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Abstract: Microalgae-bacteria consortia have been proposed as alternatives to conventional biological
processes to treat different types of wastewaters, including animal slurry. In this work, a microalgae-
bacteria consortia (ABACO) model for wastewater treatment is proposed, it being calibrated and
validated using pig slurry. The model includes the most relevant features of microalgae, such as
light dependence, endogenous respiration, and growth and nutrient consumption as a function
of nutrient availability (especially inorganic carbon), in addition to the already reported features
of heterotrophic and nitrifying bacteria. The interrelation between the different populations is
also included in the model, in addition to the simultaneous release and consumption of the most
relevant compounds, such as oxygen and carbon dioxide. The implementation of the model has
been performed in MATLAB software; the calibration of model parameters was carried out using
genetic algorithms. The ABACO model allows one to simulate the dynamics of different components
in the system, and the relative proportions of microalgae, heterotrophic bacteria, and nitrifying
bacteria. The percentage of each microbial population obtained with the model was confirmed by
respirometric techniques. The proposed model is a powerful tool for the development of microalgae-
related wastewater treatment processes, both to maximize the production of microalgal biomass and
to optimize the wastewater treatment capacity.
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1. Introduction

One of the most critical environmental challenges of the 21st century envisaged by hu-
manity is the expansion of the population, which will result in increased urban wastewater
production [1] and large amounts of animal slurry caused by the rise in meat produc-
tion [2,3]. The world’s growing population, along with (i) a rapid industrialization, (ii)
intensive agriculture, (iii) the effluent discharged below an environmentally safe level,
and (iv) the lack of technologies to reclaim used water could lead to a scarcity of clean
water in many countries [4]. The current conventional wastewater treatment methods have
become quickly outdated because they need a lot of land, intensive energy input, and a
lot of money [5]. As an alternative strategy to beat these disadvantages, microalgae-based
wastewater treatment is gaining an increased importance in the context of European bioe-
conomy, because of its potential to treat wastewater, recover nutrients of wastewater, and
produce a large variety of valuable compounds with applications in agriculture, aqua-
culture, and food production, among others [6–8]. The use of microalgae for wastewater
treatment involves the emergence of complex microalgae–bacteria consortia which vary as
functions of environmental and operational conditions [9].
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Microalgae are photosynthetic microorganisms that grow using inorganic carbon
(CO2) as a carbon source, and light as an energy source. During this growth, microalgae
release oxygen which can use by heterotrophic bacteria to oxidate the organic matter
present in influent wastewater. At the same time, heterotrophic bacteria supply CO2 for
photosynthetic activity, completing the cycle. Besides, the oxygen produced by microalgae
can be used by nitrifying bacteria to oxidize the ammonium to nitrate (nitrification process),
consuming CO2 as a carbon source too [10–12]. Since microalgae–bacteria consortia in
wastewater treatment was described in 1953 by [13], multiple microalgae–bacteria models
have been described and validated [14–17]. These mathematical models offer great appeal
to studying microalgae–bacteria interactions because they can provide useful tools for
design and control purposes, in addition to model simulators, which can all lead to an
increase the process efficiency [18].

In most of the proposed mathematical models, the part related to the activity of the
bacteria is widely obtained and validated through the Activated sludge models (ASM) [19].
However, information on microalgae parameters in wastewater treatment systems is scarce.
Therefore, in this work, a new microalgae–bacteria mathematical model named ABACO is
proposed; the characteristic parameters of microalgae in it were obtained experimentally in
previous works [20,21]. Thus, the main purpose of this study was to develop, calibrate, and
validate the whole microalgae and bacteria model with experimental data from duplicate
laboratory-scale photobioreactors using pig slurry as a nutrient source. The implementation
of the microalgae–bacteria model has been performed in MATLAB software, and it allows
one to simulate the dynamics of different components in the system and the relative
proportions of microalgae and bacteria. Moreover, the model has a series of parameters
whose exact values are unknown, being within a range. The calibration of these parameters
has been carried out using genetic algorithms, which allow determining their values from
minimizations of given cost functions. This calibration procedure provides a simple and
fast adjustment method for the characterization of the model parameters, even allowing
recalibration with different scenarios in a very easy way, such as for different strains and
culture mediums. Moreover, notice that thanks to the proposed calibration process, it is
possible to estimate the percentage of each species in the reactor, which is also a relevant
contribution of the methodology proposed in this work.

2. Materials and Methods
2.1. Microorganisms and Culture Conditions

The microalgal strain used to inoculate the photobioreactors was Scenedesmus alme-
riensis. The stock culture of Scenedesmus almeriensis was maintained photo-autotrophically
in spherical flasks (1 L capacity) using the Arnon medium [22]. The microalgal culture
was continuously bubbled with CO2-enriched air (1%), which allowed us to control the
pH at 8.0. The air temperature in the chamber was controlled in order to obtain a desire
temperature (22 ◦C). The culture temperature was set at 25 ◦C, controlled by regulating the
air temperature in the chamber. The culture was artificially illuminated in a 12:12 h L/D
cycle using four Philips PL-32W/840/4p white-light lamps, providing an irradiance of
750 µE/m2 s on the spherical 1.0 L flask surface. Two laboratory-scale photobioreactors
were inoculated using the culture stock. The average composition of the Arnon medium
used is reported in Table 1.

2.2. Laboratory Photobioreactors

Two hand-made photobioreactors made with polymethylmethacrylate (0.08 m in
diameter, 0.2 m in height and with a 1 L capacity) were used to perform the experiments
(Figure 1). The reactors were inoculated with 20% of Scenedesmus almeriensis and diluted pig
slurry (20%). The photobioreactors were operated in the laboratory but simulating outdoor
conditions prevailing in outdoor raceway reactors. Firstly, the photobioreactors were
operated in batch mode for 5 days to obtain a high biomass concentration. Afterwards, they
were operated in continuous mode by removing 20% of the culture every day and replacing
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it with fresh piggery wastewater. The dissolved oxygen in the culture was controlled below
200 % Sat to avoid negative effects because of excessive dissolved oxygen accumulation.
For that, air was supplied on demand. Additionally, the pH was controlled at 8.0 using CO2
injections. To simulate the outdoor solar cycle, the reactors were artificially illuminated
using eight 28 W fluorescent tubes (Philips Daylight T5). The maximum irradiance (PAR)
inside the reactors without cells was 1000 µEm−2 s−1, measured using an SQS-100 spherical
quantum sensor (Walz GmbH, Effeltrich, Germany). The culture temperature was kept at 25
◦C by controlling the temperature of the culture chamber in which the photobioreactors were
located. The average composition of the piggery wastewater used is reported in Table 1.

Table 1. Average compositions of the culture medium and piggery wastewater used as the influent
in the bioreactors. Concentrations expressed as mg × L−1.

Parameters Piggery Wastewater Arnon Medium

pH 8.1 ± 0.3 7.5 ± 0.2
COD 2181.7 ± 100.9 16.0 ± 1.2

Nitrogen-Nitrate 56.5 ± 2.7 140.0 ± 4.5
Chloride 2060.2 ± 23.5 78.9 ± 2.1

Potassium 1800 ± 1.6 325.1 ± 6.3
Calcium 350.1 ± 0.2 364.9 ± 5.5

Magnesium 108.2 ± 14.1 12.2 ± 0.6
Phosphorus-Phosphate 119.2 ± 5.1 39.3 ± 3.1
Nitrogen-Ammonium 1495.6 ± 17.7 0.0 ± 0.1

Iron 4.8 ± 0.01 5.0 ± 0.3
Copper 1.1 ± 0.1 0.02 ± 0.00

Manganese 2.6 ± 0.0 0.5 ± 0.02
Zinc 20.1 ± 0.2 0.06 ± 0.01

Boron 5.3 ± 0.1 0.4 ± 0.0
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Figure 1. Laboratory photobioreactors used for performing the experiments.

