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Featured Application: The results of our study indicate the successful application of artificial
neural networks—based model in predicting the endomorphy and mesomorphy ratings in young
women. The artificial neural networks -model can be practically used in bioelectrical impedance
analysis—devices in the future.

Abstract: Somatotype characteristics are important for the selection of sporting activities, as well as
and the prevalence of several chronic diseases. Nowadays the most common method of somatotyping
is the Heath–Carter method, which calculates the somatotype base on 10 anthropometric parameters.
Another possibility for evaluation of somatotype gives commonly used bioelectrical impedance
analysis), but the accuracy of the proposed formulas is questioned. Therefore, we aimed to investigate
the possibility of applying an artificial neural network to achieve the formulas, which allow us to
determine the endomorphy and mesomorphy using data on body height and weight and raw
bioelectrical impedance analysis data in young women. The endomorphy (Endo), ectomorphy (Ecto),
and mesomorphy (Meso) ratings were determined using artificial neural networks and the Heath–
Carter method. To identify critical parameters and their degree of impact on the artificial neural
network outputs, a sensitivity analysis was performed. The multi-layer perceptron MLP 4-4-1 (input:
body mass index (BMI), reactance, resistance, and resting metabolic rate) for the Endo somatotype
was proposed (root mean squared error (RMSE) = 0.66, χ2 = 0.66). The MLP 4-4-1 (input: BMI, fat-free
mass, resistance, and total body water) for the Meso somatotype was proposed (RMSE = 0.76, χ2

= 0.87). All somatotypes (Endo, Meso and Ecto) can be calculated using MLP 2-4-3 (input: BMI
and resistance) with accuracy RMSE = 0.67 and χ2 = 0.51. The bioelectrical impedance analysis and
Heath–Carter method compliance was evaluated with the statistical algorithm proposed by Bland
and Altman. The artificial neural network-based formulas allow us to determine the endomorphy and
mesomorphy in young women’s ratings with high accuracy and agreement with the Heath–Carter
method. The results of our study indicate the successful application of artificial neural network-based
model in predicting the somatotype of young women. The artificial neural network model can be
practically used in bioelectrical impedance analysis devices in the future.

Keywords: somatotype; mathematical model; artificial neural network

1. Introduction

Somatometry is a fundamental research method in anthropology, involving the mea-
surement of individual body proportions and sizes. A somatotype assessment gives a
categorization of physique by using anthropometric measurement relating to body shape
and composition, such as adiposity (fatness), musculo-skeletal build, and linearity or
slenderness [1]. Somatotype ”expresses genetic determinism, observed from the morpho-
constitutional point of view” [2]. The somatotype describes the actual morphological
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state of the individual expressed by three numbers, each of which represents one of three
primary body components: endomorphy—mesomorphy—ectomorphy [3]. Simplifying,
endomorphy—fatness, mesomorphy—muscularity, while ectomorphy defines thinness.
The somatotype changes with age, and e.g., ectomorphy in females aged over 60 years has
decreased and females tend to higher endomorphy values [4].

The evaluation of a somatotype and body composition is important for the selection of
sporting activities [5]. Somatotyping in elite athletes is important for studying the dynamics of
development of specific body shape during training processes and competitive periods [6–8].
It also helps for developing body building and performance [1,6,9]. Somatotype characteristics
are a subject of research for a relation between somatotype, obesity, and particular features of
nutrition [10], as well as the prevalence of several chronic diseases [11–13].

The most common method of somatotyping used today is the Heath–Carter method,
which calculates the somatotype base on 10 anthropometric parameters using standard
methods and licensed anthropometric instruments, without restrictions on ethnicity, gender
or age (above 2 years) [14]. Values of anthropometric measures are entered into equations.
The Heath–Carter method involves traditional methods for body fat estimation using
skinfold calipers. The accurate assessment is strong depending on the technical experience
and training, and requires specially trained and experienced personnel to perform it. It was
shown that inter- and intra-individual variability in the selection of skinfold sites, depth
and time delay in reading the calipers reduce the accuracy of this procedure and remain a
major source of error associated with this technique [15,16]. Moreover, the disadvantages
of anthropometric measurements limit the availability of large-scale research [17]. Measure-
ments should be made in several repetitions by 2 researchers, can be tiring and depressing
for the participant and can be negatively perceived as interference with the physical space.
In addition, anthropometric measurements involving the naked body of the patient may be
difficult to accept and should, therefore, be limited using other methods. Next to skinfolds
measurement to establish body composition (fat content, muscle mass and water) relatively
simple and more accurate method is bioelectrical impedance analysis (BIA). This is the most
common, non-invasive, low-cost used method in sports, dietetics, medicine, healthcare.
BIA bases on the electrical properties of biological tissues, and is defined as the ability of
biological tissue to impede electric current [18]. Specific equations programmed in the BIA
devices are used to calculate the body components, taking into account gender, age, height,
weight and ethnicity. BIA, in comparison with the skinfold method mentioned above, gives
more precise results determining lean or fat mass in humans [19,20]. The BIA method omits
the procedures of repeatedly touching the patient, especially in places considered sensitive.
Physical contact is generally limited, which has become more important recently. However,
BIA is a non-invasive, easy to use and low-cost method [21], and gives an opportunity to
the evaluation of somatotype based on created formulas [17]. In literature, a few formulas
based on BIA data and linear regression analysis were proposed for different population
groups to assess the endomorphy and mesomorphy [17,22,23]. All of those depended on
age and sex.

