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Abstract: Nowadays, as more data is now available from an increasing number of installed sensors, 

load forecasting applied to buildings is being increasingly explored. The amount and quality of re-

sulting information can provide inputs for smarter decisions when managing and operating office 

buildings. In this article, the authors use two data-driven methods (artificial neural networks and 

support vector machines) to predict the heating and cooling energy demand in an office building lo-

cated in Lisbon, Portugal. In the present case-study, these methods prove to be an accurate and ap-

pealing alternative to the use of accurate but time-consuming multi-zone dynamic simulation tools, 

which strongly depend on several parameters to be inserted and user expertise to calibrate the model. 

Artificial neural networks and support vector machines were developed and parametrized using his-

torical data and different sets of exogenous variables to encounter the best performance combinations 

for both the heating and cooling periods of a year. In the case of support vector regression, a variation 

introduced simulated annealing to guide the search for different combinations of hyperparameters. 

After a feature selection stage for each individual method, the results for the different methods were 

compared, based on error metrics and distributions. The outputs of the study include the most suitable 

methodology for each season, and also the features (historical load records, but also exogenous fea-

tures such as outdoor temperature, relative humidity or occupancy profile) that led to the most accu-

rate models. Results clearly show there is a potential for faster, yet accurate machine-learning based 

forecasting methods to replace well-established, very accurate but time-consuming multi-zone dy-

namic simulation tools to forecast building energy consumption. 

Keywords: load forecasting; building energy demand; artificial neural networks; support vector 

machines, simulated annealing; data-driven methods; multi-zone dynamic simulation 

 

1. Introduction 

Energy management plays an important role in buildings nowadays, and its interest 

is still rising [1–5], as more and different types of sensors are being installed in existent 

buildings, or form part of projects when designing new buildings. Automatic meter read-

ings are now installed in key locations of many new and retrofitted buildings, collecting 

information for intelligent decision making, providing different types of energy disaggre-

gation in different building areas, and enabling access to high resolution data (half-

hourly, quarter-hourly, or possibly even smaller periods). 

In order to take advantage of available consumption data being continuously ac-

cessed through the Building Management Systems (BMS), new strategies should be de-

signed to better analyze the incoming data [6]. These types of analyses could be providen-

tial to better accompany consumptions trends, to project the effect of demand-side actions 
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and even to rapidly identify untypical consumption patterns (operation alarmistic pur-

poses) [1,5]. The accomplishment of the targets and requirements towards the implemen-

tation of neutral or positive energy buildings will also benefit from the analysis of data 

gathered from existing buildings to improve their design and operation [7]. 

The ambition of achieving energy neutrality of a building goes beyond the improve-

ments of energy efficient use. Energy neutrality requires that the efforts towards a better use 

of energy resources are complemented with the possibility of in situ renewable primary en-

ergy conversion [8]. Feasibility studies concerning the optimized operation of renewable 

energy generation and efficient use of resources, including economic constraints, are needed 

for adequate design of nearly zero energy buildings. Often, this type of analysis requires 

significant computation resources, which could consequently led to long computation 

times, thus data-driven approaches play an important role in predicting buildings’ energy 

performance [9,10]. 

Mathematical models have been proposed for different applications, such as load 

forecasting, load profiling, load disaggregation, and anomalous consumption detection. 

Regarding forecasting purposes, the models can be divided into more conventional 

statistical approaches (linear, polynomial, and autoregressive integrated moving average 

(ARIMA) methods) or the latest and popular approaches based on machine learning (such 

as artificial neural networks and support vector regression) [4,5,11,12]. It is widely 

recognized that the use of building energy performance simulation software (such as 

EnergyPlus) is widely disseminated [2,4], mainly to obtain an estimate of the consumption 

when buildings are being designed. With accurate parametrization, it is then possible to 

infer the influence of different passive elements (walls, glazing, insulation materials, natural 

ventilation…) and their features in the building’s energy consumptions. Furthermore, it is 

also quite relevant to evaluate the impact of the choice of technology for active elements 

(cooling and heating systems, water heating systems, lighting systems, etc.) in energy vector 

consumptions, as well. Building energy simulation tools can also be used when the buildings 

are being operated, in order to enable building benchmark comparisons to other, similar 

buildings, or to compare adopted parameter setups and setpoints (e.g., temperature), to 

support energy certification processes, or even to evaluate energy savings and environmental 

benefits to be obtained through demand-side actions for projected scenarios [1]. One of the 

main constraints when applying these simulation tools to existent buildings is the calibration 

process, which mainly consists of suitable parametrization of the simulation inputs. These 

could be both static information, such as the building location and orientation, building 

envelope and adopted technology (façades, windows, thermal insulation, heating and cooling 

systems, lighting systems), and dynamic information, dependent on the use of the building 

