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Abstract: Troubleshooting is the process of diagnosing and repairing a system that is behaving
abnormally. It involves performing various diagnostic and repair actions. Performing these actions
may incur costs, and traditional troubleshooting algorithms aim to minimize the costs incurred
until the system is fixed. Prognosis deals with predicting future failures. We propose to incorporate
prognosis and diagnosis techniques to solve troubleshooting problems. This integration enables
(1) better fault isolation and (2) more intelligent decision making with respect to the repair actions
to employ to minimize troubleshooting costs over time. In particular, we consider an anticipatory
troubleshooting challenge in which we aim to minimize the costs incurred to fix the system over
time, while reasoning about both current and future failures. Anticipatory troubleshooting raises two
main dilemmas: the fix–replace dilemma and the replace-healthy dilemma. The fix–replace dilemma
is the question of how to repair a faulty component: fixing it or replacing it with a new one. The
replace-healthy dilemma is the question of whether a healthy component should be replaced with
a new one in order to prevent it from failing in the future. We propose to solve these dilemmas by
modeling them as a Markov decision problem and reasoning about future failures using techniques
from the survival analysis literature. The resulting algorithm was evaluated experimentally, showing
that the proposed anticipatory troubleshooting algorithms yield lower overall costs compared to
troubleshooting algorithms that do not reason about future faults.

Keywords: diagnosis; troubleshooting; survival analysis

1. Introduction

Maintenance activities in industrial systems are important in order to reduce product
or system life-cycle costs. Corrective maintenance is an important type of maintenance
activity that involves troubleshooting observed failures. Troubleshooting a failure involves
identifying its root cause and performing repair actions in order to return the system to a
healthy state.

In this work, we propose a novel troubleshooting algorithm that reduces troubleshoot-
ing costs by using an integration of diagnosis and prognosis techniques. Diagnosis deals
with understanding what has happened in the past that has caused an observed failure.
Prognosis deals with predicting what will happen in the future, and in our context, when
future failures are expected to occur. In particular, we consider prognosis techniques that
generate survival curves of components. These are curves that plot the likelihood of a
component to survive (i.e., not fail) as a function of the components usage or age [1]. There
are analytical methods for creating survival curves and sophisticated machine learning
techniques that can learn survival curves from data [2].

Our first main contribution is to present a diagnosis algorithm that integrates prog-
nostic information, given in the form of survival curves, with diagnostic information about
the relations between sensor data and faults. To motivate this integration, consider the
following illustrative example. A car does not start and the mechanic inspecting the car
observes that the water level in the radiator is low. The mechanic at this stage has three
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possible explanations (diagnoses) for why the car does not start: either the radiator is not
functioning well, the ignition system is faulty, or the battery is empty. Let ωr, ωi, and ωb
refer to these diagnoses, respectively. Assume that when the car does not start and the
water level is low, the most likely diagnosis is, in general, ωi. However, if the battery is old
then ωb becomes the most likely diagnosis. Thus, considering the age of the battery and the
survival curve of batteries of the same type can provide valuable input for the mechanic in
deciding the most likely diagnosis and the consequent troubleshooting action. We present
a method for considering such prognostic information to improve diagnostic accuracy.

Most prior work on automated troubleshooting aimed to reduce the costs incurred
during the current troubleshooting process [3], while ignoring future maintenance costs. Fu-
ture maintenance costs include costs due to future failures, which would require additional
troubleshooting actions and perhaps system downtime. Our second main contribution
is introducing a novel type of troubleshooting problem in which the aim is to minimize
current and future troubleshooting costs. We refer this type of troubleshooting as antici-
patory troubleshooting. We propose several anticipatory troubleshooting algorithms that
explicitly consider future costs by considering survival curves.

Considering future costs in a troubleshooting process raises two main dilemmas. The
first dilemma is the fix–replace dilemma: whether to fix a broken component or replace it
with a new one. Fixing a faulty component is usually cheaper than replacing it with a new
one, but a new component is less likely to fail in the near future. The second dilemma is
the replace-healthy dilemma: whether to replace an old but healthy component now in
order to save the overhead costs of replacing it later, when it becomes faulty.

To motivate those dilemmas, consider again a scenario in which a car does not start.
The mechanic finds out that the gear box is broken and must be repaired. The first dilemma
deals with the decision of whether to fix the current, faulty gear box or replace it with a
new one. Fixing the current gear box is often cheaper than replacing it with a new one, but
a new gear box is expected to stay healthy longer. This is the fix–replace dilemma.

As a motivating example for the second dilemma, consider the case that while the
mechanic inspects the broken gear box, he also observes that the car’s clutch is worn out.
While it is not broken now, it looks like it might break in the near future. At this stage
we are faced with the replace-healthy dilemma: should we replace the clutch now or not?
Choosing not to replace the clutch now obviously reduces the cost of the current garage
visit, but one may end up incurring a significantly higher cost in the future if not, as it
would require towing the car again to the garage and moving the gear box again in order
to reach the clutch.

