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Featured Application: The method in this paper aims to select effective subregions, reduce the
amount of calculation and maintain the accuracy of visibility estimation.

Abstract: Meteorological visibility is an important meteorological observation indicator to measure
the weather transparency which is important for the transport safety. It is a challenging problem
to estimate the visibilities accurately from the image characteristics. This paper proposes a transfer
learning method for the meteorological visibility estimation based on image feature fusion. Different
from the existing methods, the proposed method estimates the visibility based on the data processing
and features’ extraction in the selected subregions of the whole image and therefore it had less
computation load and higher efficiency. All the database images were gray-averaged firstly for the
selection of effective subregions and features extraction. Effective subregions are extracted for static
landmark objects which can provide useful information for visibility estimation. Four different feature
extraction methods (Densest, ResNet50, Vgg16, and Vgg19) were used for the feature extraction of
the subregions. The features extracted by the neural network were then imported into the proposed
support vector regression (SVR) regression model, which derives the estimated visibilities of the
subregions. Finally, based on the weight fusion of the visibility estimates from the subregion models,
an overall comprehensive visibility was estimated for the whole image. Experimental results show
that the visibility estimation accuracy is more than 90%. This method can estimate the visibility of
the image, with high robustness and effectiveness.

Keywords: visibility evaluation; feature extraction; gray average; feature fusion; transfer learning

1. Introduction

Meteorological visibility is an important parameter for measuring the atmospheric
quality, and it has a significant impact on the transport safety [1]. However, the measure-
ment and evaluation of visibility is a very complicated and challenging task, which is
subjected to the errors caused by external factors such as suspended particles in the air [2].
Traditional visibility estimation methods mainly include the manual evaluation method
and the visibility meter method [3]. The manual evaluation method refers to the approach
of visual observation of the largest visible distance by a well-trained meteorological ob-
server, while the visibility meter method estimates the visible distance by measuring the
atmospheric transmittance or extinction coefficient [4]. In the manual evaluation method,
the meteorological observer generally uses the targets at different distances as references,
and ignores errors caused by other environmental factors and determines the meteorolog-
ical optical range (MOR) [5]. However, this method has great limitations, and the result
of this method depends on the number of available targets at different distances in the
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environment to be measured and the personal subjective judgement of the weather ob-
server [6]. Furthermore, this method is inefficient and irreproducible, and the observation
of visibility is also limited by the time between the observations and the environmental
changes. The visibility meter approach includes the forward scattering method and the
back-scattering method [7]. In general, based on the cost and performance considerations,
most of visibility meters use the forward scattering method. However, accurate forward
scattering equipment is very expensive and requires specialized installation and calibration
skills. Furthermore, it can only measure the visibilities accurately within a relatively short
visible range.

In recent years, due to the continuous advancement of computers and digital cam-
eras, the digital images obtained by web cameras could be used for computer vision and
obtaining accurate scene information. Many past researches have been done on visibility
estimation and visibility restoration under low visibility conditions by studying the blurred
and degrade images obtained by digital camera.

In 2016, Huang S C et al. [8] presented a new approach with three modules, depth
estimation, color analysis, and visibility restoration to solve the problem of visibility
restoration of outdoor digital images in presence of haze, fog, and sandstorms. This
method could simplify the complex image restoration problem. Compared with other
methods, this method can be applied to images in different weather conditions, it is quick
and efficient for images restoration with the removal of fog. Farhan Hussain [9] proposed a
novel deep neural networks approach for the visibility enhancement under low visibility
in foggy conditions. They proposed a generalized model, with an approximate model
generated by the deep learning neural network for the fog in the scene, to restore the
image quality of the scene. This method could restore the scene of the image in real time
without other prerequisite information. Zhigang Ling [10] proposed a deep network that
can recognize the local patch and the three-color channels information to enhance the
image quality by dehazing process.

In 2017, Mingye Ju [11] proposed a method for visibility restoration based on the fast
single image defogging technique and a more robust atmospheric scattering model (ASM)
which can overcome the problems of illumination nonuniformity and multiple scattering.
Lei Zhu [12] proposed a regression prediction model for the visibility forecast in the Urumqi
International Airport. This regression prediction model was based on multi-factor, and
its prediction result was very stable. When the visibility was higher than 1500 m, the
average absolute error was better than 2000 m, and the prediction effect was less than
1000 m. Shengyan Li [13] proposed an intelligent digital method to estimate the visibility
by using the webcam weather images and the generalized regression neural network
(GRNN). This proposed method uses a convolutional neural networks (CNN) network
to estimate the visibility value of the webcam image through the pre-trained AlexNet. In
the proposed model, the convolutional neural networks (CNN) network is used to extract
image features, and the designed generalized regression neural network (GRNN) is used
to approximate the visibility function with image features as input. However, the model
visibility evaluation range is relatively limited (0–35 km), the training rate is 77.9%, and the
test accuracy is about 61.8% only. Bohao Chen [14] proposed a novel radial basis function
(RBF) neural network method for haze elimination. One of the advantages of this method
is that it can retain the edge of the visible structure and the brightness of image with the
haze eliminated. This method can distinguish the haze component from the real-world
haze images, and it can learn edge features according to the scene structure in the hidden
layer of the radial basis function (RBF) network. This method can restore blurred images
efficiently.