(occupancy profile, lighting profile or heating, ventilation and air conditioning (HVAC) 

temperature setups). All these types of parameters must be carefully introduced, in order to 

get a suitable calibration that becomes validated when the simulated consumption strongly 

matches the actual, measured consumption. A considerable training of the user to deal 

with the specificities of each simulation software is an additional requirement, often 

pointed out as a non-negligible challenge. When incorporating exogenous variables, such 

as weather conditions, a careful sensitivity analysis of the influence of these variables in 

the energy consumptions must be undertaken, as the simulation takes into account several 

characteristics that can interfere in these interconnections (as the heat transmission 

coefficient for different surfaces, or even the effects of shadings or infiltrations that can 

distort the expected behavior). These relationships are expected to be easily and quickly 

obtained through the use of data-driven methods anchored on large historical databases, 

and also online or periodic training could help to follow subtle variations along the 

building use. 
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With the recent paradigm of accessing high amounts of data in buildings (energy 

consumptions records and also exogenous variables such as indoor/outdoor tempera-

tures, relative humidity, or solar radiation), it becomes possible to take into account avail-

able data to predict future consumptions. In fact, it is the authors’ admitted research in-

terest to assess whether machine learning prediction methods to estimate future load de-

mand in buildings may provide an alternative of using common building energy simula-

tion tools. This change in paradigm is illustrated in Figure 1. 

 

Figure 1. Comparing paradigms related to building energy performance simulation tools and machine learning adoption. 

Machine learning approaches, often called data-driven models, require a training stage 

comparable to the calibration stage in traditional simulation processes, mainly to determine 

the relative importance of different features used to estimate future load demand. The fea-

ture selection stage will be further explored in Section 3. While the training stage occurs, it 

is expected that estimated consumptions will be closer to real consumptions. 

When using building energy dynamic simulation tools, sometimes the estimation of 

energy consumption is far from being coincident with reality when comparing simulations 

with measured data. The difference between these values is usually designated energy gap 

[13]. Reducing energy gap is an important issue to be taken into account when designing 

neutral energy buildings, since small differences in assumptions may result in higher energy 

performance gaps. Therefore, the use of data-driven approaches appears to be an important 

alternative to conventional building energy performance simulation tools in reducing the 

energy performance gap, since they do not rely on assumptions, but on historical data com-

ing from buildings under operation conditions [14]. 

This study will focus on applying machine learning approaches to forecast thermal en-

ergy demand. Different researchers used forecasting models to predict building electricity 

demand [4,5,11,15]. It becomes clear that, in most cases, it is easier to obtain electrical energy 

as data with higher resolution, and also that quite often weather conditions can strongly 

influence these electricity consumptions (mainly during the summer periods, when air con-

ditioning systems are used). Nevertheless, as the building analyzed in this article has its 

heating and cooling needs provided by district heating (further addressed in Section 2.1), 

electricity consumptions are quite more stable and easier to predict. For similar reasons, a 

considerable number of researchers are tackling the challenge of estimating building heat-

ing and cooling needs [3,5,15–19]. 

A number of studies can be found in the literature that address the forecast of energy 

demand of non-domestic buildings (both thermal and electrical) using machine learning 

strategies. In [20], artificial neural networks (ANN) are compared to a physical principle-

based model (EnergyPlus) when forecasting the amount of energy consumed by an ad-

ministrative building in São Paulo, Brazil. In [16], a load forecasting method using wavelet 
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transform, SVM and partial least squares regression is applied to an office building in 

Tianjin, China. In [21], a linear regression model on air temperature data is compared to 

decision trees, SVM and ANN as they attempt to forecast the total heating energy demand 

of a set of 52 residential buildings. In [22], the effect of considering a single artificial intel-

ligence based method or combining multiple single artificial intelligence based prediction 

models (ensemble approach) is also analyzed, trying to capture the benefits and avoid 

drawbacks associated with different strategies. 

The article is organized as follows: Section 2 describes the dataset used for this study 

and presents some background related to the used methods and the strategies adopted 

when applying them in this study. Additionally, the adopted error metrics and the list of 

features considered to predict heating and cooling energy demands are also introduced. 

In Section 3 the main results are presented, with a feature selection stage followed by a 

detailed comparison among the proposed methods, for both seasons. Section 4 is dedi-

cated to the discussion, revealing the potential amongst the forecasting models tested and 

highlighting a comparative analysis of these selected models. Finally, in Section 5, the 

main conclusions are drawn and some topics for further research are proposed. 

2. Materials and Methods  

In this section, the dataset information used for computing the models is presented, 

along with a brief overview of ANN, SVM and simulated annealing (SA) as a metaheuris-

tic used to enhance SVM model. The work presented in this paper follows on from a pre-

viously published work by the same authors. [23]. 

2.1. Dataset, Model Characterisation, and Inputs 

The case-study building for this paper is an office building on the riverside of a re-

cently modernized district in Lisbon, Portugal. Built in 2007, it has a net floor area just 

under 12,000 m2, with 7000 m2 over eight floors (above ground) occupied by offices and 

open workspace area, and 5000 m2 over three (underground) floors dedicated to parking. 