We provide a principled and unified manner to address both dilemmas, by modeling
them as a single Markov decision process (MDP). The MDP is a well-known model for
decision making that is especially suitable for domains with uncertainty in which reasoning
about future events is necessary. By modeling our dilemmas as an MDP, we allow solving
them with an MDP solver and determine whether to fix or replace and whether to replace
healthy components.

The MDP that accurately describes our dilemmas is very large, and therefore hard
to solve. Therefore, we propose an efficient heuristic algorithm that under some assump-
tions can still minimize the expected troubleshooting costs over time. We evaluated our
MDP-based algorithm and our heuristic algorithm experimentally on benchmark systems
modeled by Bayesian networks [4]. Results show that the heuristic algorithm demonstrates
significant gains compare to baseline policies, and that the MDP approach significantly
reduces the long-term maintenance cost. Additionally, we show that considering the
replace-healthy dilemma enables one to further reduce the long-term troubleshooting cost
by up to 15 percent.

This work is an extension of our previous work, published in IJCAI-16 [5]. In that ver-
sion we presented only a heuristic algorithm. Beyond providing more detailed explanations
of the fix–replace dilemma, we present here three significant contributions: (1) we present
the replace-healthy dilemma, (2) we present an MDP solution for both dilemmas, and (3)
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we evaluate the MDP approach by comparing it to the simple heuristic we presented in the
previous version of this paper [5]. We show that the MDP approach significantly reduces
troubleshooting costs.

2. Traditional Troubleshooting

In this section, we formalize the troubleshooting problem. A system is composed of a
set of components, denoted COMPS. At any given point in time, a component C ∈ COMPS
can be either healthy or faulty, denoted by h(C) and ¬h(C), respectively. The state of the
system, denoted ξ, is a conjunction of these health predicates, defining for every component
whether it is healthy or not. A system is in a healthy state if all its components are healthy,
and in a faulty state if at least one component is faulty. A troubleshooting agent is an agent
tasked to return the system to a healthy state. The agent’s belief about the state of the
system ξ, denoted B(ξ), is also a conjunction of health literals. We assume that the agent’s
knowledge is correct but possibly incomplete. That is, if h(C) ∈ B(ξ) or ¬h(C) ∈ B(ξ) then
h(C) ∈ ξ or ¬h(C) ∈ ξ, respectively. However, there may exist a component C ∈ COMPS
such that neither h(C) nor ¬h(C) is in B(ξ). That is, it always holds that B(ξ) ⊆ ξ.

Following Heckerman et al. [3] we assume the troubleshooting agent has two types of
actions: sense and repair. Each action is parametrized by a single component C. A sense
action, denoted SenseC, checks whether C is healthy or not. A repair action, denoted RepairC,
results in C being healthy. (See Stern et al. [6] for a discussion on actions that apply to a
batch of components). That is, applying SenseC adds h(C) to B(ξ) if h(C) ∈ ξ, and adds
¬h(C) to B(ξ) otherwise. Similarly, applying RepairC adds h(C) to both B(ξ) and ξ, and
removes ¬h(C) from B(ξ) and ξ if it is there.

A troubleshooting problem arises if the system is identified as faulty. A solution to a
troubleshooting problem is a sequence of actions performed by the troubleshooting agent,
after which the system is returned to a healthy state.

Definition 1 (Troubleshooting Problem (TP)). A TP is defined by the tuple P =
〈COMPS, ξ, B,A〉 where (1) COMPS is the set of components in the system, (2) ξ is the state of
the system, (3) B is the agent’s belief about the system state, and (4) A is the set of actions the
troubleshooting agent is able to perform. A TP arises if ∃C s.t. ¬h(C) ∈ ξ. A solution to a TP is a
sequence of actions that results in a system state in which all components are healthy.

A troubleshooting algorithm (TA) is an algorithm for generating a sequence of actions
that is a solution to a given TP. TAs are iterative: in every iteration the TA accepts the
agent’s current belief B as input and outputs a sense or repair action for the troubleshooting
agent to perform. A TA halts when the sequence of actions it has outputted forms a solution
to the TP. That is, if an agent performs these actions, then the system will be fixed. Both
sense and repair actions incur costs. The cost of an action a is denoted by cost(a). The cost
of solving a TP using a solution π, denoted by cost(π), is the sum of the costs of all actions
in π: cost(π) = ∑a∈π cost(a). TAs aim to minimize this cost.

Consider the troubleshooting process example mentioned in Table 1, in which a car
does not start: The car is composed of three relevant components that may be faulty:
the radiator (C1), the ignition system (C2), and the battery (C3). Assume that the radia-
tor is the correct diagnosis, meaning the radiator is really faulty, and the agent knows
that the battery is not faulty. The corresponding system state ξ and agent’s belief B are:
ξ = {¬h(C1)∧ h(C2)∧ h(C3)} and B = {h(C3)}. Table 1 lists a solution to this TP, in which
the agent first senses the ignition system, then the radiator, and finally repairs the radiator.