In 2018, Hazar Chaabani [15] proposed a novel deep learning method which involves
feature extraction and uses of support vector machine (SVM) that can achieve safer driv-
ing conditions under foggy weather. This proposed method could be integrated into the
next-generation variable information signs and the advanced driver assistance systems
(ADAS) to alert the driver of the visibility range and recommend the appropriate speed,
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thereby helping to achieve safer driving in foggy condition. Palvanov Akmaljon Alijon [16]
proposed a novel deep hybrid convolutional neural network (DHCNN) method for visibil-
ity estimation under heavy foggy conditions. The proposed method used the Laplacian
of the Gaussian filter to estimate the visibility of the image under low visibility (foggy)
conditions. This method could replace high-cost visibility measuring instruments. The
proposed method can estimate the visibility and collecting images through closed-circuit
television in real time. Yang You [17] propose a deep learning method for estimating
the relative atmospheric visibility from the digital images. The proposed method uses a
shortcut connection to bridge a CNN module, which captures global view of an image,
with a RNN coarse-to-fine module, which captures the farthest discerned local region.
Although the evaluation capability of this CNN-RNN model was only 300–800 m, its
accuracy could reach 90.3% accuracy. Youngjin Choi [18] proposed a novel method with
the uses of Closed-circuit television (CCTV), to estimate the visibilities from digital images
with sea fog. Due to the lack of effective information from the CCTV images over a long
distance, the accuracy of this method is about 70%. In addition, the optical sensor is 4.5 km
away from the installation point of the CCTV and this will cause some noise errors.

In 2019, Wenqi Ren [19] proposed a multi-scale convolutional neural networks method
for single-image dehazing. Zhenyu Lu [20] proposed a method with hierarchical sparse
representations to estimate the image visibility. The proposed method used the Fuzzy
C-means algorithm (FCM) to build a historical database of 5000 samples, and uses a
hierarchical sparse representation to predict the visibility of new inputs. This hierarchical
sparse representation method is easy to expand, which could improve accuracy, reduce
absolute errors, and provide convenience for other meteorological analysis. Qian Li [21]
proposed a novel deep convolutional neural networks (DCNN) method for visibility
estimation under the condition of insufficient visibility labeled data. This proposed method
divided each image into several sub-regions, used a neural network without reference
image to extract features from the image. Then the extracted features were imported into
support vector regression for training, and the visibility evaluation of each sub-region were
obtained. The final visibility evaluation was obtained according to the fusion weight of
the regression model. The results of the proposed method showed that the accuracy of
visibility estimation can be more than 90%. Fatma Outay [22] proposed a novel method
based on “learning features” to estimate the visibility under foggy weather, in which
AlexNet deep convolutional neural networks (DCNN) was used for feature extraction,
and support vector machine (SVM) classifier was used for visibility estimation. Chuang
Zhang [23] presented a visibility prediction method based on the multimodal fusion. The
proposer method established the numerical prediction model with XGBoost, LightGBM,
and emission detection algorithms. Akmaljon Palvanov [24] gave a detailed overview
of the latest research results on visibility estimation under various weather conditions.
He proposed a novel deep integrated convolutional neural networks (VisNet) method to
estimate images visibility by using webcam weather images and three deeply integrated
convolutional neural network streams are connected in parallel in the VisNet. Compared
with other methods, the proposed VisNet network had more advantages in versatility.
However, the proposed method involves quite heavy computation and extensive data
processing.

In 2020, Lo [25] proposed a novel multiple support vector regression (MSVR) model
for visibility estimation. This proposed method extracted different subregion areas from the
weather images according to the prescribed landmarks’ information and used the VGG16
network to extract image features. According to different visibility ranges, the images are
divided into different classes and their features were imported into the Support Vector
Machine (SVM) for regression analysis and visibility estimation. However, the method only
uses a single subregion for visibility estimation and the overall accuracy of this method was
about 87% only. The comparisons of some proposed methods are summarized in Table 1.
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Table 1. Comparisons of some proposed methods.

Methods Evaluation
Range (m) Advantages Disadvantages

The pre-trained Convolutional Neural
Networks (CNN) model (AlexNet)
was used to perform feature extraction
on the image, and the proposed
Generalized Regression Neural
Network (GRNN) is used for the
evaluation of image visibility. Finally,
visibility of webcam weather images
was classified [13].

0–35,000

1. Visibility evaluation range of
the image data set was larger
than other methods.

2. Visibility evaluation was
performed with actual images
in real life instead of synthetic
simulated images.

3. Training speed is faster due to
the use of cropped input
images.

1. Uses a relatively small practical
dataset with uneven
distribution; Test accuracy is
very low (61.8%);

2. Reveals too high prediction
error (±3 km);

3. Reference objects are required
for accurate classification;

Quickly bridge Convolutional Neural
Network (CNN) and Recurrent
Neural Network (RNN). Use
CNN-RNN for visibility learning, and
relative Support Vector Machine (SVR)
for regression analysis [17].

300–800

1. Relative model could be
effectively adapted in a small
practical dataset scenario
where absolute visibility data
are typically sparsely available.

2. Framework of model was
scalable to include more data.

1. Computationally costly and
consumes long time to train.

2. Uses manual annotations
instead of more reliable
sensors.

3. The visibility assessment range
is relatively small.

Using a novel deep integrated
convolutional neural networks
(VisNet) method to estimate images
visibility by using webcam weather
images. Three deeply integrated
convolutional neural network streams
were connected in parallel in the
VisNet.
Evaluate the model’s performance, by
using three different datasets of
images, each with different visibility
ranges and a different number of
classes [24].

1. 0 to 20,000 (FOVI long range)
2. 0 to 1000 (FOVI short range)
3. 0 to >250 (FROSI short range)

1. Proposed VisNet was more
robust and could be used as a
universal visibility estimator.

2. Integrated multiple deep
Convolutional Neural
Networks (CNN) streams had a
better classification effect than a
network with a single stream.