All building façades are mostly glazed and exposed to the elements, with partial shading 

installed on the south-facing façade only. The roof consists of a polystyrene insulated con-

crete slab covered by an outer layer of pebbles. The building is equipped with an ad-

vanced BMS, including a building automation and control system (BACS). A nearby tri-

generation plant provides hot and cold fluids used to heat and/or cool the building, which 

are transferred through heat exchangers installed on a thermal substation located on the 

underground floors. 

A significant amount of data was collected, including weather-related data (outdoor 

dry-bulb temperature, relative humidity, wind speed, direct normal solar radiation, dif-

fuse horizontal radiation, occupation (hourly profile), and enthalpic counts of (hot and 

cold) fluid consumed from a complete year, obtained through simulation of a calibrated 

building energy performance model. In this area, the cooling period is usually April to 

September, while the rest of the year is the heating period. Around 4/5 of the data thus 

obtained was used in model training, while the remaining 1/5 was used for testing (heat-

ing and cooling) demand forecast. Both historical data (namely 7-days and 14-days prior) 

and exogenous variables were considered in the models. Variable normalization was per-

formed, using training dataset maxima and minima for each variable as scaling factors.  

Different combinations of inputs were tested in this study and their respective error 

metrics (mean absolute error, MAE, and root-mean-square error, RMSE) were compared 

to evaluate the most effective set of inputs to forecast heating and cooling energy demand. 

In Table 1 and Table 2, the combinations of features tested for the cooling (Cx) and heating 

(Hx) energy demand, respectively, are presented. 
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Table 1. Sets of features tested for cooling energy demand forecast. 

Feature C1 C2 C3 C4 C5 C6 

Historical cooling load from 1 week before [kW] X  X X X X 

Historical cooling load from 2 weeks before [kW] X  X X X X 

Outdoor air temperature [°C]  X X X X X 

Relative humidity [%]  X   X X 

Estimated occupancy profile  X  X X  

Table 2. Sets of features tested for heating energy demand forecast. 

Feature H1 H2 H3 H4 H5 H6 

Historical heating load from 1 week before [kW] X  X X X X 

Historical heating load from 2 weeks before [kW] X  X X X X 

Outdoor air temperature [°C]  X X X X X 

Wind speed [m/s]  X     

Direct normal solar radiation [kW]    X   

Diffuse horizontal radiation [kW]     X  

Relative humidity [%]  X    X 

2.2. Artificial Neural Networks 

ANN are a well-known strategy to predict consumptions [24]. ANN are inspired by 

the way biological neurons of the human brain process information and are composed by 

several single and highly interconnected processors. An input node receives the contribu-

tion of adopted features and the last layer (the output layer) provides the information 

derived from the network (predicted values as the main goals of ANN for regression pur-

poses). Between the input and output layer, one or more intermediate layers (hidden lay-

ers) are considered, and in these different number of neurons can be adopted, according 

to the real time series complexity. For each connection between elements, weights links 

are responsible to pass information signals from each unit to the next (respecting a feed-

forward typology). A training stage is needed to provide the effectiveness of the model 

when comparing predicted values with the real ones. To do that, an error metric is used 

as an objective function that must be minimized in each iteration, sending the error to 

precedent layers and enabling a weights’ update (backpropagation). 

Their ability to deal with non-linear relationships between inputs and outputs (pos-

sible when nonlinear transfer functions are adopted) and the option to predict different 

load records simultaneously (when adopting a single model multivariate forecasting) 

make ANN very suitable to forecast a daily load profile. For that reason, they are being 

adopted by several researchers to predict building energy consumptions [3,15,21]. Some 

drawbacks that are often pointed out are the inherent empirical process (based on trial-

error experiments, mostly depending on random ANN parameters’ initialization), con-

siderable risk of reaching local minima, and high dependence on a proper structure selec-

tion or even on a feature selection/extraction stage. 

In this study, ANN were parameterized as follows: 

• Hidden layer activation function: hyperbolic tangent; 

• Weight optimization solver: “Adam”; 

• Number of hidden layers: 1; 

• Number of neurons: 40; 

• Data training/validation ratio: 80%/20%. 
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The Adam optimization algorithm, which is an alternative to classical stochastic gra-

dient descent, was used to update network weights since it is particularly efficient when 

handling large datasets, with a reasonable trade-off between training times and prediction 

accuracy. A single hidden layer was used as that is the most widely recommended choice 

to represent any type of function, with the approximation ability dependent on both the 

choice of activation functions and the number of neurons. The number of neurons was 

selected after ten-time ANN training trials using ten, twenty, thirty, forty and fifty neu-

rons, following the best results (i.e., lowest error metrics); simulations with fewer neurons 

led to underfitting (lower ability to estimate heating/cooling), while higher number of neu-

rons led to overfitting (generalization loss, lower ability to estimate new values). Figure 2 

presents an example of an ANN model’s structure based only on historical records (in this 

case, congenerous days, one week and two weeks before) and exogenous variables (in the 

example, temperature). 