Consider the case where the cost of sense actions is much smaller than the cost of repair
actions. This simplifies the troubleshooting process: perform sense actions on components
until a faulty component is found, and then repair it. The challenge in this case is which
component to sense first.
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Table 1. An example of a system state and an agent’s beliefs affected by the troubleshooting actions.

Action System State (ξ) Agent’s Belief B

Start {¬h(C1), h(C2), h(C3)} {h(C3)}
SenseC2 {¬h(C1), h(C2), h(C3)} {h(C3), h(C2)}
SenseC1 {¬h(C1), h(C2), h(C3)} {h(C3), h(C2),¬h(C1)}
RepairC1 {h(C1), h(C2), h(C3)} {h(C3), h(C2), h(C1)}

To address this challenge, efficient troubleshooting algorithms use a diagnosis algo-
rithm (DA). A DA outputs one or more diagnoses, where a diagnosis is a hypothesis about
which components are faulty. These components will be sensed first.

Model-based diagnosis (MBD) is a classical approach to diagnosis in which a model of
the system together with observations of the system’s behavior are used to infer diagnoses.
Some MBD algorithms assume a system model that represents the system’s behavior using
propositional logic. They use logical reasoning to infer diagnoses that are consistent with
the system model and observations [7–13].

In this work, we assume the available model of the system is a Bayesian network
(BN) that represents the probabilistic dependency between observations and the system’s
health state [14]. Briefly, such a BN consists pf three disjoint sets of nodes: (1) control
nodes, whose values depend only on the user’s actions; (2) sensor nodes, whose values
represent data that can be observed from the system sensors; and (3) health nodes, whose
values represent the state—healthy or some faulty state—of the system’s components. The
observations of the system’s behavior are assignments of values to the control and at least
some of the sensor nodes. A diagnosis is an assignment of values to the health nodes. The
likelihood of a diagnosis ω can be computed by running a BN inference algorithm such as
variable elimination to compute the marginal probabilities of the health node assignments
represented by P(ω). The probability of each component C ∈ ω to be faulty, denoted by
P(C), also can be derived [15].

3. Troubleshooting with Survival Analysis

Beyond the literature on automated diagnosis, there is much work on developing
prognosis techniques for estimating the remaining useful life of components in a system.
Obviously, considering more information, such as the remaining useful lives of components,
can provide valuable input to the troubleshooter towards figuring out the most likely
diagnosis, and consequently the next troubleshooting action. In Section 3.1, we introduce
survival functions and in Section 3.2 we explain how to integrate survival functions in the
diagnosis process.

3.1. Survival Functions

Survival functions give the probability that a device, a system component, or other
object of interest will survive beyond a specified time. Survival functions can be obtained
by analysis of the physics of the corresponding system [1] or learned from past data [2].

Definition 2 (Survival Function). Let TC be a random variable representing the age at which C
will fail. A survival function for C, denoted SC(t), is the cumulative distribution function of TC,
that is: SC(t) = Pr(TC ≥ t).

Figure 1 illustrates three possible survival curves generated by a Weibull decay func-
tion e−(λ·t)

b
where t is the age (the x-axis). The y-axis represents the probability that a

component will survive (i.e., not fail) t time units (e.g., months). λ and b are parameters. λ
is known as the rate parameter in a Poisson process, and is related to the expected number
of events occurring in a bounded region of time. In our case it represents the failure rate.
The b parameter is known as the hazard rate. This parameter depicts the instantaneous
rate in which events occur. The three curves plotted in Figure 1 correspond to the case that
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b = 1 and three values of the λ parameter. Note that small λ is associated with a higher
probability to survive longer, whereas large λ results in a lower probability to survive for a
long time. An increasing hazard rate is appropriate since we expect younger components
to be more likely to survive, i.e., to have the derivative of the survival function decrease as
the component’s age increases.

Figure 1. An example of exponential survival curves.

The challenge is how to compute the probability that a component C caused a system
failure given its age and survival function. In most systems, faulty components fail inter-
mittently; i.e., a component may be faulty but acts normally. Thus, the faulty component
that caused the system to fail may have been faulty even before time t. Therefore, we
estimate the probability of a component C of age Cage to have caused the system failure
by the probability that it has failed any time before the current time. This probability is
directly given by 1− SC(Cage).

3.2. Integrating Survival Functions to Improve Diagnosis

For a given component C we have two estimates for the likelihood that it is correct:
one from the MBD algorithm (p(C)) and one from its survival curve (SC(Cage)). The
MBD algorithm’s estimate is derived from the currently observed system behavior and
knowledge about the system’s structure. The survival curve estimate is derived from
knowledge about how such components tend to fail over time. We propose to combine
these estimates to provide a more accurate and more informed diagnostic report.

A simplistic approach to combine these fault likelihood estimates is by using some
weighted linear combination, such that the weights are positive and sum up to one. How-
ever, we argue that these estimates are fundamentally different: SC(Cage) is an estimate
given a priori to the actual fault, while p(C) is computed by the MBD algorithm for the
specific fault at hand, taking into consideration the currently observed system behavior.
Indeed, MBD algorithms often require information about the prior probability of each
component to be faulty when computing their likelihood estimates [9,16–20]. These priors
are often set to be uniform, although it has been shown that setting such priors more
intelligently can significantly improve diagnostic accuracy [21,22]. Therefore, we propose
to integrate the fault likelihood estimation given by the survival curves as part of the priors
within the likelihood estimation computation done by the MBD algorithm. We explain
how this is done next.