3. Both large and small image
datasets can be processed by
simply adjusting the iterative
steps.

1. Relatively long calculation time.
Network had a preprocessing
stage and several integrated
Convolutional Neural
Networks CNN layers,
network training is quite
time-consuming.

2. Proposed model could only be
applied to day-time images, it
cannot be applied to night-time
images, different methods are
needed to solve this problem.

Using a feature encoding visibility
detection network (FE-V network)
without reference image to extract
features from the image. Using deep
convolutional neural networks
(DCNN) for transfer learning. Using
Support Vector Regression (SVR) and
fusion to estimate visibility [21].

0–20,000

1. Proposed method did not
require to define a precise
physical model

2. Large-scale visibility-annotated
set is not required.

3. Pre-trained neural network has
been fine-tuned, which reduces
the complexity of training.

1. Computationally costly and
consumes long time to train.

2. Sub-regions were divided
equally without consideration
of the object content and
effectiveness of the available
regions, resulting in partial
overlap of the regions for
feature extraction.

3. Difficult to fine-tune the
network.

Using a novel Multiple Support Vector
Regression (MSVR) model based on
deep learning method for predicting
weather visibility for different ranges.
Extracting different subregions
according to prescribed landmarks
information from the whole images.
Uses the VGG16 network to extract
features. Subregions images were
divided into different classes
according to visibility range. Features
are imported into different SVM for
visibility estimation [25].

0–50,000

1. The predicted visibility range is
wider as compared to other
methods in Table 1.

2. Extracting landmark
subregions help reducing the
calculation time of the model.

3. Use of actual and practical
weather images dataset for
training and it is more suitable
for practical applications.

1. The proposed method is based
on a dataset with about 1000
images and the subregions are
selected based on human
judgement of landmark objects.
Some important image
information or area may be
ignored.

2. Features of the extracted
landmark sub-regions were not
fused, and only a single
sub-region was used for
regression analysis and
visibility estimation, which
leads to some error in
estimation results.

At present, deep neural networks had been widely used in the visibility estimation
and restoration of weather images. Past research used various forms of neural networks
to extract features from digital images, and used the extracted features as input data for
classification and evaluation. Some methods focused on network optimization, network
performances and shortening the computation time [12,13], while some methods focused
on the improving the accuracy of the visibility estimation., Some of these past researches
focused on better accuracy in smaller estimation range but these methods increase the
computation load [17]. Past research work has been done for improving the efficiency of
the algorithm by using fusion methods so as to increase the adaptability of the extracted
features [21]. However, as some of the extracted features were reductant, these features
would affect the training efficiency and the accuracy of the estimation results. From the
perspective of features extraction, this paper looked for effective features extraction and
reducing reductant image information for meteorological visibility estimation.
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Instead of selecting the image subregions by using prerequisite landmark objects
information and human judgement as proposed in [25], this paper proposed a novel method
for the meteorological visibility estimation based on image feature fusion, which can be
able to find the effective image subregions through image pre-processing and gray-level
averaging. This proposed method used deep learning neural network to extract features
and established visibility evaluation models for each subregion through support vector
machine (SVM). According to the results of the fusion analysis, the visibility estimates
of subregions were fused together to obtain the final image visibility. Since effective
subregions coordinates were already obtained by the preprocessing method, this method
only performed feature extraction on the selected subregions, which would reduce the
calculation time and increased the efficiency of visibility evaluation.

A visibility estimation method with intelligent subregions selection, feature extraction
and feature fusion is proposed in this paper. The step by step procedures of the proposed
method are briefly described as follows. Firstly, the proposed algorithm performed the
gray-weighted averaging or the image pre-processing on all the images in the database.
Coordinates of the effective subregions were determined. After extracting the effective
subregions, feature extraction was performed on the subregions. Deep learning neural
network (VGG-16 network, VGG-19 network, DenseNet network, and ResNet_50 network)
were then used to extract the subregions’ features. Regression analysis model of each
subregions was established through the support vector machine (SVM) and visibility
estimates of subregions can be obtained. According to the results of fusion weight analysis,
the visibility fusion was performed on all the subregions so as to obtain the final estimate
of the visibility.

2. Methodology
2.1. Database Construction

This paper uses the image database provided by the Hong Kong Observatory and
the images were collected at Central Pier Automatic Weather Station. The image database
composes of the digital images collected by the webcam at the weather station from 6
a.m. to 6 p.m. with fixed viewing angle, December 2019 to January 2020. The visibilities
provided by Hong Kong Observatory are based on hourly visual observations by a trained
meteorological observer and measurement by the visibility meter. The database consists of
a total number of 4841 images.

2.2. Method Overview

In this paper, 4841 images with fixed viewing angle were used as the experimental
database. Due to the interference from the moving objects (e.g., hull and clouds in the
sky) in the image, the images need to be preprocessed to obtain the effective subregions
of the image for subsequent feature extraction. Feature extraction was performed on the
effective subregions, and the feature parameters were then imported into the Support
Vector Regression models for training and evaluation. After finding the Support Vector
Regression Models of the subregions, error weight analysis is used for the final evaluation.
The proposed method for the visibility estimation is shown in Figure 1. Compared with
the approach in [25], the proposed method in this paper can give more robust and accurate
visibility estimation by fusing the estimated results of each subregion through error weight
analysis.
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Figure 1. Flow Chart of Comprehensive Visibility Evaluation.