Recently, the application of artificial neural networks (ANNs) in medical and nutri-
tional sciences has been of great interest and raised hopes for better prevention, diagnosis
and health care [24–26]. ANNs have been successfully applied in clinical trials s to pre-
dict the risk of dengue disease [27,28] or the level of cholesterol associated with body
composition [29].

However, they have rarely been used in body composition analysis. An ANN was
used to assess bone mineral density [30], intracellular water in healthy subjects [30,31], and
total water in hemodialysis patients [32], and an ANN was found here to be an alternative
to existing methods of multivariate analysis. The use of an ANN to improve the BIA
predictive equations to estimate total fat-free mass [33], and fat-free mass in the lower
limbs [34,35] in the elderly has shown the successful application of their model. Therefore
we aimed to investigate the possibility of applying ANNs to achieve the formulas which
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allow the endomorphy and mesomorphy rating to be determined using data on body
height and weight and raw BIA-data.

2. Materials and Methods
2.1. Study Design

This was a cross-sectional observational study on healthy volunteer women of Polish
ethnicity aged 19–29 years. At this age, adulthood is characterized by somatic and psycho-
logical indicators with a stabilized somatotype [36]. The research was approved by the
Bioethics Commission of the Food and Nutrition Institute in Warsaw, Poland (06.07.2015).
The study procedures were implemented according to the Declaration of Helsinki. In-
formed consent was obtained from each participant before their entry into the study. For
the study, 190 women volunteered. The following inclusion criteria were adopted: in-
formed consent to participate in the study protocol, no metabolic disorders, as assessed
through an interview. The exclusion criteria were as follows: pregnancy, breastfeeding,
epilepsy, menstruation. The above criteria did not meet 17 women (n = 10 body mass index
(BMI) > 30; n = 6 type II diabetes and 1 with kidney diseases). The final sample consisted
of 173 women.

2.1.1. Anthropometric Measurement

The subjects’ body height (H, cm) was measured using a SECA stadiometer (mea-
surement accuracy 0.01 m), body weight (BW, kg) was measured using medical scales
(measurement accuracy ±0.1 kg). Skinfolds were measured with a Harpenden caliper,
the femur and humerus breadths were measured with a small sliding caliper, the caliper
branches extend to 10 cm. All measurements were performed under strictly standardized
conditions (room temperature 22 ◦C, air humidity 45%) by well-trained researchers main-
taining methodical procedure described below [37], using the same device in order to avoid
inter-observer and inter-device variability. Measurements were taken twice in light clothing
and without shoes and the averages were calculated. Mean technical error of measurement
for skinfolds was 2.6% and for all other measures 0.33%. Intra-class correlation coefficient
(ICC) was not lower than 0.85 for all measures [38].

2.1.2. Measurement Techniques

Ref. [39]. Height (H). Height was taken with the subject standing straight, against
an upright stadiometer, touching the device with heels, buttocks and back. The head was
oriented in the Frankfort plane (the upper border of the ear opening and the lower border
of the eye socket on a horizontal line), and the heels together. The subject was instructed to
stretch upward and to take and hold a full breath.

Body weight (BW). The subject, wearing minimal clothing (underwear is recom-
mended), stands in the center of the scale platform. A correction was made for clothing so
that nude weight could be used in subsequent calculations.

Skinfolds. A fold of skin and subcutaneous tissue was raised firmly between the
thumb and forefinger of the left hand and away from the underlying muscle at the marked
site. The edge of the plates on the caliper branches was applied 1 cm below the fingers of
the left hand and they were allowed to exert their full pressure before reading at 2 s the
thickness of the fold. All skinfolds were taken on the right side of the body. The skinfolds
were taken from the subject standing relaxed, except for the calf skinfold, which was taken
with the subject seated.

Triceps skinfold (TS). With the subject’s arm hanging loosely in the anatomical position,
the fold at the back of the arm at a level halfway on a line connecting the acromion and the
olecranon processes should be raised.

Subscapular skinfold (SubsS). The subscapular skinfold on a line from the inferior
angle of the scapula in a direction that is obliquely downwards and laterally at 45 degrees
should be raised.
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Supraspinale skinfold (SuprS). The fold 5–7 cm (depending on the size of the subject)
above the anterior superior iliac spine on a line to the anterior axillary border and on a
diagonal line going downwards and medially at 45 degrees was raised.

Medial calf skinfold (CS). The vertical skinfold on the medial side of the leg, at the
level of the maximum girth of the calf was raised.

Biepicondylar breadth of the humerus, right (HB). The width between the medial
and lateral epicondyles of the humerus with the shoulder and elbow flexed to 90 degrees
was measured.

Biepicondylar breadth of the femur, right (FB). The subject was seated with the knee
bent at a right angle during the measurement. The greatest distance between the lateral
and medial epicondyles of the femur was measured.

Upper arm girth (AG). The right elbow was flexed and tensed. The subject flexed the
shoulder to 90 degrees and the elbow to 45 degrees, clenched the hand, and maximally
contracted the elbow flexors and extensors. The measurement was taken at the greatest
girth of the arm.

Calf girth (right calf) (CG). The subject stood with feet slightly apart. The tape was
placed around the calf and measured the maximum circumference.