2.3. Biomass Concentration and Analytical Methods

The biomass concentration (Cb) was measured by dry weight. For that, aliquots
(100 mL) of each photobioreactors the culture were filtered through the Macherey–Nagel
MN 85/90 glass fiber filters. Then, the filters were dried in an oven at 80 ◦C for 24 h.
Standard official methods were used to analyze the composition of the piggery wastewater
and the supernatants from microalgae–bacteria cultures. The phosphate was measured by
visible spectrophotometry through the phospho-vanado-molybdate complex (phosphate
standard for IC: 38364). The nitrate was quantified by measuring optical density at 220 nm
and 275 nm (nitrate Standard for IC: 74246). The ammonium was measured according to the
Nessler method (ammonium standard for IC: 59755). The chemical oxygen demand (COD)
was determined by spectrophotometric measurement using Hach–Lange kits (LCl-400).
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2.4. Model Calibration and Validation

MATLAB Software was used to carry out the model calibration process using ge-
netic algorithms through the Genetic Algorithm Optimization Toolbox (GAOT), based
on [23]. Additionally, the model validation with experimental data was performed using
MATLAB Software.

2.5. Respirometry: Measurements of the Photosynthesis and Respiration Rates

In order to validate experimentally the percentage of each microbial population
proposed in the biological model, respirometric measurements were performed when at
steady state. The percentages of microalgae and bacteria in the culture were estimated
as functions of the microalgae net photosynthesis rate, the heterotrophic respiration rate,
and the nitrifying respiration rate, respectively. These measurements were performed with
handmade photo-respirometer equipment. This equipment is described in detail in [11].
The method allows one to determine the photosynthesis and respiration rates through the
variations in dissolved oxygen concentrations in microalgae–bacteria cultures, as described
in detail in [11].

For evaluating the microalgae net photosynthesis rate of each microalgae–bacteria
culture, a sample of the culture was exposed to four light–dark cycles of four minutes each
to measure and register the variation in dissolved oxygen. During the light phases, the
photosynthetic microalgae generated dissolved oxygen, and this dissolved oxygen was
consumed by the endogenous respiration during the dark periods. Thus, the microalgae
net photosynthesis rate was calculated as the difference between the slope of the oxygen
production during the light period and the slope of the oxygen consumption during the
dark period. Subsequently, another sample of the culture was used to determine the
heterotrophic respiration rate. For this purpose, 0.8 mL of sodium acetate (30 g/L) was
added to the sample and it was exposed to four light–dark cycles of 4 min each. The
respiration rate of the heterotrophic bacteria was calculated as the slope of the oxygen
consumption with sodium acetate minus the slope of the oxygen consumption during the
dark period in the endogenous culture. By following the same method, another sample
was used to measure the nitrifying respiration rate of the culture. However, the nitrifying
activity was determined using 0.8 mL of ammonium chloride (3 g/L) instead of sodium
acetate. The respiration rate of the nitrifying bacteria was calculated as the slope of the
oxygen consumption with ammonium chloride minus the slope of the oxygen consumption
during the dark period in the endogenous culture [11].

Finally, in order to correct the influence of oxygen desorption on the photo-respirometric
measurements, the oxygen mass transfer coefficient (KLa) was calculated. This coefficient
was measured in the system according to Equation (1).

dXO2

dt
= KLa

(
X∗

O2
− XO2

)
(1)

where
dXO2

dt is the oxygen accumulation expressed as the derivate of XO2 (mg/L) concen-
tration over time, KLa is the global oxygen mass transfer coefficient (h−1), and X∗

O2
is

the oxygen saturation concentration in the liquid. Further detailed descriptions of the
equipment, the standard protocol, and the metabolic rate calculations are in [11].

3. Results

This section, divided into four parts, presents the results obtained for the joint model
of microalgae biomass production combined with pig slurry treatment. The first part
provides a description of the mass balances of the model related to the process. The second
part shows the mathematical background relative to the growth rate of the species involved.
The third part shows the calibration process and the results. Finally, in the fourth part, the
validation results obtained for the model are presented.
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3.1. Model Concept

In microalgae-based wastewater treatment, different types of microbial consortia
appear as a function of environmental and operational conditions. Figure 2 shows the
biological process taking place in the reactor when using wastewater (i.e., diluted pig slurry)
as the culture medium. Under illumination, microalgae (XALG) fix carbon dioxide (CO2)
and release oxygen (O2) while assimilating nutrients, such as ammonium (NH4), nitrate
(NO3), and phosphate (PO4). The O2 produced by the photosynthesis is essential for the
degradation of the biodegradable soluble organic matter (BSOM) by heterotrophic bacteria
(XHET), BSOM being a fraction of total organic matter (COD) contained in wastewater.
In turn, during bacterial oxidation of soluble organic matter, CO2 is produced, it being
available for photosynthesis and the nitrification process. During nitrification, nitrifying
bacteria (XNIT) transform NH4 already contained at the inlet culture medium into NO3,
while also consuming O2 produced through photosynthesis.
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Figure 2. Biological process for microalgae biomass production coupled with wastewater treatment.

The developed model includes the mass balances of major compounds involved into
the biological process, in addition to the growth rate of the different species involved
(microalgae and bacteria) as a function of culture conditions and nutrients availability.
Starting from known initial conditions and variables already measured in the reactor it
is possible to simulate the evolution of the system over time, thus the variation of both
compounds and microorganisms. Figure 3 shows the most relevant inputs and outputs of
the model, and the initial conditions required. The inputs for the model are the variables
commonly measured in photobioreactors such as irradiance, dissolved oxygen, pH and
temperature. The model outputs are the concentrations of major microorganisms already
considered such as microalgae, heterotrophic bacteria and nitrifying bacteria; in addition to
the concentration of major components and nutrients involved into the biological process
such as oxygen, carbon dioxide, total inorganic carbon, ammonium, nitrate, phosphate, and
BSOM. For the right estimation of the evolution of the system it is necessary to establish
values for the initial conditions, which correspond to the initial concentrations of the
nutrients and the total biomass, the initial percentages of species in the photobioreactor
and the calibration parameters.
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3.2. ABACO Model

The biological model has been applied to the treatment of diluted pig slurry as a rele-
vant type of wastewater. The model has been developed considering the main microalgal
and bacterial processes that simultaneously occur in the microalgae-based wastewater
treatment. An initial dynamic model considering the influence of main environmental
variables (irradiance, temperature, pH and dissolved oxygen) on microalgae and bacteria
growth was developed by [20]. The model equations were inspired in the BIOALGAE
model [17], and it was already validated, the model allowing one to simulate the effect of
environmental conditions on the photosynthesis and respiration rate of microalgae–bacteria
consortia. Distinctions were performed among activity of microalgae, heterotrophic and
nitrifying bacteria [11]. The BIOALGAE model has been improved in this work by con-
sidering the influence of nutrients concentration (CO2, N-NH4

+, N–NO3
−, P–PO4

2− and
BSOM) in the microalgae and bacteria growth and coefficient yields, resulting in the new
ABACO model. The parameters of the model related with the microalgae activity were
determined experimentally [21], while the bacterial parameters were obtained from the
Activated Sludge Models (ASM) [19,24].