 

Figure 2. Representation of the multivariable artificial neural network adopted. 

2.3. Support Vector Machines 

While SVM have been widely used for classification purposes, the metaheuristic may 

also be applied to regression based on the same principles. It is consensual in the research 

community that this approach relies more on a structural risk minimization principle ra-

ther than an empirical risk minimization principle [16,25,26], quite common, for example, 

in ANN. Other particularity is that its training derives from quadratic programming, re-

sulting in a global optimal solution. As it addresses a regression problem, SVM attempt 

to find an optimal hyperplane such that distance to data is minimized. The original input 

space is usually nonlinearly related to the predictor variable. Therefore, it is mapped onto 
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a higher dimensional feature space through a nonlinear mapping function (kernel func-

tion) to deal with these nonlinearities. The kernel transformation allows the handling of 

nonlinear relationships in the data as a higher dimensional space is obtained, in which a 

linear regression model can be built.  

An SVM model may be optimized by tuning the kernel function, the kernel parame-

ter (gamma), the cost parameter, and the error margin (epsilon). The Radial Basis Function 

(RBF), which is commonly used in energy demand problems, is the kernel function best fit 

to deal with non-linearities. The level of non-linearity of an SVM model is defined, according 

to the width of the ensuing bell-shaped function (RBF). The cost parameter (C), used to ap-

ply a penalty on individual errors, is also important to avoid model overfitting. 

The selection of the three non-negative parameters (epsilon, C, and gamma) is deter-

minant to forecasting accuracy. The use of a combinatorial method is often suggested to 

optimize the parameter selection procedure [18,25–28]. The authors selected simulated 

annealing (SA) to approach the parameter selection stage. 

A number of combinations were tested in an attempt to find the best-performing 

combination for the given dataset. The lowest values for error metrics MAE and RMSE 

were obtained for C = 500, gamma = 0.5 and epsilon = 0.5.  

2.4. Simulated Annealing as a Metaheuristic Used to Enhance SVM Model Accuracy 

SA is one of the oldest metaheuristics with an explicit strategy to avoid the problem 

of the local minima [26]. The subjacent idea is to allow the acceptance of some solutions 

that can eventually deteriorate the objective function, in order to keep away from local 

minima. The current solution is replaced by a new solution in a random neighborhood, 

and the extent of the search is based on a probability distribution with a scale that is pro-

portional to the “temperature”. An annealing schedule is used to decrease the tempera-

ture as the algorithm proceeds. As the temperature decreases, the extent of its search is 

reduced to enable an approximation to a minimum. However, it is difficult to conclude 

whether this is the global minimum or an undesired local minimum. Thus, a reannealing 

process is often required. This reannealing process can be viewed as a supplementary 

strategy to a global search because the temperature in each dimension (for each variable) 

is raised, depending on temperature sensitivity, giving a wider opportunity to accept so-

lutions that are distant from the aforementioned ones. 

For this study, the SA approach to improve SVM models had some variations com-

pared to the SVM models. Firstly, in order to be able to properly normalize the training 

and test subsets, only the hours in which heating and cooling systems were actually work-

ing were considered for the predictions; secondly, instead of a single combination of SVM 

parameters for all hours being predicted, each individual hour had its own combination, 

in order to allow SVM models to adapt to the time of the day at which prediction were 

made; and thirdly, also associated with the previous assumption, each hour being pre-

dicted is normalized using the minimum and maximum values registered in the training 

subset (unlike SVM, based on overall maximum and minimum).  

Figure 3 shows the flowchart followed in this study when using SA to forecast hourly 

heating and cooling energy demand.  
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Figure 3. Simulated annealing (SA) flowchart depicting approach used to enhance support vector 

machines (SVM) models. 

For the SA technique, thirty cycles (iterations) were used for each hour. In each cycle, 

fifteen trials, i.e., fifteen random initial combinations of SVM parameters were tested, and at 

the end of each cycle, the temperature would drop to narrow the range of options of each 

SVM parameter. The cost parameter C was tested in a range between 0 and 700, epsilon was 

tested between 0.0001 and 3, and gamma was tested between 0.0001 and 10. Other Simulated 

Annealing parameters were set as:  

• Probability to accept a worst solution in the beginning (p1) = 0.5; 

• Probability to accept a worst solution in the last cycle (p30) = 0.001; 

• Initial temperature (t1) = −1.0/log (p1); 

• Final temperature (t30) = −1.0/log (p30); 

• Temperature for a new cycle (tn) = (t30/t1)[(1/(n−1)]·tn−1, n being the number of the cycle. 

The assumed objective function was based on the Root Mean Square Error (described 

in Section 2.5) verified in the validation subset (20% of the data, similar to the approach 

followed for ANN). An example of the optimization model being evaluated during thirty 
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iterations is shown in Figure 4, where the objective function being minimized can be eval-

uated, while the acceptance of worse solutions and the exploitation of different parame-

ters’ combination can also be appreciated.  
 