2.2.1. Image Preprocessing

Due to the interference from the moving objects such as hull and the clouds in the
sky during the process of digital image collection with fixed viewing angle, the moving
objects will change their shapes and positions in the images. Therefore, these images need
to be preprocessed to obtain the effective subregions before subsequent feature extraction.
First, all the images in the database were averaged in gray scale (gray weighted average)
to obtain a comprehensive image. Then, Gaussian blurred algorithm [26] was applied on
the image to find the gray level distribution of the comprehensive image. After designing
the threshold value, the images in the database were adaptively segmented to obtain the
subregion images. The steps of image preprocessing were shown in Figure 2.
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Sample images in the database were shown in Figure 3. The viewing angle of the
camera for collecting the images was fixed while the background objects in the image (e.g.,
hull and clouds) changed with time. The background information would interfere the
final visibility evaluation results and caused errors. To accurately assess the visibility of
the image, it was necessary to eliminate these interferences and background objects for
visibility evaluation. It was preferable to extract the effective subregions from the image
for subsequent processing and visibility estimation.
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Figure 3. Some image samples in the database.

In Figure 3, the main components of the images were the sky, buildings, and the hulls
in the water area. However, only buildings and fixed objects were relevant to the visibility
estimation while the water area and sky cannot provide much information for the visibility
estimation. Buildings and fixed objects can be considered as static objects in the image while
moving hull or clouds in the sky are dynamics objects in the image. Visibility measurement
can be considered as the largest distance that could be observed from the viewing point.
As the dynamic objects (e.g., sky, water and hull) are changing in positions or shape with
time, they should not be used as reference for accurate visibility assessment. Therefore, we
should filter out dynamic objects and extract the effective subregions with static objects
that can provide useful image features for visibility estimation. The effective subregion
covers the buildings or fixed structure (e.g., island) at different landmark distances from
the viewing point. In this paper, we have considered to locate the effective subregions by
using two information. The first one is the gray average weighted image of the database
and the second one is the gray mean square error of the image database.

The gray-level average weighted image of the image database was obtained by ap-
plying the gray-level weighted average to each data point of the images in the database.
Image with 1080 × 1920 pixels were used in this paper. The gray-level weighted averaging
was performed on each pixel to obtain the average value of the pixels in the database.
Then according to the coordinates of the pixels in the original image, the comprehensive
gray average image was formed. An example of the comprehensive gray average image
was shown in Figure 4. The images in the database were from 8:00 a.m. to 18:00 p.m.
during the collection period. The images are sorted according to their collecting time.
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These sequences of image can provide the moving trajectories of the dynamic objects. After
extensive simulations, it has been found that dynamic objects could be filtered out if we
perform the gray-level averaging for these sequences of images. Fixed or static objects
will be remained in the comprehensive gray weighted average image. After locating the
effective subregions, image features in the effective subregions with static objects could be
extracted for visibility estimation.
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Figure 4. Comprehensive image after gray weighted average.

By performing gray-level average processing on the images in the entire database, the
overall gray-level average image could be obtained. The Gaussian blur method was used
to find the gray-level distribution range of the static and dynamic objects (e.g., building
structure, sky and water) on the image It has been found that the objects have similar gray
level distribution. Gaussian blur method has been widely used in past research to reduce
image noise and detail levels of images [27]. After Gaussian blur processing, the gray
level distributions of objects in the image could be clearly distinguished. After analyzing
the Gaussian blurred image, we find that the information of the building structure is
concentrated in the range of 50 to 100. An image example with a gray level between 50 and
100 is shown in Figure 5.
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In the database, each image has a total number of 2,073,600 pixels. We calculated the
mean square error of the gray value for the same point in all images so as to obtain the
gray image as shown in Figure 6. In Figure 6, it could be seen that the sky area, which was
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not useful for visibility evaluation, has been filtered out. However, the gray mean square
error method cannot be used to remove the water background interference in the image.
Therefore, we have chosen gray-level weighted averaging to remove the background (i.e.,
water area) interference.
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2.2.2. Subregion Segmentation

After obtaining the image with outlines of the buildings, it is necessary to segment
the image into different detection subregions. Image segmentation is a popular method to
divide an image into different feature regions for extracting the objects of interest [28,29].
Segmentation is a critical step connecting image processing and image analysis.

There were many threshold selection methods in the past research, among which
the maximum between-class variance method was the most widely used [30]. However,
this method has the limitation that the target object could not be segmented from the
background when the method is applied to images with complex backgrounds. Hence, an
adaptive threshold segmentation method had been proposed [31]. Instead of calculating
global image thresholds, local thresholds were calculated based on the distribution of
brightness in different regions of the image. For different regions of the image, it can
calculate different thresholds adaptively [32]. Figure 7 showed the histogram of the gray-
level averaged image. We used the gray-level distribution of the histogram to determine
the threshold.
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The adaptive threshold algorithm could be applied to image with uneven illumination.
In order to compensate the differences in illumination, the brightness of each pixel needs
to be normalized before determining whether the pixel was black or white. The gray-
weighted average image derived in previous pre-processing steps was used as a reference.
Adaptive threshold algorithm was used to determine the threshold value from which we
could locate the area containing only fixed structure or buildings.
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After applying the adaptive threshold algorithm, we have found two candidates for
the threshold value (139 and 88 as shown in Figure 8). As the threshold value 88 can
remove the background more effectively, segmentation threshold value of 88 is selected.
According to the selected threshold value, the coordinates of the highest and lowest points
of the effective area were located.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 20 
 

According to the selected threshold value, the coordinates of the highest and lowest points 
of the effective area were located.  

 
Original Input Image 

 
Gray Histogram 

 
Threshold segmentation image for 139 

 
Threshold segmentation image for 88 

Figure 8. Threshold segmentation image after gray weighted average. 

The image is then divided into segments with parallel lines as shown in Figure 9. We 
could find 5 effective subregions of similar size as shown in Figure 9 and image feature 
will then be extracted as described in the next session. In summary, the step-by-step pro-
cedures for the effective area extraction are described as follows. 