3.2.1. Microalgae Biomass

The microalgal cells are present in the photobioreactors, it not being feed to the system
with the influent wastewater. Part of the microalgae biomass is removed every day with
the effluent as a function of imposed dilution rate (inverse of hydraulic retention time).
Microalgae biomass concentration increases due to autotrophic growth of microalgae, using
light as energy source and of CO2 as carbon source, whereas it reduces by endogenous
respiration and decay of microalgae. These last phenomena represent the autoxidation
of microalgae, where they metabolize their own cellular material. The global balance to
estimate the microalgae biomass concentration is given by Equation (2).

V·XALG·µALG = Qh·XALG + V ·dXALG

dt
(2)

where V [m3] is the volume in the reactor, XALG [g m−3] is the microalgae biomass concen-
tration, µALG [day−1] is the microalgae specific growth rate and Qh [m3 s−1] represents the
harvesting flow rate.

The specific growth rate µALG is mainly a function of light availability inside the
reactor, summarized by the average irradiance inside the culture Iav [25], and modified
by the influence of different variables such as temperature (µALG(T)), pH (µALG(pH)),
dissolved oxygen (µALG(DO2)) and CO2 (µALG(CO2)). In addition the influence of nutri-
ents availability such as ammonium nitrogen (µALG([N − NH4])), phosphate phosphorus
(µALG([P − PO4])) and nitrate nitrogen (µALG([N − NO3])), and the microalgae mainte-
nance (mALG), is considered as shown in Equation (3).

µALG = (µALG(Iav)·µALG(T)·µALG(pH)·µALG(DO2)·µALG(CO2)·µALG(N)·µALG([P − PO4]))− mALG (3)
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Microalgae can growth using both ammonium and nitrate as a nitrogen source. Then,
there is a process rate for the growth of microalgae using ammonium and another one
when using nitrate, thus Equation (3) becomes as Equations (4) and (5) for considering this
phenomenon. Notice that Equation (5) considering the consumption of nitrate is only used
when there is not ammonium in the system.

µALG = (µALG(Iav)·µALG(T)·µALG(pH)·µALG(DO2)·µALG(CO2)·µALG([N − NH4])·µALG([P − PO4]))− mALG (4)

µALG = (µALG(Iav)·µALG(T)·µALG(pH)·µALG(DO2)·µALG(CO2)·µALG([N − NO3])·µALG([P − PO4]))− mALG (5)

As observed from Equation (3), during the microalgae growth, it is assumed that
two main process occur: the microalgal growth and the microalgal maintenance. The
microalgae growth rate is modeled as the product of a maximum growth rate (µALG,max) as
expressed in Equation (6), algae biomass concentration (XALG) as shown in Equation (7),
and switching functions for environmental parameters (irradiance, temperature, pH and
dissolved oxygen), carbon dioxide, nitrogen and phosphorous (Equation (9)–(15)). The
rate of the microalgae maintenance (mALG) considers the endogenous respiration of the
microalgae and the microalgae decay (Equation (8)).

Taking the model described by Molina et al. in [25], the light limitation growth model
can be expressed as follows:

µALG(Iav) =
µALG,max·Iav

n

Ik
n + Iavn (6)

where µALG,max [day−1] is the maximum microalgae growth rate, Iav [µE m−2 s−1] is the
average irradiance inside de culture it summarizing the light availability inside the reactor,
Ik [µE m−2 s−1] is the irradiance constant (equivalent to irradiance required to achieve half
of the maximal growth rate) and n is a form parameter. The average irradiance is expressed
as follows:

Iav =
I0

Ka·XALG·h

(
1 − e−Ka·XALG·h

)
(7)

where I0 [µE m−2 s−1] is the irradiance on the reactor surface, Ka [m2 g−1] is the biomass
extinction coefficient and h [m] is the culture depth in the reactor.

The endogenous respiration term can be expressed as follows:

mALG = mmin,alg +
mmax,alg·Iav

nresp

Ik,resp
nresp + Iav

nresp
(8)

where mmin,alg and mmax,alg [day−1] represent the minimum and maximum respiration
rates, Ik,resp [µE m−2 s−1] is the irradiance required to stop photosynthesis and start
respiration process, and nresp is the form parameter for respiration.

The influence of temperature, pH, dissolved oxygen and nutrients concentration into
the microalgae growth rate are included as normalized values, then it varying between 0
and 1. Therefore, when the culture conditions are optimal these terms are equal to 1 and the
specific growth rate is only a function of light availability, achieving the maximal value at
irradiances upper than saturation irradiance. However, if culture conditions are not optimal
the respective normalized values are lower than 1, directly reducing the microalgae growth
rate whatever the irradiance. The temperature index µALG(T), expressed by Bernard et al.
in [26], represents the influence of temperature on microalgae growth. The temperature
index can be expressed as follows:

µALG(T) =
(T−Tmax, ALG)(T−Tmin, ALG)

2

(Topt, ALG−Tmin, ALG)(((Topt, ALG−Tmin, ALG)(T−Topt, ALG))−((Topt, ALG−Tmax, ALG)(Topt, ALG+Tmin, ALG−2·T)))
(9)

where T [◦C] is the culture temperature, whereas Tmax [◦C], Tmin [◦C] and Topt [◦C] are the
respective maximal, minimal and optimal temperature for the microalgae strain. As for the
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temperature term, the pH term µALG(pH) represents the influence of pH on microalgae
growth. It can be expressed by a cardinal formula as follows:

µALG(pH) =
(pH−pHmax, ALG)(pH−pHmin, ALG)

2(
pHopt, ALG−pHmin, ALG

)(((
pHopt, ALG−pHmin, ALG

)(
pH−pHopt, ALG

))
−
((

pHopt, ALG−pHmax, ALG

)(
pHopt, ALG+pHmin, ALG−2·pH

))) (10)

where pH is the culture pH, whereas pHmax, pHmin and pHopt the respective maximal,
minimal and optimal pH for the microalgae strain.

The dissolved oxygen term µALG(DO2) depends on a maximum value, determined by
the strain, which represents the dissolved oxygen concentration that can be accumulated
in the culture without being detrimental to microalgae growth. It can be expressed as the
following equation:

µALG(DO2) = 1 −
(

DO2

DO2,max

)m
(11)

where DO2 [%] is the culture dissolved oxygen, DO2,max [%] is the maximum amount of
dissolved oxygen for the microalgae strain, m is a form parameter.

The concentration of nutrients in the culture medium (wastewater) can be also a
limiting factor for microalgae growth. The influence of carbon dioxide µALG(CO2) is
described as follows:

µALG(CO2) =
XCO2 + XHCO3

KS,C,ALG + XCO2 + XHCO3 +
XCO2

nC,ALG

KI,C,ALG

(12)

where XCO2 [g m−3] is the carbon dioxide concentration, XHCO3 [g m-3] is the bicarbon-
ate concentration, KS,C,ALG [g m−3] is the microalgae half-saturation constant for carbon,
KI,C,ALG [g m−3] is the microalgae inhibition constant for carbon, and nC,ALG is the microal-
gae form parameter for carbon. The influence of ammonium nitrogen µALG([N − NH4]) is
represented by the following equation:

µALG([N − NH4]) =
XNH4

XNH4 + KS,NH4,ALG +
XNH4

nNH4,ALG

KI,NH4,ALG

(13)

where XNH4 [g m−3] is the ammonium nitrogen concentration, KS,NH4,ALG [g m−3] is the
microalgae half-saturation constant for ammonium, KI,NH4,ALG [g m-3] is the microalgae
inhibition constant for ammonium, and nNH4,ALG is the microalgae form parameter for
ammonium. The influence of nitrate nitrogen µALG([N − NO3]).is represented by the
following equation:

µALG([N − NO3]) =
XNO3

XNO3 + KS,NO3,ALG +
XNO3

nNO3,ALG

KI,NO3,ALG

(14)

where XNO3 [g m−3] is the nitrate nitrogen concentration, KS,NO3,ALG [g m−3] is the mi-
croalgae half-saturation constant for nitrate, KI,NH4,ALG [g m−3] is the microalgae inhibition
constant for nitrate, and nNO3,ALG is the microalgae form parameter for nitrate. The influ-
ence of phosphate phosphorus µALG([P − PO4]) is represented by the following equation:

µALG([P − PO4]) =
XPO4

XPO4 + KS,PO4,ALG
(15)

where XPO4 [g m−3] is the phosphate phosphorus concentration and KS,PO4,ALG [g m−3] is
the microalgae half-saturation constant for phosphate.
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3.2.2. Heterotrophic Bacteria

Heterotrophic bacteria are already present in the influent wastewater, then they are
supplied to the system with the inlet wastewater also it being removed with the harvested
flow rate as a function of imposed dilution rate. Heterotrophic bacteria grow using the
organic matter as source of energy and carbon. These bacteria are aerobic then consuming
O2 produced during the photosynthesis process. The endogenous respiration and the
decay are responsible for the heterotrophic biomass lost. The global balance to estimate the
heterotrophic bacteria concentration is given by Equation (16).

Qd·XHET,in + V·XHET,out·µHET = Qh·XHET,out + V·dXHET,out

dt
(16)

where Qd [m3 s−1] is the dilution flow rate, XHET,in [g m−3] is the heterotrophic bacteria
inlet concentration, µHET [day−1] is the specific growth rate of heterotrophic bacteria and
XHET,out [g m−3] is the heterotrophic bacteria concentration in the reactor.

As with microalgal processes, heterotrophic processes include both the heterotrophic
growth and the heterotrophic maintenance. The heterotrophic specific growth rate µHET is
modeled as the product of maximum growth rate (µHET,max) and switching functions for
environmental parameters such as temperature (µHET(T)), pH (µHET(pH)) and dissolved
oxygen (µHET(DO2)); in addition to biodegradable soluble organic matter (µHET(BSOM)),
ammonium nitrogen (µHET([N − NH4])) and phosphate phosphorous (µHET([P − PO4]))
(Equation (17)). The rate of the heterotrophic maintenance (mHET) considers the endoge-
nous respiration of the heterotrophic bacteria and the heterotrophic decay. The specific
growth rate for heterotrophic bacteria is expressed from the following equation:

µHET = µHET,max·(µHET(T) ·µHET(pH)·µHET(DO2)·µHET([N − NH4])·µHET([P − PO4])·µHET(BSOM))− mHET (17)

where µHET,max [day−1] is the maximum specific growth rate for heterotrophic bacteria,
whereas mHET [day−1] represent the endogenous respiration of the heterotrophic bacteria
and the heterotrophic decay.

The temperature and pH terms (µHET(T) and µHET(pH)) are also based on the cardinal
model, so they are identical to those previously expressed for microalgae. These terms
depend on the maximum (Tmax, HET and pHmax, HET), minimum (Tmin, HET and pHmin, HET)
and optimal (Topt, HET and pHopt, HET) values of temperature and pH for heterotrophic
bacteria, such as expressed in Equations (18) and (19), respectively.

µHET(T) =
(T−Tmax, HET)(T−Tmin, HET)

2

(Topt, HET−Tmin, HET)(((Topt, HET−Tmin, HET)(T−Topt, HET))−((Topt, HET−Tmax, HET)(Topt, HET+Tmin, HET−2·T)))
(18)

µHET(pH) =
(pH−pHmax, HET)(pH−pHmin, HET)

2(
pHopt, HET−pHmin, HET

)(((
pHopt, HET−pHmin, HET

)(
pH−pHopt, HET

))
−
((

pHopt, HET−pHmax, HET

)(
pHopt, HET+pHmin, HET−2·pH

))) (19)

The influence of dissolved oxygen µHET(DO2) is expressed as follows:

µHET(DO2) =
DO2

DO2 + KS,DO2, HET
(20)

where KS,DO2, HET [g m-3] is the heterotrophic bacteria half-saturation constant for dissolved
oxygen. The influence of ammonium nitrogen µHET([N − NH4]) is represented by the
following equation:

µHET([N − NH4]) =
XNH4

XNH4 + KS,NH4,HET
(21)
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where KS,NH4,HET [g m−3] is the heterotrophic bacteria half-saturation constant for am-
monium. The influence of phosphate phosphorus µHET([P − PO4]) is represented by the
following equation:

µHET([P − PO4]) =
XPO4

XPO4 + KS,PO4,HET
(22)

where KS,PO4,HET [g m−3] is the heterotrophic bacteria half-saturation constant for phos-
phate. The influence of biodegradable soluble organic matter µHET(BSOM) is represented
by the following equation:

µHET(BSOM) =
XBSOM

XBSOM + KS,BSOM,HET
(23)

where XBSOM [g m−3] is the concentration of biodegradable soluble organic matter (BSOM)
in the reactor and KS,BSOM,HET [g m−3] is the heterotrophic bacteria half-saturation constant
for BSOM.

3.2.3. Nitrifying Bacteria

Nitrifiying bacteria can be also supplied to the reactor with the wastewater supplied
to the reactor, it being also removed during harvesting. Nitrifying bacteria perform the
nitrification process, thus oxidizing ammonium to nitrate. These microorganisms are
aerobic, then requiring oxygen, also using CO2 as a carbon source. The concentration of
nitrifying bacteria increases due to growth but also decrease by endogenous respiration
and decay. The global balance to estimate the concentration of nitrifying bacteria is given
by Equation (24).

Qd·XNIT,in + V·XNIT,out·µNIT = Qh·XNIT,out + V·dXNIT,out

dt
(24)

where XNIT,in [g m−3] is the nitrifying bacteria inlet concentration, µNIT [day−1] is the
nitrifying bacteria specific growth rate and XNIT,out [g m−3] is the nitrifying bacteria con-
centration in the reactor.

The processes related with nitrifying bacteria include both autotrophic growth and
maintenance. The rate of the autotrophic growth is modeled as the product of maximum
growth rate (µNIT,max) and switching functions for environmental parameters, such as tem-
perature (µHET(T)), pH (µHET(pH)) and dissolved oxygen (µHET(DO2)); in addition to
ammonium nitrogen (µHET([N − NH4])) and phosphate phosphorous (µHET([P − PO4]))
(Equation (25)). The rate of maintenance (mNIT) considers the endogenous respiration of
the nitrifying bacteria and nitrifying decay. The following equation represents the nitrifying
bacteria specific growth rate:

µNIT = µNIT,max·(µNIT(T)·µNIT(pH)·µNIT(DO2)·µNIT(CO2)·µNIT([N − NH4])·µNIT([P − PO4]))− mNIT (25)

where µNIT,max [day−1] is the maximum specific growth rate for nitrifying bacteria and
mNIT [day−1] is the endogenous respiration of the nitrifying bacteria and the nitrifying
maintenance.

As for the heterotrophic bacteria, the temperature and pH terms (µNIT(T) andµNIT(pH)) are
expressed the same form. These terms depend on the maximum (Tmax, NIT and pHmax, NIT),
minimum (Tmin, NIT and pHmin, NIT) and optimal (Topt, NIT and pHopt, NIT) values of tem-
perature and pH for nitrifying bacteria, such as expressed in Equations (26) and (27),
respectively.