Recall that every component C is associated with a node nC in the BN, such that the
value of this node represents the health state of C. Let V0 be the value of nC representing
that C is healthy, and let V1, . . . , Vm represent the other, non-healthy possible states of C.
Let prior(Vi) be the prior probability that C is in state Vi. The sum of these priors, i.e.,
∑m

i=1 prior(Vi), expresses the a priori belief that the component is faulty, i.e., the belief
before any evidence is taken into account. We propose to integrate the information into the
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survival curves with the health nodes’ priors, by introducing a revised prior for state Vi,
denoted by priors(Vi), which is defined as follows:

priors(Vi) =


SC(Cage) i = 0(
1− SC(Cage)

)
· prior(Vi)

m
∑

j=1
prior(Vj)

otherwise (1)

The intuition behind the formula is that the prior probability for being in a healthy
state (V0) can be computed by the survival function given the age of the component. The

priors of the other faulty states are normalized by 1−SC(Cage)

∑m
j=1 prior(Vj)

so that they sum up to one,

but still preserve their relative prior probabilities from the BN.
As an example of this integration of survival curves and diagnostic model, consider

an MBD problem for a car. Figure 2 depicts the BN we use as a system model for this
car. Nodes Ig, B, and R correspond to the health variables for the ignition, battery, and
radiator, respectively. W corresponds to the water level variable, and C corresponds to
the observable variable that is true if the car starts properly and false otherwise. The
conditional probability tables (CPTs) for all nodes except C are displayed in Figure 2. For
example, the a priori probability that the ignition (Ig) is faulty is 0.01. The value of C
deterministically depends on Ig, B, and R: the car can start; i.e., C is true, if and only if all
the components Ig, B, and R, are healthy. Modeling such dependency (a logical OR) in a
BN is trivial. For simplicity, assume that at most one component—Ig, B, or R, can be faulty
at a time. This is called the single-fault assumption. In general, we limit our discussion in
this paper to the single-fault case. In Section 8 we discuss how to extend our approach to
multiple-fault scenarios.

Figure 2. The BN for our car diagnosis running example.

Now, consider the case where the car does not start (C = False) and the water level is
low (W = Low). Given this evidence, we apply Bayesian reasoning to get the likelihood of
each component to be faulty. The likelihoods obtained for Ig, B, and R to be faulty are 0.16,
0.33, and 0.52, respectively. Thus, an intelligent troubleshooter would sense R first.

Now, assume that the ages of the ignition (Ig), battery (B), and radiator (R) are 3, 12,
and 5 months, respectively, and that they all follow an exponential survival curve e−0.09·t.
Thus, based on the components’ ages and the survival curves the probabilities of Ig, B, and
R being faulty are 0.24, 0.66, and 0.36, respectively. By adjusting the priors for Ig, B, and
R using Equation (1) and the given survival curves, we get the priors shown in Figure 2.
Setting these priors dramatically affects the result of the Bayesian inference, where now the
probabilities of Ig, B, and R to be faulty are 0.16, 0.56, and 0.28, respectively. As a result,
a troubleshooter that is aware of both BN and survival curves would choose to sense the
battery (B) rather than the radiator (R).
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In Section 6, we demonstrate experimentally the benefit of integrating the survival
functions in the BN inference process, showing significant gain.

4. Anticipatory Troubleshooting

As mentioned in the introduction, given a failure in a system, a traditional trou-
bleshooting process aims to repair the failure while minimizing troubleshooting costs. The
target of anticipatory troubleshooting is the same but also considers future troubleshooting
costs.

Formally, let [0, Tlimit] be the time interval in which we aim to minimize troubleshoot-
ing costs. During this time interval, several components may fail at different points in time,
resulting in several TPs that must be solved. The target function we wish to minimize is
the sum of costs incurred by the troubleshooting agent when solving all the TPs that occur
throughout the designated time interval. We refer to this sum of troubleshooting costs
as the long-term troubleshooting cost. An anticipatory troubleshooting algorithm is an
algorithm that aims to minimize these costs.

Next, we discuss and study the following two dilemmas that arise during troubleshoot-
ing and for which using an anticipatory troubleshooting algorithm can be useful.

• Choosing which repair action to use in order to repair a given faulty component.
• Choosing whether or not to repair a healthy but outdated component.

We describe these dilemmas in more detail below.

4.1. The Fix or Replace Dilemma

The first dilemma arises when there is more than one way to repair a faulty component.
In particular, consider having two possible repair actions:

• Replace(C), which means the troubleshooting agent replaces C with a new one.
• Fix(C), which means the troubleshooting agent fixes C without replacing it.