Figure 8. Threshold segmentation image after gray weighted average.



Appl. Sci. 2021, 11, 997 11 of 21

The image is then divided into segments with parallel lines as shown in Figure 9. We
could find 5 effective subregions of similar size as shown in Figure 9 and image feature will
then be extracted as described in the next session. In summary, the step-by-step procedures
for the effective area extraction are described as follows.

1. Apply gray-level averaging to all the images in the database to derive the comprehen-
sive image.

2. Gaussian blur algorithm was applied to the image to obtain the grayscale distribution
of the image.

3. Apply the adaptive threshold segmentation algorithm to find the threshold value.
4. According to the threshold value found in step 3, the images in the database were

then segmented into sub-region images with x-y coordinates.
5. Effective subregions are then extracted from the results of step 4.
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2.2.3. Subregion Feature Extraction and Visibility Evaluation

After obtaining the sub-regions, the features of the subregions are extracted to provide
input variables for subsequent visibility estimation. The image of the sub-region contains
lots of information and features, including features related to visibility estimation and
other redundant information due to interference. If all the information of the sub-region
image was directly mapped with the visibility value, the amount of data calculation for
training was too large, and the redundant information may cause errors in the final results.
Therefore, feature extraction was an indispensable and important step for the image of
the subregions.

Feature extraction was one of the most important operations in image processing. It
considered the image as a data set, and pixels’ features as elements. The process aims
at finding the elements in the data set that could give the best representation of the data
characteristics. According to different requirements of image classification and parameter
evaluation, the method and dimension for feature extraction could be greatly different. In
this paper, four common deep learning feature extraction methods based on the Keras-
platform were used. These methods were (VGG)-16 network, (VGG)-19 network, DenseNet
network and ResNet_50 network. The extracted features were used as the input variables
for the visibility evaluation model, and the variables were used as input for the Support
Vector Regression model, and then visibility evaluation was performed on the effective
area.

2.2.4. Comprehensive Visibility Evaluation

The extracted sub-regions will be affected by various factors, such as image texture,
structure and uneven light illumination. These factors will cause uncertainty or error
in the final result. In order to obtain a more accurate final visibility estimation results,
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the weighted fusion method is applied to the visibility models of all the sub-regions [21].
Fusion method is summarized in Appendix B.

3. Experiment Results and Analysis
3.1. Experiment Platform

In order to evaluate the method proposed in this paper, we conduct experiments on
the platform shown in Table 2. Here, the image resolution of Hong Kong Observatory
(HKO) Image database is 1920 × 1080 pixels. The true value of visibility for each image to
be trained comes from the visibility meter data provided by HKO. The dataset has a total
number of 4841 selected images from database. We have selected 3630 images randomly as
training set and the remaining 1211 images are selected as test set.

Table 2. The hardware and software parameters of the server.

Item Configuration

Operating System Linux
Memory Capacity 32GB memory

Central Processing Unit 2.6 GHz Intel CPU i7-8700
Graphics Processing Unit NVIDIA GeForce GTX 1060 Ti

Software platform Python 3.6
Deep Learning Library Keras

Image database Hong Kong Observatory (HKO)

According to the needs of the experiment, each image could provide appropriate
sub-regions through gray-scale average. The visibility distribution of the image database is
shown in Table 3.

Table 3. Visibilities distribution of the image database.

Image Database of Hong Kong
Observatory

Visibility Range (km)

0–10 11–20 21–30 31–40 40–50 Total

No. of training set sample images 432 1271 762 726 439 3630
No. of test set sample images 144 424 254 242 146 1210

Total 576 1695 1016 968 585 4841

3.2. Result and Analysis

In the experiment, the visibility of the test set images was evaluated according to the
neural network-regression model. Through gray averaging and region segmentation, we
had obtained the effective subregions. First, we performed the feature extraction on the
extracted effective area, and then imported the extracted features into the support vector
machine model for training. Finally, we obtained the predicted visibility value. Comparing
the actual visibility value and the predicted visibility value in each effective subregion, we
could get the visibility evaluation result of the effective subregions. By analyzing the error
of each effective subregions, the fusion weight of each effective area can be obtained. The
fusion weights were used for the fusion of the visibility evaluation model of all effective
subregions. Finally, the comprehensive visibility of fusion could be obtained.

The organization of the sections for the results and analysis are summarized as follows.
Among them, for different effective subregions, the results of model analysis of the visibility
evaluation were shown in part (1). In order to verify the effectiveness of the method
proposed in this paper more extensively, we have used different image features extracted
from different networks, such as (VGG)-16 network, (VGG)-19 network, DenseNet network,
ResNet-50 network. The extracted features were imported into support vector machines
to train, and finally we got the visibility regression results. In part (2), we evaluated the
performances of the four networks, (VGG)-16 network, (VGG)-19 network, DenseNet
network and ResNet-50 network. The detailed experimental results were shown in part (2).
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In addition, in order to verify the performance of the method in different visibility ranges,
we have evaluated the results for different visibility ranges in part (2). Finally, in order
to compare the fusion methods, the experimental results under different fusion strategies
were analyzed and discussed in part (3). In part (4), we compared the fusion effect of this
paper with those in other papers.