 

Figure 4. SVM parameters' optimization during the SA process. 

2.5. Error Metrics 

This section describes the error metrics used to evaluate the performance of the mod-

els. In this work, two error metrics were used to score and compare forecast values to 

reference values [29,30]. 

The mean absolute error (MAE) is obtained by computing the average absolute error 

between the reference values (y) and the predicted values (ŷ) through n observations (1):  

MAE =
1

𝑛
.∑|𝑦𝑖 − ŷi|

𝑛

𝑖=1

. (1) 

The root mean squared error (RMSE) represents the mean standard deviation of the 

predicted values when compared to the reference values (2):  

RMSE = √
∑ (𝑦𝑖 − ŷi)

2𝑛
𝑖=1

𝑛
. (2) 

3. Results 

In this section, the results obtained using ANN, SVM, and SVM + SA to forecast cool-

ing and heating energy demand are presented in three stages:  

- Feature selection, where the different sets of inputs characterized in Tables 1 and 2 are 

tested and compared to select the best performing one according to their error metrics; 

- Models’ accuracy evaluation, in which the load profile that results of the best per-

forming model selected in the previous stage is compared to the reference in a com-

plete day of the test subset; 

- Error distribution analysis, where the error range of the best performing models’ 

forecasted values of the test subset is assessed for every hour in which the systems 

are working. 
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3.1. ANN Model 

3.1.1. Feature Selection 

In Figure 5, the error metrics for the models described in Table 1, using ANN, are 

presented. 

 

Figure 5. Error metrics for cooling energy demand using artificial neural networks (ANN). 

By analyzing Figure 5, only based on MAE, C3 is the most accurate in forecasting 

cooling energy demand. However, as RMSE is more sensitive to highest errors, this was 

the main criteria in the selection of the best set of inputs. Therefore, based on this latter 

error metric, C2 (only based on exogenous variables) provided the most accurate predic-

tions for cooling energy demand, closely followed by C3 and C6. 

In Figure 6, error metrics for the sets of inputs tested for ANN models on forecasting 

heating energy demand are presented. 

 

Figure 6. Error metrics for heating energy demand using ANN. 
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In the heating period, as in the cooling period, different assumptions can be taken by 

analyzing both MAE and RMSE. Considering MAE, H3 is the most accurate in forecasting 

heating energy demand but keep following the criteria considered in the cooling period, 

by analyzing RMSE, H4 provided the most accurate predictions for heating energy de-

mand, with models H3, H5, and H6 also being very accurate in forecasting energy de-

mand. The importance of using historical load data and outdoor air temperature can also 

be concluded, while direct normal solar radiation is a recommendable feature in this case. 

Another detail that stands out is that, by comparing Figure 5 (cooling period) with Figure 

6 (heating period), both error metrics tend to be lower in the latter, meaning that it is easier 

for ANN models to predict energy demand in the heating season. 

3.1.2. Models’ Accuracy Evaluation 

Having selected the best set of input features for both the heating and the cooling 

periods, the following step is to evaluate ANN models’ accuracy by comparing their result-

ing forecasted values with heating and cooling energy data obtained from the case study 

building’s dynamic simulation model, used as reference. Figure 7 depicts a load profile com-

parison between ANN model C2 and the reference values, for a complete working day, for 

the test subset in the cooling period. 

 

Figure 7. Daily load profile (13 September) comparison between ANN model C2 and reference for 

the cooling period. 

As it was depicted in Figure 7, ANN models are very accurate in forecasting cooling 

energy demand throughout the day, with the trend of predicted values being located be-

low the reference. 

Figure 8 presents a comparison between the load profile for ANN model H4 and the 

reference values, for a complete working day of the test subset, during the heating period. 
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Figure 8. Daily load profile (19 December) comparison between ANN model H4 and reference for 

the heating period. 

Comparing forecasted values from the ANN model to the reference ones for the same 

day in the test subset, it is patent that the ANN model provides a fair approximation to 

the reference data. 

3.1.3. Error Distribution 

After evaluating the accuracy of the ANN models when compared to reference data, 

it is time to assess the error distribution for every hour heating or cooling systems are 

working. 

Concerning to the cooling energy demand error distribution, Figure 9 presents the range 

of errors from 8:00 to 17:00, corresponding to the working hours of the cooling systems. 

 

Figure 9. Cooling energy demand error distribution during the test period using ANN. 
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ations occur between 10:00 and 14:00, corresponding to the higher outside temperatures 

verified in that period. The median is located near 0 for every hour, with a higher percent-

age of the error above the median, meaning that the reference values tend to be higher 

than the values forecasted by the ANN models. 

The boxplot with the error distribution for heating energy demand, for the working 

hours of the heating systems, is presented in Figure 10. 
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Figure 10. Heating energy demand error distribution during the test period using ANN. 