Both fix and replace are repair actions, in the sense that after performing them the
component is healthy and the agent knows about it, i.e., replacing ¬h(C) with h(C) in
both the system state and the agent’s belief. We expect fix and replace to differ in two
important aspects.

First, the cost of replacing a component C is likely to be different than the the cost of
fixing an existing component—i.e., cost(Fix(C)) 6= cost(Replace(C)). Second, we expect the
probability that a component C will fail in the future changes after it is fixed. Formally, we
define the AfterFix curve of a component C for time tFix, denoting SC(t, tFix) as

SC(t, tFix) = Pr(TC ≥ t|C fixed at age = tFix) (2)

and expect that
∀C ∈ COMPS ∃t, tFix > 0 : SC(t, tFix) 6= SC(t) (3)

A common setting is that (1) getting a new component is more costly than fixing it,
and (2) a new component is less likely to fail compared to a fixed component. This setting
is captured by the following inequalities:

1. cost(Fix(C)) ≤ cost(Replace(C))
2. SC(t, tFix) ≤ SC(t)

This setting embodies the fix–replace dilemma in anticipatory troubleshooting: weigh-
ing current troubleshooting costs (according to which a fix is preferable) against potential
future troubleshooting costs (according to which a replacement is preferable). All the
algorithms proposed in this work are applicable beyond this setting, e.g., for cases where
replacing a component is cheaper than fixing it.

4.2. The Replace Healthy Dilemma

System failures usually incur overhead costs, in addition to the cost of the repair
actions, such as transportation costs (bringing the car to the garage) and system decom-
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position costs (disassembling the wheels and brakes). We denote by cost(overhead) the
overhead costs incurred by a single system failure.

When this overhead cost is non-negligible, it is worthwhile to consider replacing
healthy components during a troubleshooting process in order to prevent them from failing
in the future. For instance, if the car is anyway in the garage and treated by a mechanic,
replacing the break pads now instead of in approximately three months saves the overhead
costs of bringing the car to the garage again and disassembling the wheels and brakes. More
generally, during a troubleshooting process, the troubleshooting agent has two possible
actions for every healthy component C:

• Replace(C): replace C with a new one.
• Ignore(C): do not replace C.

Naturally, Ignore(C) does not incur any cost, but Replace(C) incurs cost(Replace). How-
ever, replacing a component might save future system failures, since the probability of
having another failure in the same component after replacing it is lower than this probabil-
ity when ignoring it. Thus, performing Replace(C) may end up saving future overhead costs.
We call this dilemma of whether to repair a healthy component or not the replace-healthy
dilemma.

5. Solving the Dilemmas

In this section, we propose two approaches for solving the fix–replace and replace-
healthy dilemmas. The first approach is based on a simple heuristic decision rule (Section 5.1)
designed for the fix–replace dilemma. The second approach models each dilemma as a
Markov decision process (MDP) problem and solves it with an MDP solver (Section 5.2).

5.1. Solving the Dilemmas with Heuristic Rules

The heuristic decision rule described next, which we refer to as DR1, is a solution to
the fix–replace dilemma. The input to DR1 is a tuple 〈C, t, Cage, SC, SC(·, t)〉 where: (1) C is
a faulty component, (2) t is the current time, (3) Cage is the age of C, (4) SC is the survival
curve of C, and (5) SC(·, t) is the survival curve of C if it is fixed at time t. DR1 outputs a
repair action—either Fix(C) or Replace(C).

Definition 3 (DR1). DR1 returns Replace(C) if the following inequality holds, and Fix(C) other-
wise.

cost(Replace(C)) + (1− SC(Tlimit − t)) ·
(

cost
(
Replace(C)

)
+ cost(overhead)

)
≤ cost(Fix(C)) + (1− SC(Tlimit − t, CAge)) ·

(
cost

(
Replace(C)

)
+ cost(overhead)

)
(4)

DR1 is optimal if the following assumptions hold:

1. A component will not fail more than twice in the time interval [0, Tlimit].
2. A component can be fixed at most once.
3. A replaced component will not be fixed in the future.
4. Components fail independently.
5. We can not replace healthy components.

Explanation: If components fail independently (Assumption 4), it is sufficient to
compare the long-term troubleshooting costs resulting from current and future failures of C,
as C neither affects nor is affected by any other component. The long-term troubleshooting
costs consist of the current cost of repairing C plus the costs of repairing C should it fail
before Tlimit. The current cost is cost(Fix(C)) or cost(Replace(C)) if C is fixed or replaced,
respectively. Since we assume that a component will not fail more than twice (Assumption
1), computing the expected future troubleshooting costs is reduced to the probability that
C will fail again before Tlimit times the cost of replacing C if it fails (Assumption 2 and 3).
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The probability that C will fail before Tlimit is 1− SC(Tlimit − t, Cage) if we fix C now, and
1− SC(Tlimit − t) if we replace it.

DR1 can be also applied when the assumptions do not hold, but then DR1 may
be non-optimal. Still, as we show experimentally in Section 6, using DR1 can be very
beneficial.