(1) Analysis of different effective areas

In order to assess the validity of the effective subregions, the visibility estimates and
the subregion weights of each effective subregion were shown in Table 4. The visibility
of subregions with detailed objects, such as effective subregion No.3, No.4, and No.5
in Figure 10, was closer to the actual visibility. These subregions with rich details were
weighted correspondingly higher than the blurred subregions. In order to assess the effect
of the number of effective subregions on the estimation accuracy, the accuracies with
different numbers of effective subregions were shown in Table 5. The accuracy with the
fusion of one effective subregion (No.1) and three effective subregions (No.1, No.2, and
No.3) were much lower than that obtained by fusion of all five subregions (No.1–No.5).
The main reason was that the larger the number of sub-regions, the higher the authenticity
of the details in each effective sub-region, and the easier it was to be close to the true
value. In addition, if the segmented single effective subregion was too large in scope, it
had too many different levels of structure and details in that subregion, which would
result in reduced sensitivity of the extracted features and thus reduced accuracy of the final
detection. Likewise, if the extent of a single subregion was too small, the area containing
too little hierarchical structure and detail would have limited validity and would not be as
well differentiated in terms of visibility. All in all, according to the experimental results, it
was more appropriate to divide the whole image into five subregions for experimental case
in this paper.
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Table 4. The estimated results of different effective area.

No. of Effective Subregion No.1 No.2 No.3 No.4 No.5

Estimated visibility 16.44 13.77 15.81 14.97 13.07
Fusion Weight 0.12 0.23 0.25 0.18 0.22

Table 5. Visibility accuracy of fusion of effective subregion.

Fusion of Effective Subregion

No. of Effective subregion No.1 No.1, No.3, No.5 No.1, No.2, No.3, No.4, No.5
Accuracy (%) 67.83 83.1 91.2

(2) Performance of different feature extraction networks

In order to verify the effectiveness of the proposed method in this paper, we have used
different image features extraction networks, such as (VGG)-16 network, (VGG)-19 network,
DenseNet network, and ResNet-50 network. The 512-dimensional feature vectors were
extracted from the VGG-16 and VGG-19 networks. We extract the 1920-dimensional feature
vectors from the DenseNet network. Feature vectors with 2048 entries were extracted from
the ResNet_50 network as the coded features. Table 6 showed the visibility accuracy of
these four networks in each visibility range. Although the overall accuracies of VGG-16
and VGG-19 network was 88%, the VGG-16 and VGG-19 networks gave lower accuracies in
lower visibility range as compared with the DenseNet network and the ResNet-50 network.

Table 6. Visibility accuracy of different networks.

Deep Learning Network
Visibility Range (km)

0–10 11–20 21–30 31–40 41–50 Total

VGG-16 (%) 84.36 91.31 89.16 87.45 87.22 88.26
VGG-19 (%) 85.61 91.66 89.32 87.96 87.52 88.32

DenseNet (%) 89.41 93.22 92.31 88.51 88.10 90.52
ResNet_50 (%) 89.11 94.58 91.51 88.62 88.33 91.20

As ResNet_50 and DenseNet networks were more sensitive to image attenuation
and could provide valid image features at different visibility levels, it could increase the
network’s extraction rate of valid features. These two networks would be more sensitive to
provide valid features for visibility estimation regression. According to the experimental
results, ResNet_50 network was recommended for image feature extraction, especially in
the low visibility range. ResNet_50 network also had higher stability and robustness in
other ranges.

(3) Different fusion method

In order to assess the visibility estimation results for different fusion strategies, we
have evaluated the following fusion strategies, namely the random fusion, the average
fusion and the proposed weight fusion. In the random fusion method, any one effective
subregion after image segmentation was selected randomly for the feature extraction and
regression model analysis, and its visibility result was regarded as the final fusion result. In
the average fusion method, the average value of all the estimates from different subregions
was used as the final fusion result. In the weight fusion method, the fusion weight of each
effective subregion was derived from the results of the error analysis. The accuracies of
different fusion methods were shown in Table 7.
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Table 7. Visibility accuracy of different fusion strategies.

Fusion Method
Visibility Range (km)

0–10 11–20 21–30 31–40 41–50 Total

Random fusion (%) 55.62 57.16 69.55 69.21 68.71 67.48
Average fusion (%) 78.39 80.95 88.79 87.46 86.58 84.53
Weight fusion (%) 86.12 93.61 92.25 92.21 91.60 90.32

According to the results of Table 7, random selection strategy give the poorest results.
As the randomly selected method has not included sufficient feature values for visibility
estimation. In random fusion method, only the features of the selected effective sub-region
are used, which reduces the information for visibility evaluation, thereby affecting the
final accuracy. Factors such as the uneven light illumination in the image may cause
excessive errors in final estimated visibility value. Compared with the random fusion
method, the average fusion method could give better performances in the range of 21–
50 km as compared to the random fusion method. The performance of average fusion
method in low visibility range (0–20 km) is still not satisfactory. On the other hand, the
weight fusion method effectively fused the local estimates of the subregion images with
the considerations of the fitted variances of the predicted distribution. Therefore, weight
fusion can give better robustness and stability. In summary, weighted fusion method can
give the best visibility estimation results for whole visibility range.

(4) Comparison of different methods in other paper

As compared with the method in [25], the accuracy of visibility estimation in [25]
was only about 80%. The effective subregions in [25] are selected based on pre-requisite
landmark objects information and human judgement. The selection process is not from
an objective approach of regression model analysis. Therefore, some important image
information could be ignored after the subregion selection process. Furthermore, as only
one single subregion is used for the visibility estimation by support vector machine (SVM),
the accuracy is about 82% only. On the other hand, the accuracy of the proposed method
in this paper can be about 90%. It shows that the effective subregions selection method
proposed in this paper was more reasonable and the fusion method can give more accurate
results.