The error range for the heating energy demand, presented in Figure 10, is much lower 

than that for the cooling period. The highest deviations occur early in the morning and 

during the afternoon. As in Figure 9, the median is also located near 0 for every hour in 

which systems are working. From 07:00 to 18:00, the higher percentage error is located 

above the median, meaning that ANN models tend to underpredict heating energy de-

mand. Towards the end of the day, the opposite happens, as the forecasted values tend to 

be higher than the reference values. 

3.2. SVM Model 

The same procedure previously followed when using ANN models was now applied 

to SVM models, starting with the feature selection stage, followed by the models’ accuracy 

evaluation and finally by the error distribution analysis. 

3.2.1. Feature Selection 

In Figure 11, the error metrics for the models described in Table 1 are presented for 

cooling demand forecast, using SVM. 

 

Figure 11. Error metrics for cooling energy demand using SVM. 

Using SVM models for the cooling period, the most accurate set of inputs tested was 

C5, closely followed by C6.  

In Figure 12, the error metrics for the models described in Table 2 are presented for 

heating energy demand forecast, using SVM. 
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Figure 12. Error metrics for heating energy demand using SVM. 

By analyzing Figure12, all combinations tested for the heating period using SVM pre-

sented similar results, except H1 (only based on historical records), and H2 (only based 

on exogenous variables), with model H4 slightly more accurate than the others. Overall, 

the exogenous variables’ influence in the heating period is more balanced, as models H3 

to H6 had similar error metrics, whereas for the cooling period, relative humidity and 

estimated occupancy profile are more influent when predicting cooling energy demand. 

3.2.2. Models’ Accuracy Evaluation 

At this stage, SVM models’ forecast is confronted with reference values registered for 

a complete working day from the test subset. Figure 13 presents the load profile based on 

SVM forecasted values for the cooling period and the reference for that same day. Figure 13 

shows that SVM models are quite effective in forecasting cooling energy demand. 

 

Figure 13. Daily load profile (13 September) comparison between SVM model C5 and reference for 

the cooling period. 

The comparison between the values forecasted by SVM and the reference values, for 

the heating period, is presented in Figure 14. 
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Figure 14. Daily load profile (19 December) comparison between SVM model H4 and reference for 

the heating period. 

For the heating period, Figure 14 shows that the load profile based on SVM forecasted 

values is close to the reference values, with some deviations mainly towards the later 

hours of the day. 

3.2.3. Error Distribution 

The error distribution for SVM predictions was also assessed. The cooling energy demand error 

distribution for SVM models is presented in Figure 15. 

 

Figure 15. Cooling energy demand error distribution during the test period using SVM. 

The boxplot for the cooling energy demand error distribution, represented in Figure 15, 

shows that most of the errors are located above 0 from 8:00 to 10:00, meaning that the 

reference values tend to be higher than those forecasted by SVM model C6 for those hours. 

For the remaining hours, forecasted values tend to be higher than the reference, as the 

error distribution is mostly negative. 

A boxplot to evaluate the error distribution for forecasting heating energy demand 

using SVM models is presented in Figure 16. 

0

50

100

150

200

250

H
ea

ti
n

g 
En

er
gy

 D
em

an
d

 [
kW

]

Hours of the day [h]

SVM H4 Reference



Appl. Sci. 2021, 11, 1356 16 of 25 
 

 

Figure 16. Heating energy demand error distribution during the test period using an SVM model. 

The boxplot for the error distribution confirms the trend of the SVM models, which 

tend to underpredict heating energy demand, since most errors are located above 0. How-

ever, in the later working hours, this trend is reversed. 

3.3. SVM + SA Model 

In order to improve SVM models predictions, SA was used to optimize SVM parameters for the 

six models studied, both in the cooling and the heating periods. 

3.3.1. Feature Selection Stage 

In what concerns to the feature selection stage for the cooling period, Figure 17 presents 

the error metrics for models C1 to C6 using SVM models with the improvement of SA. 

 

Figure 17. Error metrics for cooling energy demand using SVM + SA. 

Comparing all six models tested for the cooling period, the error metrics regarding 

SVM + SA showed the same trend as those presented in Figure 11 (SVM without SA), with 

model C5 being again the most accurate model, followed by C6 and C4. The effect of SA 

in the error metrics is also noticeable when comparing Figure 17 to Figure 11, with con-

siderable improvement in all models tested. 
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In Figure 18, the error metrics using SVM + SA models are presented for heating en-

ergy demand forecast. 

 

Figure 18. Error metrics for heating energy demand using SVM + SA. 

In the heating period, the models show results similar to those obtained using only 

SVM (Figure 12), and so the same trend was evidenced using SVM + SA (Figure 18). As 

observed in the non-optimized SVM models (Figure 12), when using simulated annealing, 

model H4 also registered the most accurate predictions for heating load demand.  

3.3.2. Models’ Accuracy Evaluation 

In this stage, SVM models’ predictions with SA improvement are compared to refer-

ence values both for cooling and heating energy demand. Starting with the cooling period, 

the load profile for SVM models with SA for a complete working day from the test subset 

is presented in Figure 19. 

