresponding relationship is shown in Figure 6:

Figure 6. Relationship between yaw and straight line projection.

Because the angles between the two linear space vectors and the positive direction of
the x axis are acute, the formula for calculating the yaw angle ϕ of the aircraft is as follows:

ϕ =

{ ϕedger+ϕedgel
2 if Cedgel

· Cedger > 0
ϕedger−ϕedgel

2 if Cedgel
· Cedger < 0

(11)

The aircraft pitch angle θ is solved by the intersection of the two wing planes. Al-
though the disparity map Id can be divided into the wing area and the fuselage area, errors
may be encountered during the process of fitting the plane because a large number of noise
points in the 3D point cloud are calculated in the stereo matching algorithm. Moreover,
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because the amount of point cloud data is large, the calculation efficiency of the method
may be negatively affected. Therefore, this paper uses the spatial point set formed by the
feature points in the wing area to fit the plane and calculate the intersection of the wing
plane. Here, the proposed method use the disparity map Id and its area distinction to
filter the matching feature points, constrain the matching of the feature points through
the disparity (i.e., depth information) corresponding to the feature points, eliminate the
incorrectly matched points on the same horizontal line, as shown in Figure 7. The feature
used in the image is ORB feature [29].

Figure 7. Feature points after filtering.

The feature points extracted from the corresponding left image through the left wing
area Idl

in the disparity map are divided. The feature point pl
f eali

= (ul
f eali

, vl
f eali

) in the
left wing area and the feature point in the right image that matches this feature point
pr

f eali
= (ur

f eali
, vr

f eali
) are extracted, where u f eali

and v f eali
denotes the column and row

coordinates of the feature point p f eali
respectively. For comparison, the proposed method

can filter out the feature point set on the left wing {p f eal
}. The filter formula is as follows:

f (x) =

{
pl

f eali
∈ {p f eali

} if |ur
f eali
− ul

f eali
| < δ&&pl

f eali
∈ Idl

pl
f eali

/∈ {p f eal
} else

(12)

The 3D coordinates of each point in the feature set {p f eal
} are calculated, and the

plane equation of the left wing is fitted as follows:

Awingl x + Bwingl y + Cwingl = z (13)

In the same way, the feature point set on the right wing {p f ear} can be extracted
through the above process, and the right wing plane equation can be fitted as shown below:

Awingr x + Bwingr y + Cwingr = z (14)

The normal vectors
−→
Mwingl and

−→
Mwingr of the plane where the two wings are located

are obtained, and the cross product are used to calculate the direction vector
−→
M l3 of the

plane intersection l3.
−→
M l3 =

−→
Mwingl ×

−→
Mwingr (15)

The angle between the projection of the direction vector
−→
M l3 of the plane intersection

line l3 in Opypzp plane of the aircraft coordinate system (i.e., Oyz plane of the camera
coordinate system) and the y axis of the aircraft coordinate system (i.e., the z axis of the
camera coordinate system) is the pitch angle θ of the aircraft.

According to the conventional aircraft shape, the position of the aircraft can be spatially
located through the tail of the aircraft. The point with the smallest depth information is
found in the fuselage area Idc in the disparity map. The difference between the disparity
of the point in the adjacent area is used to eliminate the noise points, and the position
ptail(xtail , ytail , ztail) of the tail of the aircraft is obtained.

The proposed method is presented in Algorithm 1. After calculating the aircraft’s space
pose, its position information will be adopted to update the confidence of the tracking stage.
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Algorithm 1: Measuring Position and Orientation of Aircraft.
Input: Frame Sequence
Output: Location ptail , Pitch θ, Roll γ and Yaw ϕ

while not end of sequence do
read current image pair Il , Ir ;
if Il , Ir is initialized then
{xld, cld} = detect(ROIld), {xrd, crd} = detect(ROIrd);
{xlo, clo} = trackupdate(Ir), {xro, cro} = trackupdate(Ir);
if cjd > cjo(j = l, r) then{

xj, cj
}
=
{

xjd, cjd

}
;

else
vice versa;

end

else
xl = Initdet(Il), xr = Initdet(Ir);
trackInit(Il , xl), trackInit(Ir, xr);
ROIl = CalROI(xl), ROIr = CalROI(xr) ;

end
if xl&&xr 6= 0 then

Idepth = disparity(xl , xr) ;[
Idl

, Idc , Idr

]
= Divide

(
Idepth

)
;