µNIT(T) =
(T−Tmax, NIT)(T−Tmin, NIT)

2

(Topt, NIT−Tmin, NIT)(((Topt, NIT−Tmin, NIT)(T−Topt, NIT))−((Topt, NIT−Tmax, NIT)(Topt, NIT+Tmin, NIT−2·T)))
(26)

µNIT(pH) =
(pH−pHmax, NIT)(pH−pHmin, NIT)

2(
pHopt, NIT−pHmin, NIT

)(((
pHopt, NIT−pHmin, NIT

)(
pH−pHopt, NIT

))
−
((

pHopt, NIT−pHmax, NIT

)(
pHopt, NIT+pHmin, NIT−2·pH

))) (27)
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The influence of dissolved oxygen µNIT(DO2) is represented by the following equation:

µNIT(DO2) =
DO2(

DO2 + KS,DO2, NIT
)
·
(

1 + DO2
KI,DO2, NIT

) (28)

where KS,DO2, NIT [g m−3] is the nitrifying bacteria half-saturation constant for dissolved oxygen
and KI,DO2, NIT [g m−3] is the nitrifying bacteria inhibition constant for dissolved oxygen.

The influence of carbon dioxide µNIT(CO2) is described as follows:

µNIT(CO2) =
XCO2 + XHCO3

KS,C,NIT + XCO2 + XHCO3

(29)

where KS,C,NIT [g m-3] is the nitrifying bacteria half-saturation constant for carbon.
The influence of ammonium nitrogen µNIT([N − NH4]) is represented by the

following equation:

µNIT([N − NH4]) =
XNH4

XNH4 + KS,NH4,NIT
(30)

where KS,NH4,NIT [g m-3] is the nitrifying bacteria half-saturation constant for ammonium.
The influence of phosphate phosphorus µNIT([P − PO4]) is represented by the

following equation:

µNIT([P − PO4]) =
XPO4

XPO4 + KS,PO4,NIT
(31)

where KS,PO4,NIT [g m−3] is the nitrifying bacteria half-saturation constant for phosphate.

3.2.4. Dissolved Oxygen

During the photosynthesis, microalgae release O2 and its consumed by aerobic bacteria
respiration and microalgae respiration. The dissolved oxygen is measured and represents
a model input.

3.2.5. Dissolved Carbon Dioxide

Carbon dioxide is generated during the aerobic respiration (bacteria and microal-
gae), and is consumed by nitrifying bacteria as carbon source and by microalgae for the
photosynthetic process. The concentration of CO2 is determined by the total inorganic
carbon concentration and the presence of bicarbonate buffer. Thus, it is assumed that CO2 is
always in chemical equilibrium with bicarbonate (HCO3) and carbonate (CO3). The following
equilibrium constant between carbon dioxide, carbonate and bicarbonate is defined:

K1 =

[
XHCO3

][
H+
][

XCO2

] = 10−6.381 (32)

K2 =

[
XCO3

][
H+
][

XHCO3

] = 10−10.377 (33)

where XHCO3 is the bicarbonate concentration, XCO2 is the carbon dioxide concentration,
XCO3 is the carbonate concentration, and H+ is the concentration of hydrogen ions, which
can be obtained from the pH by means of the following equation:

H+ = 10−pH (34)
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Assuming a total inorganic carbon concentration XCT of 0.1 [g L−1], the concentration
of bicarbonate and carbon dioxide can be obtained from the following equations:

XHCO3 =

(
H+·XCT

)(
K2 + H+ + H+2

) (35)

XCO2 =

(
XHCO3 ·H

+
)

K1
(36)

3.2.6. Chemical Oxygen Demand

Chemical oxygen demand (COD) of the inlet wastewater is mainly related with the
organic matter already present on it. The COD includes the total organic matter, both the
biodegradable and the no biodegradable organic matter. Additionally, it is produced during
the microbial decay, and the biodegradable fraction is consumed by heterotrophic bacteria.

3.2.7. Biodegradable Organic Soluble Matter.

The biodegradable organic matter dissolved is the fraction of the organic matter
which is available for biodegradation by heterotrophic bacteria XHET. It is introduced
in the influent wastewater and is produced by microbial decay. XBSOM is removed by
heterotrophic consumption and during the dilution process, such as expressed in the
following equations:

Qd·XBSOM,in + V·
·
(

XALG·µalg·Ygen

[
BSOM

alg

]
+ Xhet,out·µhet·Ygen

[
BSOM

het

]
+ Xnit,out·µnit·Ygen

[
BSOM

nit

])
=

= Qh·XBSOM,out + V·
·
(

Xhet,out·µhet·Ycon

[
PO4
het

])
+ V·dXBSOM,out

dt

(37)

where XBSOM,in [g m−3] is the inlet BSOM concentration, XBSOM,out [g m−3] the BSOM con-

centration in the reactor, Ygen

[
BSOM

alg

]
[-] represents the BSOM generation rate from microal-

gae, Ygen

[
BSOM

het

]
[-] is the BSOM generation rate from heterotrophic bacteria, Ygen

[
BSOM

nit

]
[-] is the BSOM generation rate from nitrifying bacteria, and Ycon

[
PO4
het

]
[-] shows the BSOM

consumption rate from heterotrophic bacteria.

3.2.8. Ammonium Nitrogen

Different forms of nitrogen can be found in wastewater. Ammonium nitrogen is
introduced in the system though the influent wastewater, it being consumed by microalgae,
heterotrophic bacteria, and nitrifying bacteria. Besides, ammonium nitrogen is generated
by microbial decay. The ammonium nitrogen concentration is modelled by the following
equation:

Qd·XNH4,in = Qh·XNH4,out + V·
·
(

XALG·µalg·Ycon

[
NH4
alg

]
+ Xhet,out·µhet·Ycon

[
NH4
het

]
+ Xnit,out·µnit·Ycon

[
NH4
nit

])
+ V·dXNH4,out

dt
(38)

where XNH4,in [g m−3] is the ammonium nitrogen inlet concentration, XNH4,out [g m−3] rep-

resents the outlet ammonium nitrogen concentration, Ycon

[
NH4
alg

]
[-] shows the ammonium

consumption rate from microalgae, Ycon

[
NH4
het

]
[-] is the ammonium consumption rate from

heterotrophic bacteria and Ycon

[
NH4
nit

]
[-] shows the ammonium consumption rate from

nitrifying bacteria.

3.2.9. Nitrate Nitrogen

Nitrogen in form of nitrate enters in the system through the influent wastewater and
it is produced during nitrification by nitrifying bacteria. It is consumed by microalgae
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cells when ammonium is not presented or have been consumed. The nitrate nitrogen
concentration is modelled by the following equation:

Qd·XNO3,in + V·XNO3,out·µnit·Ygen

[
NO3
nit

]
= Qh·XNO3,out + V·

·
(

XALG·µalg·Ycon

[
NO3
alg

])
+ V·dXNO3,out

dt

(39)

where XNO3,in [g m−3] is the inlet nitrate nitrogen concentration, XNO3,out [g m−3] represents

the outlet nitrate nitrogen concentration, Ygen

[
NO3
nit

]
[-] is the nitrate generation rate from

nitrifying bacteria and Ycon

[
NO3
alg

]
[-] shows the nitrate consumption rate from microalgae.