The stature and girths to the nearest mm, biepicondylar diameters to the nearest 0.5
mm, and skinfolds to the nearest 0.1 mm (Harpenden caliper) were read. The measured sites
were marked and the complete sequence repeated a second time. For further calculations,
the duplicated measurements were averaged.

The individual anthropometric somatotypes were calculated for components—endomorphy
(Endo), mesomorphy (Meso), ectomorphy (Ecto) by entering the data into equations, according
to Carter and Heath [39]:

Ecto =
H

BW
1
3

, (1)

where H is the height [m], BW is the body weight [kg]

Endo = −0.7182 + 0.1451 X−0.00068 X2 + 0.0000014 X3, (2)

where:
X =(TS [mm]+SubsS [mm]+SuprS [mm]) × (170.18/H [cm]), (3)

Meso =[0.858 HB + 0.601 FB + 0.188 AG (corrected) + 0.161 CG (corrected)] − (0.131 H) + 4.50 (4)

BMI was calculated as BW/H (kg/m2) [40]. BMI was categorized according to the
World Health Organisation (WHO) [41]; 76% of women had normal body weight, whereas
13% were classified as underweight and 11% as overweight and obese (data not shown).

2.1.3. Body Composition Analysis

Before the body composition measurement participant was asked to refrain from
vigorous physical activity at least 12 h prior, intake no caffeine and alcohol for 24 h prior to
testing, fast, and empty the bladder 30 min prior to testing. Hydration status was tested in
urine sample by specific gravity test and colors in each person. To assess individual body
composition, multi-frequency BIA (MF-BIA) was used, at 5, 50, 100 and 200 kHz electrical
current frequencies (Maltron BioScan 920-2, Maltron International, UK). MF-BIA was
performed under standardized conditions according to the manufacturer’s protocol. Body
composition tests were performed in the supine position with a leg opening of 45 degrees
and upper limbs inclined by 30 degrees from the trunk, after 15 min resting. After cleaning
the skin with alcohol, two electrode patches were placed on the non-dominate hand and
two electrodes on the corresponding foot. The impedance measurements were performed
in a single-channel, tetrapolar system. Displaying parameters such as extracellular and
intracellular fluids, total body water (TBW, L, %), fat mass (FM, kg, %), fat-free mass
(FFM, kg, %), resting metabolic rate (RMR, kcal), dry weight and many others including
mineral composition, as well as raw data such as resistance (Res) and reactance (Reac)
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were analyzed. For further analysis, TBW (%), FFM (%), RMR, Res (Ω), and Reac (Ω) were
selected.

The descriptive statistics of anthropometric, body composition, bioelectrical and
somatotype components are presented in Table 1.

Table 1. Group characteristic and statistical parameters of the used data.

Parameter Unit

Statistical Parameters

Mean ± SD (Range) Coefficient of
Variation Skewness Coefficient

Age year 22.9 ± 1.70 (19–29) 0.07 0.45
Anthropometric measurement

Body weight kg 59.57 ± 7.80 (40–78) 0.13 0.09
Body height cm 166.97 ± 5.91 (151–179) 0.04 −0.59

Triceps skinfold mm 13.09 ± 4.82 (6–28) 0.37 0.96
Subscapular skinfold mm 11.80 ± 4.77 (5–29) 0.40 1.59
Supraspinale skinfold mm 10.64 ± 4.62 (4.5–23) 0.43 0.91
Medial calf skinfold mm 11.87 ± 6.14 (1–35.5) 0.52 1.11

Biepicondylar breadth of the humerus cm 6.19 ± 0.39 (5.5–7) 0.06 1.08
Biepicondylar breadth of the femur cm 7.64 ± 0.99 (4–9) 0.13 −0.81

Upper arm girth cm 26.39 ± 2.56 (20–33) 0.10 0.10
Calf girth cm 35.91 ± 2.67 (30–41) 0.07 0.19

Body composition (BIA)
FFM % 74.12 ± 7.10 (57.5–91) 0.10 −0.36
FM % 25.88 ± 7.10 (8.9–42.5) 0.28 0.36

TBW % 53.01 ± 5.17 (43–73) 0.10 1.11
Reac Ω 157.56 ± 43.93 (86–282) 0.28 0.88

Res Ω 620.64 ± 116.45
(194–881) 0.19 −1.47

RMR kcal 1546.64 ± 61.35
(1373–1719) 0.04 −0.16

Indices in used formulas
BMI kg/m2 21.32 ± 2.70 (16–28) 0.13 0.45

FMi = FM/H2 kg/m2 9.33 ± 2.73 (3.5–16.0) 0.30 0.47

FFMi = FFM/H2 kg/m2 16.77 ± 2.26
(14.17–25.0) 0.14 1.72

BIA—Bioelectrical Impedance Analysis, BMI—Body Mass Index, FFM—Fat Free Mass, FM—Fat Mass, TBW—Total Body Water, Reac—
Reactance, Res—Resistance, RMR-Resting Metabolic Rate, H—Body height, FMi—Fat Mass Index, FFMi—Free Fat Mass Index.

2.2. Somatotypes Modelling—Artificial Neural Network (ANN)

ANN modelling was carried out with Matlab R2018a. The somatotypes Endo, Meso
and Ecto were predicted with feedforward multilayer perceptron ANN. In this study,
173 cases were randomly divided into the following sets: for training 121 sample (70%
cases), for validation 26 samples (15% cases) and for testing 26 samples (15% cases) [42,43].
Data were normalized using a function (mapminmax):

y =
(ymax − ymin)(x− xmin)

(xmax − xmin)
+ ymin (5)

where x is the value before normalized (range xmin and xmax in Table 1) and y is the value
after normalized.