5.2. Anticipatory Troubleshooting Dilemmas as a Markov Decision Process

Next, we propose a different approach to solve the fix–replace dilemma, and then
show how it can also be adapted to solve the replace-healthy dilemma. This approach
is based on modeling both dilemmas as Markov decision process (MDP) problems. In
general, an MDP is defined by:

• A set of states S .
• An initial state I.
• A set of actions A that are available from state s, for each state s ∈ S.
• A transition function T r: S ×A× S → [0, 1]. This is the probability that performing

action a in state s will lead to state s′.
• A reward function R : S × A → R. This is the immediate reward received after

performing action a in state s.

Next, we show how each dilemma can be modeled as an MDP.

5.2.1. Fix–Replace Dilemma as an MDP

To model the fix–replace dilemma as an MDP, we first discretize the time limit [0, Tlimit]
by partitioning it to n non-overlapping time intervals of size ∆T . Let T = {T0, . . . , Tn} be
the time steps such that T0 = 0, and for all i > 0, Ti is the time step that is the upper limit
of ith time interval. Thus, Tn = Tlimit. The number of time intervals (n) is referred to as the
granularity level. The granularity level should be set according to the domain such that it
provides a sufficient approximation of real failure times.
Finally, we can present our modeling of the fix–replace dilemma for component C.

States. A state in our MDP is a tuple s = 〈Ti, IsFaulty, SC, CAge〉, where:

• Ti is a time step.
• IsFaulty is true iff C is faulty in the time interval [Ti−1, Ti].
• SC is the survival curve of C at time Ti.
• CAge is the age of C at time Ti.

States for time T0 represent the first time step. States for time Tlimit + 1 are terminal
states. Recall that we only consider single fault scenarios—i.e, at most one component fails.

Actions. The set of actions in our MDP consists of two actions: Replace(C) and Fix(C).
The outcome of applying an action in a state s = 〈Ti, IsFaulty, SC, CAge〉 results in one of
the two following states: s′f ail = 〈Ti+1, true, S′C, C′Age〉 and s′ok = 〈Ti+1, false, S′C, C′Age〉. s′f ail
represents the state where component C fails in the next time interval, and s′ok represents
the state where component C does not fail in the next time interval. The values of S′C and
C′Age depend on the performed action. Applying Replace(C) in state s does not change the
survival curve of C, and sets the age of C to zero at time Ti. Applying Fix(C) in state s does
not change the age of C but sets S′C to be the AfterFix curve of C. The columns Fix(C) and
Replace(C) in Table 2 provide a summary of how S′C and C′Age are set after performing a
repair action in a state s.

Table 2. The values of S′C and C′Age in the state reached after performing an action in a state
s = 〈Ti, IsFaulty, SC, CAge〉.

Action Fix(C) Replace(C) Ignore(C)

S′C SC(·, Ti) SC SC
C′Age CAge + ∆T ∆T CAge + ∆T
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Transition function. The transition function Tr(s, a, s′) for our MDP returns zero for
any state s′ /∈ {s′f ail , s′ok}. The probability of reaching s′f ail , i.e., the probability that C will
fail in the time interval [Ti, Ti+1], is computed based on S′C and C′Age as follows.

Tr(s, a, s′f ail) = Pr(C fails in [Ti, Ti+1]) = S′C(C
′
Age − ∆T)− S′C(C

′
Age) (5)

which is a standard computation in survival analysis: the probability of surviving until Ti
(when the age of C is C′Age − ∆T) minus the probability of surviving until Ti+1 (when the
age of C is C′Age). As noted above, the outcome of applying any action a to any non-terminal
state s is either s′f ail or s′ok; we have that Tr(s, a, s′ok) = 1− Tr(s, a, s′f ail).

Reward function. The reward function R(s, a) of our MDP is the negation of the cost
of the executed action and the overhead cost, i.e., −(cost(a) + cost(overhead)). We denote
by MDPFixOrReplace the MDP defined above.

5.2.2. Replace-Healthy Dilemma as an MDP

Next, we describe our approach to model the replace-healthy dilemma as a set of
MDPs. For every healthy component C, we define the following MDP designed to decide
whether it is worthwhile to replace C or not at this stage.

States and actions. A state in this MDP is defined exactly a state in MDPFixOrReplace.
The set of actions in this MDP is also the same as in MDPFixOrReplace, except for the actions
in the initial state. In this state, we allow one of the following two actions: Replace(C) and
Ignore(C). Ignore(C) means we decide not to replace C at the current time step. Note that
there is no Fix(C) option here since C is currently healthy.