3.2.10. Phosphate Phosphorous

Phosphorous is contained into the wastewater both as organic and inorganic. Organic
phosphorous is transformed into inorganic during degradation of biodegradable organic
matter then the phosphate phosphorous concentration corresponding to total phosphorous
available. Phosphate phosphorous is introduced in the system with influent wastewater,
it being produced during decay of all microbial populations. It is consumed during
the growth of microalgae, heterotrophic bacteria and nitrifying bacteria. The phosphate
phosphorus concentration is modelled by the following equation:

Qd·XPO4,in = Qh·XPO4,out + V·
·
(

XALG·µalg·Ycon

[
PO4
alg

]
+ Xhet,out·µhet·Ycon

[
PO4
het

]
+ Xnit,out·µnit·Ycon

[
PO4
nit

])
+ V·dXPO4,out

dt
(40)

where XPO4,in [g m−3] is the inlet phosphate phosphorus concentration, XPO4,out [g m−3] is the

outlet phosphate phosphorus concentration, Ycon

[
PO4
alg

]
[-] represents the phosphate consump-

tion rate from microalgae, Ycon

[
PO4
het

]
[-] is the phosphate consumption rate from heterotrophic

bacteria and Ycon

[
PO4
nit

]
[-] is the phosphate consumption rate from nitrifying bacteria.

Although growth rate models for the different microorganisms are well defined,
the consumption and generation parameters of nutrients associated with each species
present some uncertainty. The production of microalgae using wastewater as culture
medium presents diverse variability in the model parameters. Depending on the type of
wastewater and its components, the generation and consumption parameters associated
with microalgae and bacteria may vary. This fact raises the need for a model that allows
adapting its parameters for each situation. Therefore, a calibration method is presented
using genetic algorithms that is capable of estimating the characteristic parameters of the
model from experimental data measured in the reactor.

3.3. Experimental Datasets

Experimental data for model calibration and validation were collected from two
laboratory-scale photobioreactors, which were fed with pig slurry diluted at 20%. The
concentrations of biomass and the major nutrients (N–NH4

+, N–NO3
−, P–PO4

2−, COD)
both at the inlet wastewater and inside the reactor were measured. The descriptions of the
reactors and the probes used to collect the data (temperature, pH, DO, and light), along
with the methods used to measure biomass and nutrients, are shown in Section 2.

3.4. Calibration Process

The already shown equations of the model include of a series of characteristic param-
eters whose exact values are unknown, or the values are known in a defined range. The
uncertainty in the values of these parameters imposes the need for a calibration process,
which has been carried out through genetic algorithms. Calibration using genetic algo-
rithms results in a useful and reliable method for the estimation of uncertain parameters,
since it allows optimizing a cost function that measures the deviation of the output of
the model from that of the real system by modifying the parameter values between the
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established limits. The ranges of the estimated parameters have been obtained from the
cited literature, and from experience in the design of the installation.

The calibration process using genetic algorithms was implemented in MATLAB using
the Genetic Algorithm Optimization Toolbox (GAOT), based on [1], with an initial pop-
ulation of 50 phenotypes (solutions) and a termination condition of 50 generations. This
method starts with an initial set of calibration parameters and runs the model to obtain the
error. The cost function is computed as the sum of the individual root mean square error
(RMSE) functions for the simulated organism and nutrients (total biomass, ammonium,
nitrate, phosphate, and BSOM) and the real measured values, expressed as the following
equation:

J =

√ N
∑

i=1

(
Cbtotalest (i)−Cbtotalreal

(i)
)2

N

+

√ N
∑

i=1

(
XNH4,est (i)−XNH4,real

(i)
)2

N

+

√ N
∑

i=1

(
XNO3,est (i)−XNO3,real

(i)
)2

N



+

√ N
∑

i=1

(
XPO4,est (i)−XPO4,real

(i)
)2

N

+

√ N
∑

i=1

(
XBSOMest (i)−XBSOMreal

(i)
)2

N


where Cbtotalest

[
g m−3] is the estimated total biomass concentration (microalgae + het-

erotrophic bacteria + nitrifying bacteria); Cbtotalreal

[
g m−3] is the experimental total

biomass concentration measured. The rests of the parameters also describe the differ-
ences between the estimated concentrations and the experimentally measured ones for all
elements. N represents the size of the data vector.

The calibration parameters are related to the maximum growth rates for the microor-
ganisms, and the coefficients of generation and nutrient consumption. Table 2 lists the
descriptions of all the calibration parameters, and the values obtained as a result of the
calibration process.

In addition to the parameters described in the table, through this calibration process,
it is possible to estimate the percentage of each species in the reactor. The experimental
measurement of the concentration of the species of bacteria is something complex to carry
out and highlights the need for a simple way of being able to estimate the percentage of
each species within the reactor. Therefore, for both the calibration and validation data, the
genetic algorithm method was used to determine the initial percentage of each species. In
this way, the calibration process acts as a tool to estimate the percentages of microalgae and
bacteria involved in the reactor from the measurements of total biomass and nutrients in it.

Data used during the calibration process correspond to the experimental measure-
ments from during for 14 consecutive days. The imposed culture conditions were equiva-
lent to that found in a raceway reactor, with light and dark cycles representing day and
night. In addition, pH and dissolved oxygen were controlled by injecting CO2 and air.
Figure 4 represents the experimental data measured, which correspond to measurements
of irradiance, pH, dissolved oxygen, and temperature, in addition to measurements of
total biomass dry weight (microalgae, heterotrophic bacteria, and nitrifying bacteria) and
measurements of nutrients (ammonium, nitrate, phosphate, and BSOM).

Figure 5 represents the calibration results obtained in the estimation of the model vari-
ables. This figure is made up of six independent graphs that represent different variables
estimated in the model. Figure 5a represents the percentage of each species of microorgan-
isms within the reactor. Figure 5b represents the biomass concentration for each organism
in the reactor (microalgae, heterotrophic bacteria, and nitrifying bacteria), in addition to the
total biomass concentration, expressed as the sum of the individual concentrations, and the
experimental measurements. Figure 5c represents the estimated phosphate concentration
and the experimental data. Figure 5d shows the estimated ammonium concentration and
the experimental values. Figure 5e represents the estimated nitrate concentration and the
experimental measurements. Finally, Figure 5f represents the estimated biodegradable
soluble organic matter concentration, compared with the experimental measurement.
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As a result of the calibration, initial percentages of 82.1% for microalgae, 13.2% for
heterotrophic bacteria, and 4.7% for nitrifying bacteria have been established. Looking at
Figure 5a,b, it is observed how the concentration of microalgae decreases until reaching a
steady state. On the other hand, the concentration of heterotrophic bacteria grows slightly,
consuming ammonium and organic matter, while the concentration of nitrifying bacteria
remains constant. The sum of the concentration of each species represents the total biomass
concentration (dashed line), which properly fit to the experimental data.

Table 2. Calibration parameters for the ABACO model.