Figure 19 shows that SVM models with SA are very accurate in forecasting cooling 

energy demand, as the projected load profile is very similar to the reference. Moreover, as 

stated in the feature selection stage, the improvement in the load profile matching in Figure 

19, when compared to the load profile without SA, in Figure 13, is also noticeable. 

In Figure 20, the load profile of forecasted values based on SVM models with SA for 

the heating period is presented and compared to the reference values. 

Just as it had in the cooling period (Figure 19), SA proved to be a major improvement 

to SVM models in the heating period, with the load profile for the predicted values almost 

identical to the reference with only one major variation occurring at 7:00. 
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Figure 19. Load profile comparison between SVM + SA model C5 and reference for the cooling 

period. 

 

Figure 20. Load profile comparison between SVM + SA model H4 and reference for the heating 

period. 

3.3.3. Error Distribution 

The error distribution for SVM models with SA optimization was analyzed using 

boxplot charts, starting with the cooling period presented in Figure 21. 

The boxplot with the error distribution for the cooling period based on SVM models 

with SA shows that the range of errors for every hour is much lower than that in Figure 15 

(based on SVM without SA). Most of the errors are located above 0, except at 8:00 and 17:00, 

meaning that SVM models tend to underpredict cooling energy demand, as they had in 

Figure 15. 

The boxplot with the error distribution for the forecasted values regarding heating 

energy demand, based on SVM models with SA, is presented in Figure 22. 

Figure 22 shows that the error range is, once again, much smaller than in Figure 16, 

due to the use of SA, and the trend of SVM models to underpredict heating energy de-

mand is kept. 

 

0

50

100

150

200

250

300

350

400

450

C
o

o
lin

g 
En

er
gy

 D
em

an
d

 [
kW

]

Hours of the day [h]

SVM+SA C5 Reference

0

50

100

150

200

250

H
ea

ti
n

g 
En

er
gy

 D
em

an
d

 [
kW

]

Hours of the day [h]

SVM + SA H4 Reference



Appl. Sci. 2021, 11, 1356 19 of 25 
 

 

Figure 21. Cooling energy demand error distribution for the test period using SVM + SA. 

 

Figure 22. Heating energy demand error distribution for the test period using SVM + SA. 

4. Discussion 

After scrutinizing the results for the developed models in both cooling and heating 

periods, it is now convenient to evaluate which are the most accurate models overall in 

forecasting cooling and heating energy demand, respectively. 

Concerning cooling energy demand, from the six models tested (represented in Table 1 

using ANN, SVM and SVM with SA, the most accurate model, i.e., the one with the lowest 

MAE and RMSE, was C6 using SVM with SA. This means that the set of features that 

included historical cooling load, outdoor air temperature, relative humidity and estimated 

occupancy profile was the most effective in forecasting cooling energy demand. 

4.1. Comparative Analysis 

To compare the best performing models retrieved from each of the three different 

techniques studied (ANN, SVM and SVM + SA) in forecasting cooling and heating energy 

demand, a weekly load profile corresponding to the test subset was created in order to 

evaluate the aptitude of those models in fulfilling their goal. 

Figure 23 presents weekly load profiles for ANN C2, SVM C5, and SVM + SA C5 and 

reference for the cooling period.  
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Figure 23. Cooling energy demand load profile for the best performing models, for a full week, from the test subset. 

By analyzing Figure 23, model SVM + SA C5 provides the most accurate of the load 

profiles when compared to the reference. 

The weekly load profiles regarding heating energy demand for the best performing 

models in each machine learning technique studied are presented in Figure 24. 

 

Figure 24. Heating energy demand load profile for the best performing models, for a full week, from the test subset. 

Analyzing the weekly load profiles for heating energy demand forecast (Figure 24), 

the most precise model is ANN H4. Especially when analyzing the peaks registered in the 

morning and afternoon from Monday to Friday, model ANN H4 is the model that best 

fits the reference profile. 

4.2. Forecast vs. Reference 

In this section, a detailed comparison, for the full testing subset, between the fore-

casted values for all three models and the respective reference values is presented, using 

a dispersion chart. Figure 25 presents the dispersion chart for the cooling energy demand 

(ANN C2, SVM C5 and SVM + SA C5) and the heating energy demand (ANN H4, SVM 

H4 and SVM + SA H4) and the corresponding correlation factors (R2). 
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Figure 25. Dispersion chart of forecasted values vs. reference for cooling period (top) and heating period (bottom). 

For the cooling period (the top three charts), all models have a very high correlation 

between the forecasted values and the reference values. The dispersion is slightly higher 

for ANN C2, while SVM + SA C5 presents a very high concentration of the points around 

the trendline with a R2 of 0.9879. 

For the heating period, the correlation factors are lower than in the cooling period. 