Transition function. As in MDPFixOrReplace, applying an action has two possible
outcomes: either C is faulty in the next time interval or not, denoted s′f ail and s′ok, respec-
tively. The values of SC and CAge after Replace(C) or Fix(C) are exactly the same as in
MDPFixOrReplace. After performing Ignore(C), the corresponding survival curve does not
change and the age increases with time. The row for Ignore(C) in Table 2 describes these
changes in SC and CAge in a formal way. The transition function Tr(s, a, s′) is exactly the
same as in MDPFixOrReplace:

Tr(s, a, s′) =


S′C(C

′
Age − ∆T)− S′C(C

′
Age) s′ = s′f ail

1−
(

S′C(C
′
Age − ∆T)− S′C(C

′
Age)

)
s′ = s′ok

0 Otherwise

(6)

Reward function. The reward function R(s, a) of this MDP is the negation of the cost
of the executed action. For Replace(C), this cost is cost(Replace(C)). Note that we do not
add here the overhead cost, since the replace-healthy dilemma arises when already in a
troubleshooting process. Obviously, the cost of Ignore(C) is zero.

5.2.3. Solving the MDPs

Both MDPFixOrReplace and MDPReplaceHealthy are finite-horizon MDPs, where the hori-
zon size is the granularity level. Following a trajectory in either MDP corresponds to
possible future failures of components over the time steps up to Tlimit, and the selection
of repair, replace, or ignore actions accordingly. Thus, the sum of rewards collected until
reaching a terminal state is exactly the long-term maintenance cost corresponding to such
an execution. A solution to each of these MDPs is a policy π that specifies the action the
troubleshooting agent should perform in every possible state s. An optimal policy is one
that minimizes the expected long-term troubleshooting costs with respect to the underlying
component C.

One can use an off-the-shelf MDP solver to obtain a policy for each MDP, thereby
solving the dilemma for which it is created. The size of each of these MDPs is O(4n), since
in each of the n time steps we consider there are two possible actions and two possible
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outcomes for each action (fault in the next time step or not). Thus, for small values of n
one can run classic MDP algorithms such as value iteration [23], and for larger values of n
one can use more sophisticated MDP algorithms, such as real-time dynamic programming
(RTDP) [24] or upper confidence bound for trees (UTC) [25].

Algorithm 1 summarizes our MDP-based solution, which uses both types of MDP
(MDPFixOrReplace and MDPReplaceHealthy) to solve both dilemmas. It is called when a com-
ponent C fails and needs to be repaired. First, we choose whether to fix or replace C by
solving MDPFixReplace (line 1). Then, for every healthy component C′ we choose whether
to replace it or not by solving MDPReplaceHealthy (line 4). Finally, all the chosen repair
actions are applied. The overall worst-case complexity of Algorithm 1 is O(m · (4)n), since
it involves solving MDPFixReplace once and solving MDPReplaceHealthy |COMPS| − 1 times
(represented by m), i.e., one per healthy component.

Algorithm 1: MDP-based anticipatory troubleshooting.
Input: C—the faulty component that needs to be repaired
Input: n—desired level of granularity

1 RepairAction← SolveMDPFixOrReplace(C, n)
2 ToReplace← ∅
3 foreach Component C′ 6= C do
4 if SolveMDPReplaceHealthy(C′, n) = Replace then
5 Add C′ to ToReplace

6 Apply RepairAction to repair C
7 Replace every component in ToReplace

5.3. DR1 vs. MDP-Based Solution

DR1 is very simple to implement, and its runtime is O(1). By contrast, our MDP-
based anticipatory troubleshooting algorithm is more complex to implement and requires
solving |COMPS|MDPs, each of size 4n. However, DR1 is myopic, in the sense that it only
considers one future failure, whereas the MDPs can reason about multiple future failures,
depending on the level of granularity set. Thus, we expect the MDP-based algorithm to
yield lower long-term troubleshooting costs.

Both algorithms do not consider any form of interactions between components failures
and maintenance activities. This includes an assumption that components fail indepen-
dently, and ignoring the effect of a repair action of one component on the repair action
of another component. Nevertheless, both algorithms can be applied in settings where
these assumptions do not hold. However, in such settings, the algorithms cannot claim
to be optimal. One may construct a significantly larger MDP that captures all possible
interactions between components, but such an MDP would be prohibitively large.

6. Evaluation

We performed two sets of experiments: “diagnosis” experiments and “long-term”
experiments. In the diagnosis experiment, a single TP was solved using the diagnosis
methods described in Section 3.2. In the long-term experiment, we evaluated the different
anticipatory troubleshooting algorithms described in Sections 5.1 and 5.2.

6.1. Benchmark Systems

All the experiments were performed over two systems, modeled using a Bayesian
network (BN) following the standard use of BN for diagnosis [4].

The BN nodes are partitioned into three disjoint sets: control nodes—their values
depend only on the user’s actions; sensor nodes—representing the data that can be observed
from the system sensors; and health nodes—representing the potential faulty components
we want to infer and repair. A health node with a value of 0 indicates that the component
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it represents is healthy. Other health node values represent states in which the component
is in an unhealthy state.

The first system, denoted S1, represents a small part of a real world electrical power
system. The BN was generated automatically from formal design [18] and is publicly
available (reasoning.cs.ucla.edu/samiam/tutorial/system.net). It has 26 nodes, of which 6
are health nodes.