{pedgel
} = CalP

(
Iedgel

, Idl
, SelDP

(
Idl

))
, {pedger} =

CalP
(

Iedger , Idr , SelDP(Idr )
)

;

ϕedgel
= CalinterAngel

(
FitLine{pedgel

}
)

, ϕedger =

CalinterAngel
(

FitLine{pedger}
)

;

ϕ = CalAngel
(

ϕedgel
, ϕedger

)
;

Similarly, it can be obtained: γ = CalAngel
(

γedgel
, γedger

)
;

if num{p f eal
} > 5||num{p f ear} > 5 then

θ = CalinterLineAngle
(

RANSAC{p f eal
}, RANSAC{p f ear}

)
;

else
θ = 0 ;

end
ptail = CalMaxP

(
Idc ,
{

ptN |pi ∈ Aeraptail (r = 2)
})

;

else
{ptail , θ, γ, ϕ} = {(0, 0, 0), 0, 0, 0} ;
go back to initialization ;

end

end
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4. Simulation Experiment

Plane fitting in the pose measurement process may exert a great impact on the accuracy
of the method. Therefore, a simulation experiment is carried out on the plane fitting
method. A plane is constructed in the space, several points in the plane are projected onto
the corresponding plane of the binocular camera, noises of 0.25, 0.5, and 1 pixel are added
to the image plane points, and the method is verified. In different noise environments,
within the range of 10 to 32 m, the error is between the solved plane and the constructed
plane equation. Figure 8a shows the result of the method obtained under a 0.25-pixel noise.
The angle error is approximately 1◦ within 32 m. Figure 8b shows the result of the method
obtained under a 0.5-pixel noise. The results show that the error basically increases as
the distance increases. The error reaches 2.38◦. Figure 8c shows the result of the method
obtained under a 1-pixel noise. The error reaches 2.44◦ at 25 m. At 32 m, the error is close
to 4◦, which exerts a greater impact on the measurement accuracy.

(a) Noise = 0.25 pixel (b) Noise = 0.5 pixel (c) Noise = 1 pixel

Figure 8. The error of the angle

Corresponding to the experimental conditions, the pixel noise is used as a variable,
and simulation experiments are performed at 10, 20, and 30 m, as shown in Figure 9.
Figure 9c shows that at 30 m, after the error of more than 0.65 pixels, the angle error has
exceeded 2◦; when the noise is close to 1 pixel, the angle error is close to 4◦, which echoes
the previous experiment.

(a) Distance = 10 m (b) Distance = 20 m (c) Distance = 30 m

Figure 9. The error of the angle.

In summary, the simulation experiment shows that the matching error must be re-
duced as much as possible to meet actual needs. This error should ideally be controlled
to 0.5 pixels, that is, the angle error is controlled at about 2◦, which can better meet
the demand.

5. Physical Experiment

In this section, the complete experiment process and analysis are discussed. We then
introduce the experimental environment, datasets, and experimental procedure.
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5.1. Implementation Details

The algorithm in this paper is verified on a digital simulation platform. The visual
simulation software used for display can simulate the effect of UAV navigation in various
geographical environments, altitudes, and weather environments. The image sequence
outputted by the simulation software can simulate the images taken by the dual cameras
and output the true values of the real position and attitude. These images can be used as
datasets to verify and compare measurement methods for the position and attitude of the
UAV. Because of the limited parameters in the simulation software, the roll angle of the
aircraft attitude is set to a fixed value of 0.

The dataset used is shown in Figure 10:

Figure 10. Aircraft attitude measurement datasets.

The proposed method is written in vs2013+OpenCV 2.4.13 using C++ and ran on a
computer with an Intel i7-6820HQ (2.7 GHz) CPU, 16 GB RAM, and an NVIDIA Quadro
M2000M GPU. The resolution of the image sequence collected by the simulated binocular
stereo vision system is 888× 500 pixels. The internal parameters of the virtual camera
are fixed, the focal length is ax = ay = 1080 pixels, the principal point coordinates are
(u0, v0) = (444, 250) pixels. The rotation matrix in the stereo vision system is the identity
matrix, the translation vector is T = (0, 0, 1000) mm.