Symbol Parameter Value Unit

µalg,max Microalgae maximum growth rate 1.591 day−1

µhet,max Heterotrophic bacteria maximum growth rate 1.235 day−1

µnit,max Nitrifying bacteria maximum growth rate 0.730 day−1

mmin,alg Microalgae endogenous respiration minimum rate 0.01 day−1

mmax,alg Microalgae endogenous respiration maximum rate 0.276 day−1

Ycon

[
NH4
alg

]
Ammonium consumption rate from microalgae 0.369 gNH4

galg
−1

Ycon

[
NO3
alg

]
Nitrate consumption rate from microalgae 0.214 gNO3

galg
−1

Ycon

[
PO4
alg

]
Phosphate consumption rate from microalgae 0.008 gPO4

galg
−1

Ygen

[
BSOM

alg

]
BSOM generation rate from microalgae 0.148 gBSOM galg

−1

Ycon

[
NH4
het

]
Ammonium consumption rate from heterotrophic bacteria 0.299 gNH4

ghet
−1

Ycon

[
PO4
het

]
Phosphate consumption rate from heterotrophic bacteria 0.017 gPO4

ghet
−1

Ygen

[
BSOM

het

]
BSOM generation rate from heterotrophic bacteria 0.153 gBSOM ghet

−1

Ycon

[
BSOM

het

]
BSOM consumption rate from heterotrophic bacteria 0.478 gBSOM ghet

−1

Ycon

[
NH4
nit

]
Ammonium consumption rate from nitrifying bacteria 3.224 gNH4

gnit
−1

Ygen

[
NO3
nit

]
Nitrate generation rate from nitrifying bacteria 0.355 gNO3

gnit
−1

Ycon

[
PO4
nit

]
Phosphate consumption rate from nitrifying bacteria 0.182 gPO4

gnit
−1

Ygen

[
BSOM

nit

]
BSOM generation rate from nitrifying bacteria 0.149 gBSOM gnit

−1

Although the experimental concentrations of nutrients (phosphate, ammonium, ni-
trate, and BSOM) are very scattered, a trend is observed for each. The estimated values
for the elements presented in Figure 5c–f fit correctly within the experimental data. The
total RMSE value obtained through the cost function during calibration was 25.93, which is
an acceptable value, since, with the exception of ammonia, the range of variation of the
variables analyzed is small. An error of 0.076 was obtained for total biomass concentration,
an error of 0.9 for phosphate, an error of 20.76 for ammonium, an error of 1.27 for nitrate,
and an error of 2.94 for BSOM.

3.5. Validation

The validation data used to verify the values of the characteristic parameters obtained
during the calibration process were obtained in a separate vessel reactor, operated in
parallel with the one used for calibration. These data collect the experimental measurements
from 14 days, represented in Figure 6.
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Figure 5. Calibration results for the biomass production model with wastewater medium. (a) Microalgae and bacteria
percentages inside the reactor; (b) Microalgae and bacteria biomass concentration; (c) Phosphate concentration inside the
reactor; (d) Ammonium concentration inside the reactor; (e) Nitrate concentration inside the reactor; (f) Biodegradable
soluble organic matter concentration inside the reactor.

For the validation process, calibration using genetic algorithms has been used to
determine the initial percentages of microorganisms in the reactor. In this way, it is possible
to estimate the starting points for the concentration of microalgae and bacteria. In this case,
the initial percentages obtained were 85% for microalgae, 12.6% for heterotrophic bacteria,
and 2.4% for nitrifying bacteria, very similar to the percentages obtained during the
calibration test. After this initial point, the concentrations of all the elements in the reactor
were estimated and compared with the points measured experimentally, represented in
Figure 7.

Figure 7a,b shows trends in biomass concentrations similar to those obtained during
calibration. The concentration of microalgae decreases till achieving steady state, the
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heterotrophic bacteria slightly grow, and the nitrifying bacteria remain constant. The total
concentration correctly resembles the trend shown by the experimental measurements.

The estimation of the phosphate concentration (Figure 7c) shows an increasing trend,
slightly away from the center of the measurement points. However, the estimation is
within the range of the experimental values. The concentration of ammonium (Figure 7d)
maintains a good trend within the established range, as does the estimated nitrate concen-
tration (Figure 7e). Finally, the BSOM estimation (Figure 7f) shows a trend similar to the
calibration results, within the experimental points. In this case, the total RMSE error was
30.25, slightly higher for calibration.
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soluble organic matter concentration inside the reactor.
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Regarding errors, for the total biomass concentration, an error of 0.077 was obtained, a
value almost identical to the result obtained in calibration. The error obtained for phosphate
was 1.33, higher than the result obtained in the calibration. The error obtained for ammonia
was 25.89, also higher than the result obtained in calibration. The error for nitrate was 1.7,
slightly higher than the calibration result. Finally, the error obtained for the BSOM was
1.25, lower than the result obtained in calibration.

These results, at a preliminary level, show a good trend in the estimation of the
elements of the model. Certain discrepancies in the results, as in the case of phosphate,
may have been due to approximations and considerations in the input parameters of the
model, such as the concentrations of the nutrients in the dilution medium, which change
over time and have been considered constant.

More details about the parameters used in ABACO model can be found in Appendix A.

3.6. Respirometric Measurements

The respirometric measurements allowed us to determine the microalgal photosyn-
thesis rate, the heterotrophic respiration rate, and the nitrifying respiration rate in the
cultures. The microalgal photosynthesis rate was 15.8 ± 2.3 mgO2 L−1 h−1, the het-
erotrophic respiration rate was 2.2 ± 0.8 mgO2 L−1 h−1, and the nitrifying respiration rate
was 0.27 ± 0.1 mgO2 L−1 h−1. These values correspond to 86.7% microalgae, 11.8% het-
erotrophic bacteria, and 1.5 % nitrifying bacteria. These values closely approximate those
determined by calibration (82.1% for microalgae, 13.2% for heterotrophic bacteria, and 4.7%
for nitrifying bacteria) and validation (85% for microalgae, 12.6% for heterotrophic bacteria,
and 2.4% for nitrifying bacteria) processes (Figure 8).
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Figure 8. The microbial percentages obtained during the calibration process, the validation process,
and the experimental respirometric measurements.

3.7. Discussion

The combination of microalgae biomass production processes and wastewater (di-
luted pig slurry) treatment is a cost-effective goal that poses several challenges. On the
one hand, the already used wastewater contains high amounts of nutrients that allow
microalgae and bacteria growth [27]. On the other hand, the lower energy demand for
the microalgae–bacteria wastewater treatment, along with the ability of microalgae for
CO2 fixation, significantly increases the environmental sustainability of this eco-friendly
technology [28]. Apart from multiple biological models proposed for microalgae–bacteria
wastewater treatment using different types of effluents, scarce information is available
about the use of animal manure as a nutrient source [29]. In this work, an integral microal-
gae and bacteria model named ABACO was developed, calibrated, and validated with
experimental data from duplicate laboratory-scale photobioreactors using pig slurry as a
nutrient source. The implementation of the model allowed us to simulate the dynamics of
different components in the system and the relative proportions of microalgae and bacteria.
The values of several model parameters were calibrated using genetic algorithms. Addi-
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tionally, the percentage of each microbial population present in the microalgae–bacteria
culture was estimated.

The results obtained from the comparison between the estimated values with respect to
the measured experimental data have been satisfactory. The concentrations of the elements
were adjusted within the range formed by the measurement points, despite being scattered
data. The percentages of microalgae and bacteria within the reactor over time showed
values close to those obtained in the literature [17,29]. Additionally, these percentages
were estimated by a respirometric method, in which the microalgae, heterotrophic bacteria,
and nitrifying bacteria showed estimated values that were close to those determined by
calibration and validation processes. When analyzing the errors obtained for both cases, it
becomes clear that faithfully estimating the evolution in the concentration of the different
elements in the reactor is a complex process. The experimental values are very scattered,
and that hinders their continuous evolution estimation. Even so, the results obtained are
within the ranges of variation of the measurements taken.

The complexity in measuring individual concentrations of each species highlights the
need for a reliable estimation method. Due to the calibration using genetic algorithms, it is
possible to estimate the percentage of each microorganism in the reactor. From experimental
data, the model allows one to determine the initial percentage of each element and estimate
its evolution over time. In this way, the model can act as a simulator to predict the behavior
of organisms based on the concentrations of nutrients present in the reactor medium. This
model and the calibration parameters obtained will serve as the basis for the development
of simulation models where the production of microalgae biomass is combined with
wastewater treatment.