The Levenberg–Marquardt training function was used in study. Detailed information
on the selection of the ANN architecture and the ANN learning process can be found
in [42,44].

The goodness of fit of the tested ANNs to the experimental data was evaluated with
the correlation coefficient (R), the reduced chi-square (χ2), and the root mean square error
(RMSE) [45,46]. The higher the R-value, and lower the RMSE and χ2 values confirm better
goodness of fit.
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2.3. Sensitivity Analysis of the ANN

To identify critical parameters and their degree of impact on the ANN outputs (soma-
totypes), a sensitivity analysis was performed. This analysis indicates the importance of
individual network input variables (see Table 1) and consists of checking how the network
error behaves with a change of independent variables. For each input variable, its average
value was entered (the variable ceases to provide any information) and the final predic-
tion error was checked. No increase in error means that this variable for the ANN is not
significant and can be omitted.

2.4. Statistical Analysis
BIA and Heath–Carter Method Compliance

To evaluated of BIA and Heath–Carter method compliance, the statistical algorithm
proposed by Bland and Altman was used [47]. Bland–Altman analyses assess the mag-
nitude of the disagreement (error and bias) between the somatotypes determined by
Heath-Carter method and ANNs. The Bland–Altman plots were generated to graphically
depict these differences and to calculate the 95% limits of agreement as a reference interval
between which lie all but 5% of the observed differences in an intraobserver measurement.

The accuracy of the available literature BIA-based models for the somatotype deter-
mination was compared. The accuracies of the models were measured using correlation
coefficient R, the root mean square error (RMSE) and reduced chi-square χ2. Homogenous
groups were tasted using Tukey’s honest significant difference (HSD), α = 0.05 (the analysis
of variance (ANOVA) technique applying the Levene test of homogeneity of variances).

3. Results

The ANNs were used to describe Endo, Meso and Ecto somatotypes. Hidden and
output layers with a log-sigmoid (logsig), hyperbolic tangent sigmoid (tansig) and linear
(linear) transfer function were used for the prediction of the somatotypes whereas and the
Levenberg–Marquardt (trainlm) was the training function.

The ANNs were selected to determine somatotypes. These networks had one hid-
den layer. Three-layer neural networks MLP 6-5-1 (multilayer perceptron) were used to
determine Endo, Meso or Ecto somatotypes, while three-layer neural network MLP 6-4-3
was used to determine these three somatotypes simultaneously. It should be noted that
the ectomorphy is be calculated on the basis of height and weight, therefore it does not
require further simplifications and it was excluded in the calculation from MLP with one
output layer. The input parameters were all parameters shown in Table 1. The transfer
function for hidden layer was log-sigmoid, and for output layer tangent sigmoid and
linear for MLP 6-5-1 and MLP 6-4-3, respectively. The highest values of the correlation
coefficient were obtained for ANN describing Endo somatotypes (validation: 0.96). The
correlation coefficient for ANN describing all somatotypes simultaneously is higher (R =
0.91 for validation set). Results of statistical analyses on the modelling of somatotypes are
presented in Table 2.
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Table 2. Results of statistical analyses on the modelling of somatotypes and sensitivity analysis.

Somatotype and ANN Form Statistics ANN
Omitted Parameter

BMI FFM Res Reac RMR TBW

MLP 6-5-1

Endo
R 0.9350 0.8271 0.9136 0.8335 0.7820 0.8672 0.9275

RMSE 0.4529 0.7144 0.5340 0.7077 0.8379 0.6558 0.5128
χ2 0.4764 1.1854 0.6622 1.1633 1.6305 0.9988 0.6107

Meso
R 0.8909 −0.1128 0.7981 0.7715 0.8572 0.8195 0.5187

RMSE 0.6063 1.5257 1.0626 0.8620 0.7013 0.7734 1.2268
χ2 0.8536 5.4063 2.6222 1.7259 1.1421 1.3894 3.4957

MLP 6-4-3

Endo, Ecto, and Meso
R 0.9060 0.1554 0.8751 0.7742 0.8928 0.8795 0.8967

RMSE 0.5906 1.5158 0.7095 0.8997 0.6287 0.6628 0.6334
χ2 0.4257 2.8039 0.6143 0.9878 0.4824 0.5361 0.4895

Endo
R 0.8860 −0.3453 0.8705 0.4759 0.8607 0.8717 0.8796

RMSE 0.5886 1.9957 0.8216 1.2928 0.6483 0.6221 0.6379
χ2 0.7558 8.6900 1.4729 3.6465 0.9170 0.8443 0.8879

Ecto
R 0.9463 0.8377 0.9404 0.9381 0.9454 0.9120 0.9447

RMSE 0.4809 1.0731 0.5577 0.5159 0.4896 0.6102 0.5106
χ2 0.5046 2.5123 0.6786 0.5807 0.5231 0.8124 0.5687

Meso
R 0.8597 0.1987 0.8472 0.8535 0.8412 0.8290 0.8442

RMSE 0.6846 1.3261 0.72402 0.7006 0.7252 0.7473 0.7320
χ2 1.0227 3.8368 1.1436 1.0710 1.1474 1.2185 1.1690