The proposed method in this study is formed by the combination of motion estimation,
an offline model, and online tracking. The proposed method uses ADAboost [23] with the
haar feature as the offline model and KCF [24] with the hog feature as the online tracking
algorithm. Some parameters must be set in each stage of the proposed method. During clas-
sifier pre-training, the number of stages is set to 20 based on experience. The minimum
detection rate of each class of strong classifier is set to 0.999. In the tracking component,
the linear interpolation factor for adaptation is set to 0.012 and the Gaussian kernel band-
width is set to 0.6. In the solving stage, the method of feature extraction is ORB feature [29].
Other parameters are set to default values.

5.2. Measurement Accuracy Evaluation

This article considers different weather conditions, angles, and flying altitudes (i.e.,
different backgrounds) and collects eight datasets, including aircraft out of view and partial
occlusion, among others. The measurement distance is approximately 14–33 m. The aircraft
pose was measured on these eight datasets and compared with the real values recorded by
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the visual simulation software. The attitude angles and distance RMS values of the eight
datasets are shown in Figures 11 and 12, respectively.

Figure 11. The attitude RMS of datasets.

Figure 12. The distance RMS of datasets.

Figure 13 shows the error values of the three attitude angles of some measurement
data. In most datasets, the RMS of the roll angle is small and stable within 0.5◦. However,
in some of the datasets, the error of the roll angle is relatively large because of the influence
of the background environment and other attitude angles. In this case, the RMS may reach
1.9◦. The RMS of the yaw angle is stable at approximately 1.0◦ but may occasionally be as
high as 1.7◦. The error of the pitch angle is the largest among the errors of the three attitude
angles. In most datasets, the RMS of the pitch angle is stable at approximately 2.0◦; in some
datasets, the values obtained may rise to 2.5◦. In summary, the RMS of most of attitude
angles which calculated by the proposed method is within 2.0◦ between 14 and 33 m.

(a) The Error of yaw (b) The Error of roll (c) The Error of pitch

Figure 13. Error of attitude angle.

During the determination of the relative position of UAVs, distance, that is, the depth
direction in the camera coordinate system, is the most important measurement. The pro-
posed method calculates the distance between drones in each dataset. In all datasets,
the RMS of the distance measurement result is 0.61 m. The data in Figure 12 show that most
of the RMS values of the distance measurement results in all datasets are within 0.84 m.



Appl. Sci. 2021, 11, 1373 15 of 20

Only one dataset, where the true distance is approximately 25–30 m, has an RMS of 1.08 m.
Figure 14 shows the RMS values of the results in this dataset. Our findings indicate that
the proposed method can be used for collision avoidance measurements when the aircraft
is sailing in the air.

Figure 14. Error of distance.

The aircraft attitude angles calculated by the proposed method are shown in Table 2.
The error contrast between the yaw angle measured by the proposed method and the
true value is relatively small and remains within 1.5◦. The error of the roll angle is clearly
distinguished. When the actual yaw angle is small, the measurement error of the roll
angle is small. When the yaw angle is large, the measurement error of the roll angle is
large, but the RMS remains within 2◦. The error of the pitch angle is well within a stable
range, and most of the measurement errors are within approximately 2.0◦. While some
measurement values are occasionally greater than 2.5◦, which could affect the measurement
accuracy to a certain extent, it will not bring devastating results and the safety of aircraft
navigation can still be ensured.

Table 2. Measurement result of attitude angle.

NO.
Measurement Result(◦) True Value(◦) Error(◦)

Yaw Pitch Roll Yaw Pitch Roll Yaw Pitch Roll

1 −0.9 17.7 0.2 0.0 15.0 0.0 −0.9 2.7 0.2
2 0.7 −9.7 0.1 0.0 −9.0 0.0 0.7 −0.7 0.1
3 −12.2 25.1 −2.3 −13.2 23.7 0.0 1.0 1.4 −2.3
4 −16.3 23.6 1.5 −14.8 20.8 0.0 −1.5 2.8 1.5
5 −3.5 25.5 1.8 −4.1 24.2 0.0 −0.6 1.3 1.8
6 1.3 21.6 −0.4 0.0 20.0 0.0 1.3 1.6 −0.4
7 −9.8 24.4 −2.1 −8.2 23.5 0.0 −1.7 0.8 −2.1
8 2.0 21.8 1.3 2.3 23.6 0.0 0.3 −1.8 1.3
9 5.7 20.7 −1.9 5.5 23.3 0.0 0.2 −2.6 −1.9