This may be partly due to the fact that the Christmas season is part of the testing subset 

and the models are not configured to detect holidays, considering them as normal work-

ing days. The highest correlation factor is obtained for the ANN H4 model, which con-

firms it as the most effective model in forecasting heating energy demand. Moreover, the 

trendlines for the three bottom models are considerably below the bisector of the chart, 

meaning that, in all these models, most of the forecasted values for heating energy de-

mand are lower than the respective reference values. 

4.3. Boxplot Analysis 

In this section, the error distributions for the best performing models of each machine 

learning strategy studied are presented and compared. 

Figure 26 presents the boxplot chart containing the error distributions for models ANN 

C2, SVM C5 and SVM + SA C5 in forecasting cooling energy demand, while Table 3 high-

lights some statistical parameters for particular hours of the day. 
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Figure 26. Error distribution for the best performing models in the cooling period. 

Table 3. Statistical parameters for cooling energy demand error. 

Statistical Parameter 

[kW] 

ANN_C2 SVM_C5 SVM+SA_C5 

8 a.m. 12 p.m. 8 p.m. 8 a.m. 12 p.m. 8 p.m. 8 a.m. 12 p.m. 8 p.m. 

Mean 6.35 55.08 26.73 37.68 −9.22 −24.96 −8.36 15.84 8.48 

Std. deviation 44.03 48.82 50.36 49.82 39.25 31.22 30.55 31.97 23.80 

Minimum −136.91 −53.89 −122.37 −66.41 −89.04 −110.99 −91.29 −50.14 −45.15 

1st Quartile −26.56 16.47 -3.95 −0.69 −43.78 −50.29 −30.73 −10.78 −5.71 

Median 0.00 46.76 14.10 2.54 -0.61 −7.57 −3.05 6.73 0.00 

3rd Quartile 43.22 90.88 52.95 72.58 11.31 0.00 0.07 36.13 25.06 

Maximum 199.07 206.50 207.00 188.11 151.70 29.55 92.94 126.39 81.62 

Once again, and confirming the information given by Figures 23 and 25, the error 

distribution shows that the most effective model in forecasting cooling energy demand is 

model C5, using SVM + SA. 

Figure 27 presents the error distribution for models ANN H4, SVM H4 and SVM + 

SA H4 in forecasting heating energy demand, while Table 4 highlights some statistical 

parameters for particular hours of the day. 

 

Figure 27. Error distribution for the best performing models in the heating period. 

Table 4. Statistical parameters for heating energy demand error. 
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Statistical Parameter 

[kW] 

ANN_H4 SVM_H4 SVM+SA_H4 

8 a.m. 12 p.m. 4 p.m. 8 a.m. 12 p.m. 4 p.m. 8 a.m. 12 p.m. 4 p.m. 

Mean 2.03 5.41 −9.30 13.44 24.72 −1.49 0.24 13.99 −1.22 

Std. deviation 29.96 18.57 15.21 36.52 31.78 18.48 29.57 23.24 17.93 

Minimum −162.04 −71.67 −102.12 −160.18 −46.90 −112.25 −159.73 −60.42 −108.59 

1st Quartile −5.42 −3.26 −11.38 −0.51 -0.50 −9.68 −4.71 −3.47 −5.81 

Median −0.35 0.00 −2.71 0.99 12.48 −0.49 -1.00 7.04 −2.97 

3rd Quartile 29.80 22.58 0.00 46.25 42.99 12.84 17.69 23.71 16.87 

Maximum 73.07 69.95 25.50 92.05 153.69 47.58 84.50 104.52 46.77 

Figure 27 and Table 4 show that model ANN H4 has an overall more satisfactory 

error distribution than models SVM H4 and SVM + SA H4, confirming the information 

given by Figures 24 and 25. 

It must also be pointed out that a generalized improvement in prediction accuracy 

occurs when SA is adopted in SVM models. 

5. Conclusions 

This article presents the application of different machine learning methodologies to 

estimate thermal energy demands in an office building. The proposed methodology was 

tested using a real office building located in Lisbon, Portugal, as a case study. 

The demand forecast obtained from these methods proved to be an interesting alter-

native to the use of dynamic simulation tools, since it is certainly a quicker and more 

straightforward approach (less dependent on calibration processes and on expertise level 

of the user). Based on these results, there is a potential for faster, yet accurate machine-

learning based forecasting methods to actually replace well-established, very accurate but 

time-consuming multi-zone dynamic simulation tools, allowing new possibilities of ob-

taining quick building energy consumption forecasts. 

One of the contributions to the research field is related to the integration of SA as a 

strategy to support the fine-tuning of SVM’ parameters. In the previous sections, this ad-

dition proved to be quite effective, as it contributes to reduce prediction errors when com-

pared to the SVM model (for both cooling and heating periods). Another relevant contri-

bution is the evaluation on the impact of different sets of features, contributing to infer the 

most relevant ones for each season.  

Future work may include the adoption of pre-processing techniques (e.g., the wave-

let transform) in an attempt to improve model accuracy, particularly concerning the cool-

ing period. 
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