MLP 4-4-1

Endo
R 0.8687 0.4680 - 0.7178 0.7926 0.8366 -

RMSE 0.6562 1.1365 - 0.9502 0.8898 0.7361 -
χ2 0.6596 1.9787 - 1.3830 1.2128 0.8298 -

Meso
R 0.8293 0.6050 0.5464 0.8066 - - 0.7535

RMSE 0.7546 1.0929 1.1304 0.8250 - - 1.1365
χ2 0.8723 1.8298 1.9574 1.0426 - - 1.9787

MLP 2-4-3

Endo, Ecto, and Meso
R 0.8796 0.2569 - 0.8314 - - -

RMSE 0.6703 1.3463 - 0.7745 - - -
χ2 0.5135 2.0715 - 0.6855 - - -

Endo
R 0.8777 0.2924 - 0.7316 - - -

RMSE 0.6091 1.2550 - 0.8637 - - -
χ2 0.5937 2.5200 - 1.1936 - - -

Ecto
R 0.9092 0.0436 - 0.9078 - - -

RMSE 0.6195 1.4715 - 0.6230 - - -
χ2 0.6140 3.4644 - 0.6211 - - -

Meso
R 0.8165 0.2323 - 0.7918 - - -

RMSE 0.7702 1.3029 - 0.8157 - - -
χ2 0.9492 2.7160 - 1.0645 - - -

BMI—Body Mass Index, FFM—Fat Free Mass, Res—Resistance, Reac—Reactance, RMR—Resting Metabolic Rate, TBW—Total Body Water,
MLP—Multilayer Perceptron, Endo—endomorphy, Ecto—ectomorphy, Meso—mesomorphy, R—correlation coefficient, RMSE—root mean
square error, χ2—reduced chi-square.

Comparing the statistics of ANNs obtained for individual somatotypes from different
ANNs, it can be seen that ANN MLP 6-4-3 describes all somatotypes worse than ANNs with
one output. However, the aforementioned ANN allows us to determine simultaneously
(given the same weights and bias between input and hidden layer) all somatotypes and
the errors are not much larger compared to the single-output ANN (RMSE greater by
0.14 and 0.08 for Endo and Meso, respectively) and so it can be considered suitable for
somatotype calculation.

Sensitivity analysis of ANNs showed that in the case of MLP 6-5-1 (for Endo) the TBW
(the greatest R = 0.93, the lowest errors: RMSE = 0.51, χ2 = 0.61) and FFM (R = 0.91,
RMSE = 0.53, χ2 = 0.66) have the lowest impact, whereas in sequence: Reac (small-
est R = 0.78, biggest errors: RMSE = 0.84 and χ2 = 1.63), BMI, Res, and RMR have the
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greatest impact on the Endo somatotype. The Reac (the greatest R = 0.86, the lowest errors:
RMSE = 0.70 and χ2 = 1.14) and RMR (R = 0.82, RMSE = 0.77, χ2 = 1.39) have the lowest
impact, while in turn: BMI (R = −0.11, the greatest errors: RMSE = 1.53 and χ2 = 5.41),
TBW, FFM and Res have the greatest impact on the Meso somatotype values.

The ANN for determining all somatotypes (MLP 6-4-3) is characterized by the fact
that TBW and Reac have the lowest impact on obtained somatotypes (the highest R values
of 0.90 and 0.89, respectively, the lowest RMSE = 0.63 and χ2 of 0.50 and 0.48, respectively)
and next RMR and FFM while the highest impact has the BMI (R = 0.16, the RMSE = 1.52
and χ2 = 2.80) and Res. For the Endo somatotype determined from MLP 6-4-3, as for all
somatotypes, Res has a large (2 in order, after BMI) impact (R = 0.48, RMSE = 1.29, χ2 = 3.65).
For the Ecto somatotype, Res has a large impact (R = 0.94, RMSE = 0.52, χ2 = 0.58): third
in order after BMI and RMR (R = 0.91, RMSE = 0.61, χ2 = 0.81), whereas for the Meso
somatotype the effect of Res is similar to other parameters.

After taking into account the results of sensitivity analysis of ANNs (reducing the
number of input data) and applying linear activation functions in the output layer, the
following straight neural networks were obtained for somatotype determination (Figure 1).

Figure 1. Three layer neural networks: (a) MLP 4-4-1 for Endo somatotype, (b) MLP 4-4-1 for Meso
somatotype and (c) MLP 2-4-3 for Endo, Ecto and Meso somatotypes; transfer functions: hidden and
output layers: tangent sigmoid and linear, respectively.

Comparing the obtained ANN: MLP 4-4-1 for Endo and Meso with MLP 6-5-1, it can
be seen those correlation coefficients are slightly worse (R of 0.87 and 0.83 for Endo and
Meso, respectively). The correlation coefficient for MLP 2-4-3 is also not much worse than
for MLP 6-5-3 and it is 0.88.

The Endo somatotype can be calculated from the ANN (MLP 4-4-1):

Endo =

5
((

4
∑

i=1
WiFi + Wb

)
+ 1

)
2

+ 2, (6)

where F(i=1,2,3,4) can be calculated using:

Fi =
2

1 + exp−(D1i ·( BMI−16.4
5.7 −1)+D2i ·( Reac−86.1

97.7 −1)+D3i ·( Res−194
343.5 −1)+D4i ·( RMR−1373

173 −1)+D5i)
− 1, (7)

and weights (D1i-D4i and Wi) and biases (D5i and Wb) are in Table 3.
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Table 3. Weights and biases between input and hidden layers and between hidden and output layers for artificial neural
network (ANN) Endo, Ecto, and Meso somatotypes.