10 5.5 21.0 2.1 7.7 23.1 0.0 −2.2 −2.1 2.1
11 −0.6 13.5 −0.2 0.0 11.0 0.0 −0.6 2.5 −0.2
12 1.6 7.9 0.3 0.0 6.0 0.0 1.6 1.9 0.3

The method proposed in this paper is compared with conventional methods of calcu-
lating aircraft attitude, including PNP, EPNP [30], and Li’s method [31], to verify its validity
and reliability. PNP is a traditional pose estimation algorithm, which estimates the pose
of the target through multiple space points and their projection positions. Li’s method is
based on parallel vision and uses the triangulation method for stereo matching and 3D
reconstruction. Furthermore, the pose estimation algorithm of Li’s method is also widely
used. So they were selected for comparison to validate our proposed method. In this
experiment, eight key corners of the aircraft are artificially marked for the comparison
algorithm to calculate the aircraft attitude. The speed of the measurement method in this
paper is 12 fps. Because some data of other methods are extracted manually, the calculation
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speeds of the algorithms cannot be compared. The eight points extracted are shown in
Figure 15.

Figure 15. Aircraft attitude measurement keypoints.

The measured RMSEs of aircraft attitude angle and depth distance are shown in
Table 3. The RMSE of the three attitude angles are 1.1◦, 0.8◦ and 2.1◦. The data show no
large gap between the accuracy of the proposed method in this article and the comparison
method, but the proposed method can be applied to the aircraft attitude when some key
points, such as the wing and tail part, are blocked. In the case of the comparison method,
the extracted 2D point data do not correspond to the 3D points, and large deviations in the
measurement results are noted. These deviations present a safety hazard during the flight
of the aircraft. Li’s method has the same accuracy as the proposed method in distance
measurement, but it has a larger angle error in attitude measurement. In Li’s method,
when calculating three-dimensional space points, a large error will be introduced because
of the long distance of the object. The attitude is calculated through the corresponding
three-dimensional points. So the result of attitude calculation is inaccurate.

Table 3. RMS of attitude angle and depth distance in the comparison method.

Method RMSE of Yaw (◦) RMSE of Pitch (◦) RMSE of Roll (◦) RMSE of Distance (m)

Proposed 1.1 2.1 0.8 0.61
EPNP 2.0 0.8 1.8 1.33
PNP 2.4 2.7 0.3 0.31

Li’s Method 4.6 3.2 4.7 0.57

Figure 16 shows some of the measured attitude angle data. The yaw and roll measured
by the comparison algorithm produces serious errors in images 22 and 23. This error is
caused by the UAV partially occluding the right wing in the image, which results in a
corresponding point error. The pitch also shows obvious errors in images of 22–24, 34–40,
and 46 because the wing plane is linearized in the image on account of the occlusion of the
wing and the small pitch angle, thereby resulting in inaccurate lifting points. By comparison,
the measured values of the proposed method are stable within a certain error range.
This finding confirms the robustness and reliability of the proposed method.
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(a) The error of yaw (b) The error of pitch (c) The error of roll

Figure 16. Attitude angle measured by comparison algorithm.

6. Conclusions

Aimed at the flying formation and AAR of UAVs, this paper proposes a UAV pose
measurement method based on rigid skeleton structure, which uses the spatial linear equa-
tion of rigid skeleton combined with the geometric model to solve the aircraft pose. This
paper first proposes a key point extraction method that integrates 2D image data with 3D
depth information to solve the problem of reduced feature point mismatch. This method
improves the accuracy and stability of the pose measurement method. Compared with
other methods, the proposed method in this paper can solve the problem of UAV attitude
calculation without the need for auxiliary equipment, such as a theodolite, or remote
transmission of data signals. Thus, the proposed method effectively improves the reliability
and robustness of the pose measurement method and provides a safety guarantee for the
aerial flight of UAVs. The proposed method can measure the position and attitude of
UAVs without the need for knowledge of the aircraft model and size. The RMS error of
the attitude angle is within 2.1◦ and the RMS error of distance measurement is within
0.61 m. The calculation frequency is 12 fps, which meets the collision avoidance measure-
ment conditions of short-range UAVs in flight. The effectiveness and feasibility of the
proposed method are verified in a simulation environment. The proposed method does not
have a complex framework, which is easy to be implemented and used in actual project
engineering.
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