As compared with the method in [21], the accuracy of visibility estimation in [21]
can also reach 90%. However, the sub-regions are extracted based on equal division of
image. Subregions’ selection by equal division of the whole image may have the following
disadvantages. Useful image objects and the reductant image objects will be mixed and
distribute among different subregions. As the proposed algorithm in [21] adjust the
subregions image to the size of 224 × 3 × 224 after the division process, this will cause
deformation of the subregion image and affect the estimation results. As the useful image
information in the subregions is not extracted efficiently, this will increase the computation
time.

The proposed method in this paper focus on more effective selection of subregions
with useful static objects, it can reduce the area with reductant information in the subre-
gions. The proposed method solves the problem of low data processing efficiency and
low estimation accuracy, it can reduce the unnecessary computation load for the reductant
image information in the image.

This proposed method can extract the effective subregions effectively and it can
also provide reasonable accuracy for a wide estimation range with the uses of multiple
SVR models and fusion method. The mapping surface between the visibility values and
the feature vectors is complex and has high dimensions. By incorporating a number of
piecewise SVR models, the multiple SVR models can approximate the highly dimension
complex mapping surface of the visibility function.
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4. Discussion and Summary

According to the results in Figure 10 and Section 3.2. It can be found that

1. Each effective subregion Ri contains some static landmark objects at certain distances
from observer location. Suppose Ri contains a nearest static object at distance xi. If
visibility is below xi, all the objects in Ri cannot be observed and the whole region
will be appeared as a uniform gray region as outline edges of the objects cannot be
seen in this visibility range. Variations of image characteristics (e.g., gray level, and
image sharpness of static objects) are observable for visibility range greater xi and Ri
can provide useful image feature information for visibility estimation in a visibility
range above xi.

2. The weather images in this paper were collected in order of time sequence. Taking the
hull as an example, the same hull will appear in different positions in the images. The
entire image sequence records the moving trajectory of the hull from appearance to
departure. Theoretically, a dynamic object must have a mean position from entering
to departure. So long as the moving objects does not remain stationary at a certain
position for a long time. These objects usually could be removed after the gray
averaging process.

3. The proposed method is even more effective for removing the natural moving objects
in the nature such as moving clouds or sea waves. The area for the sky or the sea
will become a uniform gray region after the gray averaging process. Therefore, after
carrying out the proposed gray level averaging process, dynamic objects and natural
moving objects could be removed in the image, leaving only the static objects in the
image for subsequent region selection and feature extraction.

4. In this case, if we perform the gray level averaging for the image dataset with visibili-
ties higher than xi. All static objects at distance less than xi in Ri will be appeared as
clear objects with sharp outline edges. Furthermore, dynamic objects (e.g., moving
cloud and sea) will be filtered out if the total number of images is sufficiently large.

5. In summary, performing gray level average on the entire image database could find
static objects observable in different visibility ranges and locate the coordinates of the
effective sub-regions. Combining with the threshold segmentation method, the gray
level averaging can be used to detect observable static objects for different visibility
ranges.

6. The Feature Extraction and Regression model proposed in this paper is based on effec-
tive subregions selection, feature extraction by deep learning neural network, multiple
support vector regression (SVR) models and weight fusion model for visibility estima-
tion. Each support vector regression (SVR) model provide piecewise approximation
for the overall complex mapping between visibility and image features.

7. Different from other fusion methods as proposed in [21], the fusion in this paper aims
to exclude invalid areas, reduce the amount of calculation and maintain the accuracy
of visibility evaluation. Actually, the fusion approach in [21] does not exclude invalid
regions, while the proposed method in this paper does not restrict the size and location
of the subregions. It determines the segmentation of image according to the content
of static objects in the whole image.

8. In case the image contains no static objects in a particular visibility distance, visibility
value at this range is estimated based on the interpolation (or fusion) of visibility
values from other subregions.

9. In summary, the proposed method can reduce the processing time of image features
as only the selected regions are analyzed instead of the whole image. It can improve
the estimation accuracy by using fusion for the estimates from different subregions.
The proposed method shows good performance and results for the practical visibility
data provided by HKO. Experimental results show that the accuracy of visibility
estimation reaches more than 90%. This method did not need to define a large-scale
visual annotation set, and had high robustness and effectiveness. This method also
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eliminates the interference of invalid regions and reductant features on the visibility
estimation, and reduced the complexity and operations of the estimation process.

5. Conclusions

At present, deep neural networks have been widely used in the visibility estimation of
weather images, but most methods do not focus on the features and content of the effective
subregions. From the perspective of effective feature extraction, this paper looked for effi-
cient selection of useful subregions and features extraction for the visibility estimation. This
paper proposed a novel deep learning neural network method for the visibility estimation
based on feature fusion method, which located the most effective image subregions by
gray-level averaging. This proposed method used deep learning neural network to extract
features and the established visibility models for each subregion by using Support Vector
Machine (SVM). The visibilities of the sub-regions were fused together according to the
results of the weight fusion analysis.

In the proposed method, all the images in the database were gray-weighted firstly
to remove interference areas, in order to obtain the effective subregions. In this paper,
five subregions were extracted for subsequent feature extraction. Four feature extraction
networks (Densest, ResNet_50, Vgg16, and Vgg19) were used to extract features from the
subregions. The features vectors obtained by the neural network were then imported into
the proposed SVR regression models, in which the visibility functions with image features
input are curve fitted by the SVR models. According to the results of the error analysis, the
weight fusion was performed to derive the final visibility estimate.

This proposed method extracts valid and effective subregions to improve the training
efficiency and estimation accuracy, it also solves the problem of long computation time
due to the data processing of the whole image or equally divided subregions of the whole
image. Since the effective subregions were derived by the gray average method during
pre-processing, this process in performed only in the initialization stage. While the image
processing is performed only for the selected effective subregions, image processing for
the invalid and reductant area is avoid. Compared with other methods, this paper not
only extracted the features of image efficiently, it shortened the data processing time for
the whole process, and it improved the efficiency of model training, and avoided the
interference of invalid features.