Somatotypes and ANN Form No. Weights and Biases

MLP 4-4-1 i D1i D2i D3i D4i D5i Wi Wb

Endo

1 −2.5196 3.3665 −0.1069 0.2737 −2.0654 −0.0124

0.6713
2 −1.6057 0.6506 −1.8208 0.2305 1.2134 −0.8628
3 0.7439 −1.2159 −0.8333 0.0953 2.2781 −0.1618
4 2.2264 2.1972 1.2505 2.5316 3.9790 −0.5781

Meso

1 1.8162 1.4232 −1.8635 −0.2445 −0.7219 1.4688

−0.2921
2 0.5244 −2.2078 −0.5086 1.9776 1.0502 1.3685
3 −1.3144 0.0394 0.8123 −0.6986 −0.6232 1.0849
4 −0.9115 0.1162 −3.0057 0.6690 −1.8619 −1.1589

MLP 2-4-3 D1i D2i D3i WEndo i WEcto i WMeso i WbEndo

Endo, Ecto, and Meso

1 1.5266 −0.0379 0.2213 −1.1164

−0.1439 −0.0378 −0.1789
2 2.0005 1.5189 −0.7945 0.0018
3 3.1287 −5.8295 −2.1418 −0.1264
4 −2.0762 1.5257 0.8236 −0.2852

The Meso somatotype can be calculated from the ANN (MLP 4-4-1):

Meso =

5
((

4
∑

i=1
WiFi + Wb

)
+ 1

)
2

+ 1 (8)

where F(i=1,2,3,4) can be calculated using:

Fi =
2

1 + exp−(D1i ·( BMI−16.4
5.7 −1)+D2i ·( FFM−57.53

16.765 −1)+D3i ·( Res−194
343.5 −1)+D4i ·( TBW−43.32

14.755 −1)+D5i)
− 1 (9)

The Endo, Ecto and Meso somatotypes can be calculated from the ANN (MLP 2-4-3):

Endo =

5
((

4
∑

i=1
WEndo iFEndo i + Wb Endo

)
+ 1

)
2

+ 2 (10)

Ecto =

5
((

4
∑

i=1
WEcto iFEcto i + Wb Ecto

)
+ 1

)
2

+ 1 (11)

Meso =

5
((

4
∑

i=1
WMeso iFMeso i + Wb Meso

)
+ 1

)
2

+ 1 (12)

where FEndo i, FEndo i and FEndo i can be calculated according to:

Fi =
2

1 + exp−(D1i ·( BMI−16.4
5.7 −1)+D2i ·( Reac−86.1

97.7 −1)+D3i)
− 1 (13)

weights (D1i, D2i and Wi) and biases (D3i, Wb) of the ANN are in Table 3.
The results of statistical analysis (Table 2) shown that calculation of somatotypes from

simpler ANNs: Endo—using MLP 4-4-1 (RMSE = 0.66, greater by 0.21 than for MLP 6-5-1)
and Meso—using MLP 4-4-1 (RMSE = 0.76, by 0.15 more than for MLP 6-5-1) is possible.
However, considering the fact that the values of all somatotypes are usually needed at
the same time, the proposed ANN (MLP 2-4-3) is the easiest to use. Although R is 0.88,
comparing its statistics for each of somatotypes with the other proposed, more complex
ANNs, the Endo somatotype is calculated more accurately (RMSE = 0.61) than with MLP
4-4-1 (RMSE smaller by 0.05) and not much worse than with MLP 6-4-3 (RMSE greater by
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0.02) and MLP 6-5-1 (RMSE greater by 0.16). The Ecto somatotype calculated from MLP
4-2-3 (RMSE = 0.62) gives worse results than that calculated from MLP 4-3-1 (RMSE greater
by 0.16), from MLP 6-4-3 (RMSE greater by 0.1), and from MLP 6 -5-1 (RMSE greater by
0.24). The Meso somatotype calculated from MLP 4-2-3 (RMSE = 0.77) gives slightly worse
results than that calculated from MLP 4-4-1 (RMSE greater by 0.02), from MLP 6-4-3 (RMSE
greater by 0.09) and worse than that calculated from MLP 6-5-1 (RMSE greater by 0.16).

In our study group the mean somatotype was 3.6-2.9-2.9 by the Heath–Carter method
and 3.6-2.9-2.9 by ANN MLP 2-4-3 (Table 4), that indicates on mesomorphic-endomorph
somatotype. The study of Sidneyeva and Rudnev [23] with BIA-based formulas found that
in Russian a adult meso-endomorphic type prevailed in females aged 16–86 years, and
somatotype was age-related. They also noted age- and sex-related patterns of somatotype
changes. The endomorph somatotype is dominant in the average woman, especially if
she is not involved in sports while in men the mesomorph dominates. Many studies
confirm that women are predominantly endomorphic with a secondary mesomorphic
component [48–50].

Table 4. Mean values (with standard deviation) of the somatotype in woman calculated from the
Heath–Carter method and ANNs (the same letters indicate homogenous groups (α < 0.05)).