4. Conclusions

The microalgae–bacteria model proposed has demonstrated itself to be a useful tool
for understanding the microalgal–bacterial interaction in wastewater treatment. The
calibration carried out by means of genetic algorithms opens the door to a simple method
of adjusting the various parameters that make up the model, so that it can be recalibrated
from experimental measurements of different medium and culture scenarios, since the
concentrations of nutrients vary from one type of medium to another. Therefore, the
model could be applied to different strains, both microalgae and bacteria, by recalibrating
the parameters based on a set of experimental data. The next step is focusing on the
validation of the biological model in large-scale photobioreactors in order to find the
optimal conditions for wastewater treatment, nutrient recovery, and biomass production,
thereby enabling the sustainability of the process.
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Appendix A

Table A1. Variables for the proposed ABACO model.

Variables of the Biologic Models

Heterotrophic Bacteria

µhet,max Heterotrophic bacteria maximum growth rate
Tmin Minimal heterotrophic bacteria temperature
Tmax Maximum heterotrophic bacteria temperature
Topt Optimum heterotrophic bacteria temperature

pHmin Minimal heterotrophic bacteria pH
pHmax Maximum heterotrophic bacteria pH
pHopt Optimum heterotrophic bacteria pH

KS,DO2, HET Heterotrophic bacteria half-saturation constant for dissolved oxygen
KS,NH4,HET Heterotrophic bacteria half-saturation constant for N-NH4
KS,PO4,HET Heterotrophic bacteria half-saturation constant for P-PO4

KS,BSOM,HET Heterotrophic bacteria half-saturation constant for biodegradable soluble organic matter
Ycon

[
NH4
het

]
Ammonium consumption rate from heterotrophic bacteria

Ycon

[
PO4
het

]
Phosphate consumption rate from heterotrophic bacteria

Ygen

[
BSOM

het

]
BSOM generation rate from heterotrophic bacteria

Ycon

[
BSOM

het

]
BSOM consumption rate from heterotrophic bacteria

Nitrifiying Bacteria

µnit,max Nitrifiying bacteria maximum growth rate
Tmin Minimal nitrifiying bacteria temperature
Tmax Maximum nitrifiying bacteria temperature
Topt Optimum nitrifiying bacteria temperature

pHmin Minimal nitrifiying bacteria pH
pHmax Maximum nitrifiying bacteria pH
pHopt Optimum nitrifiying bacteria pH

KS,DO2, NIT Nitrifiying bacteria half-saturation constant for dissolved oxygen
KI,DO2, NIT Nitrifiying bacteria inhibition constant for dissolved oxygen

KS,C,NIT Nitrifiying saturation half-constant for CO2
KS,NH4,NIT Nitrifiying bacteria half-saturation constant for N-NH4
KS,PO4,NIT Nitrifiying bacteria half-saturation constant for P-PO4

Ycon

[
NH4
nit

]
Ammonium consumption rate from nitrifying bacteria

Ygen

[
NO3
nit

]
Nitrate generation rate from nitrifying bacteria

Ycon

[
PO4
nit

]
Phosphate consumption rate from nitrifying bacteria

Ygen

[
BSOM

nit

]
BSOM generation rate from nitrifying bacteria
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Table A2. Values for the proposed ABACO model’s characteristic parameters.

Microalgae Net Photosynthesis Rate

Parameter Value Units Source

µalg,max 1.591 day−1 Calibrated
Ik 168 µE·m−2·s−1 Sánchez-Zurano et al., 2020
n 1.700 - Sánchez-Zurano et al., 2020

Tmin 3.400 °C Sánchez-Zurano et al., 2020
Tmax 49 °C Sánchez-Zurano et al., 2020
Topt 30 °C Sánchez-Zurano et al., 2020

pHmin 1.800 - Sánchez-Zurano et al., 2020
pHmax 12.900 - Sánchez-Zurano et al., 2020
pHopt 8.500 - Sánchez-Zurano et al., 2020

DO2,max 32 mgO2
·L−1 Sánchez-Zurano et al., 2020

m 4.150 - Sánchez-Zurano et al., 2020
mmax,alg 0.010 day−1 Calibrated
mmin,alg 0.276 day−1 Calibrated

Ik,resp 134 µE·m−2·s−1 Sánchez-Zurano et al., 2020
nresp 1.400 - Sánchez-Zurano et al., 2020

KS,C,ALG 4·10−3 mgC·L
−1 BIO_ALGAE

KI,C,ALG 120 mgC·L
−1 BIO_ALGAE

KS,NH4,ALG 1.540 mgN·L−1 Sánchez-Zurano et al., 2020. Under rev.
KI,NH4,ALG 571 mgN·L−1 Sánchez-Zurano et al., 2020. Under rev.
KS,NO3,ALG 2.770 mgN·L−1 Sánchez-Zurano et al., 2020. Under rev.
KI,NO3,ALG 386.600 mgN·L−1 Sánchez-Zurano et al., 2020. Under rev.
KS,PO4,ALG 0.430 mgP·L

−1 Sánchez-Zurano et al., 2020. Under rev.

Ycon

[
NH4
alg

]
0.369 gNH4

·galg
−1 Calibrated

Ycon

[
NO3
alg

]
0.214 gNO3

·galg
−1 Calibrated

Ycon

[
PO4
alg

]
0.008 gPO4

· galg
−1 Calibrated

Ygen

[
BSOM

alg

]
0.148 gBSOM · galg

−1 Calibrated

Heterotrophic Respiration Rate

Parameter Value Units Source

µhet,max 1.235 day−1 Calibrated
Tmin 9 °C Sánchez-Zurano et al., 2020
Tmax 47 °C Sánchez-Zurano et al., 2020
Topt 36 °C Sánchez-Zurano et al., 2020

pHmin 6 - Sánchez-Zurano et al., 2020
pHmax 12 - Sánchez-Zurano et al., 2020
pHopt 9 - Sánchez-Zurano et al., 2020

KS,DO2, HET 1.980 mgO2
·L−1 Sánchez-Zurano et al., 2020

KS,NH4,HET 0.500 mgN·L−1 ASM
KS,PO4,HET 0.010 mgP·L

−1 ASM
KS,BSOM,HET 20 mgBSOM·L−1 ASM

Ycon

[
NH4
het

]
0.299 gNH4

· ghet
−1 Calibrated

Ycon

[
PO4
het

]
0.017 gPO4

· ghet
−1 Calibrated

Ygen

[
BSOM

het

]
0.153 gBSOM· ghet

−1 Calibrated

Ycon

[
BSOM

het

]
0.478 gBSOM · ghet

−1 Calibrated
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Table A2. Cont.

Nitrifying Respiration Rate

Parameter Value Units Source

µnit,max 0.730 day−1 Calibrated
Tmin 0 °C Sánchez-Zurano et al., 2020
Tmax 49 °C Sánchez-Zurano et al., 2020
Topt 33.600 °C Sánchez-Zurano et al., 2020

pHmin 2 - Sánchez-Zurano et al., 2020
pHmax 13.400 - Sánchez-Zurano et al., 2020
pHopt 9 - Sánchez-Zurano et al., 2020

KS,DO2, NIT 1.080 mgO2
·L−1 ASM

KI,DO2, NIT 104.900 mgO2
·L−1 ASM

KS,C,NIT 0.500 mgC·L
−1 ASM

KS,NH4,NIT 1 mgN·L−1 ASM
KS,PO4,NIT 0.010 mgP·L

−1 ASM

Ycon

[
NH4
nit

]
3.224 gNH4

· gnit
−1 Calibrated

Ygen

[
NO3
nit

]
0.355 gNO3

· gnit
−1 Calibrated

Ycon

[
PO4
nit

]
0.182 gPO4

·gnit
−1 Calibrated

Ygen

[
BSOM

nit

]
0.149 gBSOM ·gnit

−1 Calibrated
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