The major idea of the proposed subregions selection method is summarized as follows.
As the distribution, number and location of static landmark objects in a digital image are
depended on the actual physical environment, we cannot select the effective subregions
arbitrarily. Suppose the image dataset are sorted in ascending order of visibility distances.
We can identify the location of the nearest to farthest objects by performing the gray level
average for the dataset from the smallest to the largest visibility distance. The major aim of
the proposed selection method is to group a set of static landmark objects into a particular
subregion so that the variation of its image characteristic is sensitive a particular visibility
range. Hence, we can train a SVR model to curve fitted the visibility function with the
input image features. By combining these SVR models by fusion method, we can estimate
the final visibility by using the approximate multiple SVR model.

The proposed method gives good performances and accuracies in a range of 0–50 km
which is suitable for practical applications. Experimental results show that the visibility
estimation accuracy of the proposed method is more than 90%. It could be used to estimate
the visibility value of the whole image, with high robustness and effectiveness. This method
does not require to define a large-scale visual annotation set, and it also eliminates the
processing of invalid and reductant information on the digital images as compared to other
existing methods. For the fine-tuning of the neural network and extraction of effective
subregions, it greatly reduces the model complexity and the computation time as compared
to other methods.

Although our model could successfully evaluate the visibility of images accurately,
it still had some limitations. In terms of calculation time, it was quite time-consuming



Appl. Sci. 2021, 11, 997 18 of 21

to carry out the preprocessing and gray level averaging of the whole dataset to obtain
the coordinates of the effective subregions. However, the preprocessing stage is only
necessary during the initialization and pre-tuning stage. While the new images are taken
by CCTV and added into dataset, the SVR models will be updated. In the case of increased
application noise, this would affect the choice of the effective area. In addition, the fusion
of the sub-region visibility assessment model proposed in this paper can reduce the effect
of increased application noise to some extent.

Another limitation of the proposed method in this paper is that it is applicable to
daytime images only. Further modifications of the algorithm are needed when it is applied
to night-time images. These limitations will be further investigated in the future. In
addition, in our future research, we will also focus on optimizing the selection of effective
subregions. So as to minimize the number of subregions in a particular image dataset while
the visibility estimation accuracy can be maintained at reasonable level.
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Appendix A

List of Abbreviation

ADAS Advanced Driver Assistance Systems
ASM Atmospheric scattering model
CCTV Closed-Circuit Television
CNN Convolutional Neural Networks
DCNN Deep Convolutional Neural Networks
DHCNN Deep Hybrid Convolutional Neural Network
FCM Fuzzy C-means algorithm
FE-V Feature encoding visibility detection network
FOVI Foggy Outdoor Visibility images dataset (CCTV images)
FROSI Foggy Road Sign Images dataset (synthetic images)
GRNN Generalized Regression Neural Network
HKO Hong Kong Observatory
MOR Meteorological Optical Range
RBF Radial Basis Function
RNN Recurrent Neural Networks
SVM Support Vector Machine
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Appendix B. Summary of Weighted Fusion Method

The final visibility estimate A is obtained by the Equation (A1):

A =
n

∑
m=1

vm ×ωm (A1)

where n (n = 5) represented the number of subregions, vm is the estimated visibility of the
mth subregion and ωm is the visibility fusion weight of the mth subregion. It represents
the correlation between the estimated visibility value of the mth subregion and the final
visibility estimate.

The fusion weights of the mth subregion is given by Equation (A2).

ωm =
1

σm

∑n
1 σm

(A2)

where σm = δm + βm represents the predicted variance of mth subregions which is the sum
of the distribution variance δm and the fitted variance βm.

δm is used to assess the uncertainty of the joint distribution of the data. The uncertainty
of the training and test set data could be calculated by the covariance matrix K, which was
given by Equations (A3) and (A4).

δm = K(i,i) − KT
(Zm ,i)K

−1
(Zm ,Zm)

K(Zm ,i) (A3)

Zm =
{
{λ1, y1}, · · ·

{
λp, yp

}
, · · · {λN , yN}

}
(A4)

where i Set of the feature vector of the mth subregion of the test image and the correspond-
ing visibility estimated

Zm Set of eigenvectors (λi) of the mth subregion and the corresponding true values of
visibility (yp),

K(i,i) Autocovariance.
K(Zm ,i) Covariance matrix of Zm and i.
Further, the covariance matrix K(Zm ,i) could be calculated from Equation (A5).

K(Zm ,i)p
=

 k11 · · · k1p
...

...
...

kp1 · · · kpp

kuv = Cov(hu, hv), u, v = 1, 2, · · · , p (A5)

where p Total No. of samples in sets Zm and i.
huuth data sample in the set P
hvvth data sample in the set P.
Cov(hu, hv) Covariance of hu and hv
The fitted variance βm of mth subregion is given by (A6).

βm =
2

(Cm)
2 +

(εm)
2(εmCm + 3)

3(εmCm + 1)
(A6)

where Cm Penalty term (e.g., Cm = 100)
εm Limit error after training support vector regression
Finally, σm can be determined by (A7).

σm = δm + βmσm = K(i,i) − KT
(Zm ,i)K

−1
(Zm ,Zm)

K(Zm ,i) +
2

(Cm)
2 +

(εm)
2(εmCm + 3)

3(εmCm + 1)
(A7)
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The predicted variance of each subregion was considered as the weights for model
fusion, multiplied separately with the visibility estimates of each subregion. The obtained
weighted visibility values were then summed to obtain the final visibility estimated value.
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