Somatotype Heath-Carter Method
Mean ± SD

ANN MLP 4-4-1
Mean ± SD

ANN MLP 2-4-3
Mean ± SD p-Value

Endo 3.63 ± 1.28 a 3.83 ± 0.87 a 3.55 ± 1.12 a ns
Meso 2.86 ± 1.34 b 3.19 ± 1.17 b 2.94 ± 1.11 b ns
Ecto 2.89 ± 1.35 c -1 2.90 ± 1.39 c ns

a–c the same letters indicate homogenous groups, 1 no Ecto from MLP with one output layer, and the possibility
of calculation based on height and weight.

Figure A1 presents Scatterplot of Ecto, Endo and Meso somatotypes and levels of
agreement graph from Bland-Altman analysis.

Bland–Altman 95% limits of agreement for somatotype determination using the Heath-
Carter method and ANNs were −0.26 (95% confidence interval (CI): −1.43, 0.91) and
0.01 (95% CI: −1.21, 1.19) for Meso (MLP 4-4-1 and MLP 2-4-3, respectively), −0.21 (95% CI:
−1.47, 1.05) and 0.06 (CI: −1.02, 1.14) for Endo (MLP 4-4-1 and MLP 2-4-3, respectively)
and 0.03 (CI: −0.77, 0.83) for Ecto (MLP 2-4-3). The differences between the values of each
somatotype calculated using the Heath–Carter method and ANNs are statistically insignifi-
cant (Table 4). Results of the above statistical analyses proved that somatotype rating by
ANNs has a high agreement with somatotype determination by the Heath–Carter method
and, as mentioned above, BIA data are easier to obtain than anthropometric measurements.

To determine factors (ANN input data), which most affect the somatotypes predicted
by ANN, a sensitivity analysis was performed. Results of sensitivity analysis of ANNs are
presented in Table 2.

Sensitivity analysis of ANNs shows that for MLP 4-4-1 the RMR (the largest R of
0.84, the greatest values of errors: RMSE = 0.74 and χ2 = 0.83), Reac, and Res have the
smallest impact, whereas BMI (the smallest R = 0.47 and the greatest errors: RMSE = 1.14
and χ2 = 1.98) has the greatest impact on the value of the determined Endo somatotype.
The smallest impact on the Meso somatotype form MLP 4-4-1 has Res (the greatest R of
0.81, the smallest errors: RMSE = 0.83 and χ2 = 1.04) and TBW) while the greatest impact
are from FFM and BMI, respectively (R is 0.55 and 0.61, RMSE: 1.13 and 1.09, χ2 = 1.96 and
1.83, respectively).

The ANN MLP 2-4-3 for determining all somatotypes is characterized by the fact, that
the smallest impact on the value of the somatotypes has Res (the greatest R of 0.83, the small-
est RMSE = 0.78 and χ2 = 1.19), whereas the greatest impact has BMI (R = 0.26, RMSE = 1.35,
χ2 = 2.07). An analogous relationship also exists for each somatotype separately.

This is to our knowledge the first study that specifically develops and applies ANNs
to predictive equations for young women and opts for using also raw BIA variables to
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estimate somatotype. Due to the lack of results using ANNs for somatotypes in existing
literature, discussion of our result is not possible. Therefore, we decided to test the accuracy
of existing BIA-based formulas (Table A1) using our data. In recent years [51] using raw
BIA-data have gained attention due to their association not only with FFM, but also markers
with extracellular/intracellular distribution of water, BMC, integrity and muscle quality.
Also, raw BIA-data as resistance (R), reactance (Xc) and phase angle (PhA) could be treated
as indices of biological variables [52]. A few existing BIA-based formulas to calculate endo-
and mesomorphy ratings [19–24] based on the value of resistance at 50 kHz, BMI, body
weight, fat mass and fat free mass, as well as gender and age were considered.

Taking into account the age of our group, we could use only two existing BIA-based
formulas [17,23] for endo- and mesomorphy. The statistical results obtained (Table A1) by
using equations to assess endo- and mesomorphy in age groups 16–61 and 16–40, indicate
how limited those applications are in our group. Better results we obtained using ANNs,
but higher homogeneity of our group (young women) and differences in the devices (single-
or multi-frequency BIA) should be noted. Moreover in our study, we used a few raw BIA
variables (not only resistance value at 50 kHz). Due to the fact that BIA data are influenced
by various factors, e.g., device, patient positions (standing, lying), measurement conditions
and electrode type, the obtained formulas can be specific for our study conditions.

The present study showed the possibility of Ecto, Endo and Meso somatotypes calcu-
lation in young women using ANN based on the BIA results. Our study shows a very good
agreement between ANN-based formulas and the Heath–Carter method. The proposed
ANNs: MLP 4-4-1 (Endo and Meso) accurately describe the somatotypes (R ∈ (0.83–0.87),
RMSE ∈ (0.66–0.76), χ2 ∈ (0.66–0.87). All somatotypes (Ecto, Endo and Meso) can be
calculated using MLP 2-4-3 (R = 0.88, RMSE = 0.67, and χ2 = 0.51). It should be noted that
the ectomorphy is be calculated on the basis of height and weight and, therefore, it does
not require further simplifications.

Some limitations in this study should be considered. Firstly, our results have an
application to multi-frequency BIA and could be differ for other devices. There are several
manufacturers of BIA, using different algorithms, which is the main disadvantage of BIA
devices. Secondly, our findings could be generalized for young females. Further studies
are needed to consider ANN-BIA-based formulas as an alternative tool for somatotyping.

The strengths of our study are that anthropometric and BIA measurements were
carried out after one another. This allowed us to reduce the bias caused by the changes in
body composition.

Neural networks applied in our study are non-linear systems, which make it possible
to classify the data better than existing linear model methods such as the aforementioned
BIA-based formulas. Moreover, ANNs are not programmed, but are trained to do so in the
examples [25]. The application of ANNs on BIA-data to determine the somatotype seems
to be more accurate. These types of new technique are becoming increasingly attractive
in health sciences, thanks to their ability to process huge amounts of data, suggest new
correlations between markers obtained by different methods, and also lead to the possibility
of a more precise diagnose and personalized treatment of the patient [24].

4. Conclusions

The results of our study indicate the successful application of an ANN-based model in
predicting the endomorphy and mesomorphy ratings in young women. The ANN model
can be practically used in BIA devices in the future. BIA measurements compared with
the Heath–Carter method require less physical contact between the researcher and the
subject, which significantly increases the psychological comfort of the subject. Given atten-
tion to protecting personal intimate space, the Heath–Carter measurement methodology
may be rejected by many people. Therefore, it seems necessary to look for alternative
comparative methods.
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Appendix A

Figure A1. Scatterplot of (a) Ecto (MLP 4-4-1), (c) Meso (MLP 4-4-1), (e) Ecto (MLP 2-4-3), (g) Endo
(MLP 2-4-3) and (i) Meso (MLP 2-4-3) somatotypes and levels of agreement graph from Bland-Altman
analysis for (b) Ecto (MLP 4-4-1), (d) Meso (MLP 4-4-1), (f) Ecto (MLP 2-4-3), (h) Endo (MLP 2-4-3)
and (j) Meso (MLP 2-4-3) somatotypes calculated using Heath-Carter method.
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Table A1. Selected formulas, based on bioimpedance, for the evaluation of the endomorphy and mesomorphy rating of the
Heath–Carter somatotype and results of statistical analyses on the modelling (S—sex, 1-M, 0-F; FMi = FM/H2—Fat Mass
index, FFMi = FFM/H2—Free Fat Mass index).

Formula [References] Age R RMSE χ2

Endo =−2875
R50 + 0.625 BMI−0.042 BM−0.23 S−2.33 [22] 7–18 0.671 1.589 3.869

Endo =−3224.7
R50 + 0.63867 BMI−0.04162 BM−2.195 [53,54] 5–17 0.644 1.860 5.301

Endo =−2837
R50 + 0.916 BMI+0.0109 BMI2 + 0.013 BM+0.017 A−1.40 S−5.95 [23] 16–40 0.790 2.029 6.304

Endo =−3399
R50 + 0.922 BMI+0.0102 BMI2 − 0.85 S−5.93 [17] 16–61 0.789 2.201 7.423

Endo =0.5282 FMi+0.2580 BMI−0.04822 BM−1.881 [54] 7–17 0.360 1.361 2.839

Meso = 1467
R50 + 0.552 BMI−0.096 BM+0.59 S−4.22 [22] 7–18 0.733 1.836 5.162

Meso = 2195.4
R50 + 0.52966 BMI−0.09740 BM−4.5522 [53,54] 5–17 0.635 2.354 8.422

Meso = 890.8
R50 + 0.5017 BMI−0.073 BM−0.017 A−1.17 S−3.83 [23] 16–40 0.888 1.079 1.785

Meso = 1578
R50 + 0.479 BMI−0.077 BM−0.015 A+0.81 S−4.14 [17] 16–61 0.822 1.421 3.095

Meso =0.3651 FFMi+0.42765 BMI−0.09323 BM−4.803 [54] 7–17 0.594 2.349 8.455

References
1. Ryan-Stewart, H.; Faulkner, J.; Jobson, S. The influence of somatotype on anaerobic performance. PLoS ONE 2018, 13, e0197761.

[CrossRef]
2. Malina, R.M.; Bouchard, C.; Bar-Or, O. Growth, Maturation, and Physical Activity, 2nd ed.; Human Kinetics: Champaign, IL, USA,

2004; ISBN 978-0-88011-882-8.
3. Somatotyping, C.L. Anthropometrica: A Textbook of Body Measurement for Sports and Health Courses; Norton, K., Olds, T., Eds.;

University of New South Wales Press: Sydney, Australia, 1996; pp. 147–170. ISBN 978-0-86840-223-9.
4. Yang, L.-T.; Wang, N.; Li, Z.-X.; Liu, C.; He, X.; Zhang, J.-F.; Han, H.; Wen, Y.-F.; Qian, Y.-H.; Xi, H.-J. Study on the adult physique

with the Heath-Carter anthropometric somatotype in the Han of Xi’an, China. Anat. Sci. Int. 2016, 91, 180–187. [CrossRef]
[PubMed]

5. Hermassi, S.; Sellami, M.; Fieseler, G.; Bouhafs, E.G.; Hayes, L.D.; Schwesig, R. Differences in body fat, body mass index, and
physical performance of specific field tests in 10-to-12-year-old school-aged team handball players. Appl. Sci. 2020, 10, 9022.
[CrossRef]
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