The second system, denoted S2, is the “CAR_DIAGNOSIS_2” network from the library
of benchmark BN made available by Norsys (www.norsys.com/netlib/Car_Diagnosis_
2.dnet). The system represents a network for diagnosing a car that does not start, based
on spark plugs, headlights, main fuse, etc. It contains 18 nodes. From these nodes, seven
nodes are health nodes (namely, the nodes labeled Main fuse, Alternator, Distributer, Starter
motor, Air filter, Spark plugs, and Battery age). Figure 3 shows the graphical representation
of S2.

Figure 3. BN for system S2.

Unfortunately, we did not have real data for the above systems from which to generate
survival curves. The modeling of the components survival curves will be discussed in the
next sections.

6.2. Diagnosis Experiments

In this set of experiments we evaluated the performance of the troubleshooting algo-
rithm that uses survival functions to better guide its sensing actions (Section 3.2). For this
set of experiments we used a standard exponential curve for the survival function (defined
earlier in this paper and illustrated in Figure 1) with λ = 0.09. We tried several values of λ.
All values pointed on the same trends in the results, but with λ = 0.09 we could see the
trends clearly.

We compared the performances of four TAs: (1) random, which chooses randomly
which component to sense, (2) BN-based, which chooses to sense the component most likely
to be faulty according to the BN, (3) survival-based, which chooses to sense the component

reasoning.cs.ucla.edu/samiam/tutorial/system.net
www.norsys.com/netlib/Car_Diagnosis_2.dnet
www.norsys.com/netlib/Car_Diagnosis_2.dnet
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most likely to be faulty according to its survival curve and age, and (4) hybrid, which
chooses to sense the component most likely to be faulty taking into consideration both BN
and survival curve, as proposed in Section 3.2. The performance of a TA was measured by
the troubleshooting costs incurred until the system was fixed. Since we only considered
single fault scenarios, we omitted the cost of the single repair action performed in each of
these experiments, as all algorithms had to spend this cost in order to fix the system.

We generated random TP instances with a single faulty health node as follows.

1. First, we set the values of the control nodes randomly, according to their priors.
2. Then, the age of each component was sampled uniformly in the interval

[Ageinit, Ageinit + Agediff], where Ageinit and Agediff are parameters.
3. Then, the conditional probability table of every health node was modified to take into

account the survival curve, as mentioned in Section 3.2; i.e., we replaced the prior
probability for a component to be healthy with the value corresponding to its survival
curve (SC(CAge)).

4. Next, we computed the marginal probability of each component to be faulty in this
modified BN, and chose a single component to be faulty according to these computed
probabilities.

5. Finally, we used the BN to sample values for all remaining observed nodes (the sensor
nodes). A subset of these sensor nodes’ values was revealed to the DA.

The value of the Ageinit was set to 0.3 (as for λ, with this value, we could show
the impact of the other parameters the best). We examined the effects of the following
parameters on the performances of the different TAs: (1) The Agediff parameter. (2) The
revealed sensors parameter—this is the number of sensor node values revealed to the DA.

Results of the Diagnosis Experiments

The plots in Figure 4 show the average troubleshooting costs (y-axis) for different
values Agediff (x-axis), for each of the algorithms. The left plot shows the results for the
S1 system and the right plot shows the results for S2. All results were averaged over
50 instances.

Figure 4. Diagnosis experiments’ results, for S1 (left) and S2 (right). Troubleshooting cost on Agediff.

Several trends can be observed. First, the proposed hybrid TA outperforms all base-
line TAs, thereby demonstrating the importance of considering both survival curves and
MBD. For example, in system S2 (Figure 4 right) with an Agediff = 20, hybrid saves 40%
troubleshooting costs compared to BN, and is slightly better than survival. Additionally,
for Agediff = 0.01 hybrid saves 15% compared to survival.
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Second, the performance of survival improves as Agediff grows. For example, in
system S2 (Figure 4 left) for Agediff = 0.01, the costs of survival and random are the same,
but for Agediff = 20 survival outperforms random. The reason for this is that increasing
Agediff means components’ ages differ more, and thus considering it is more valuable.
When Agediff is minimal, all components have approximately the same age, and thus using
the survival curve to distinguish between them is similar to random. BN is better in this
setting, since we provide it with some evidence—the values of some sensor nodes.

We also experimented with different numbers of revealed nodes. Figure 5 shows the
troubleshooting costs (y-axis) for different values of revealed sensors on system S1 (left)
and system S2 (right) with Agediff parameter fixed to 0.5. As expected, revealing more
nodes improves the performance of both BN and hybrid. Thus, in some settings of Agediff
and number of revealed sensors, BN is better than survival, and in others survival is better
than BN. However, for almost all values of both parameters, hybrid is equal to or better
than both. Thus, in conclusion, our results demonstrate that hybrid is more robust than
both survival and BN across all varied parameters.

Figure 5. Diagnosis experiments’ results, for S1 (left) and S2 (right). Troubleshooting cost for revealed sensors.

6.3. Long-Term Experiments

Next, we present experiments that evaluated the performances of the AT algorithms
we proposed for solving the anticipatory troubleshooting dilemmas described in Section 4.

6.3.1. Experimental Setup

Algorithm 2 describes how we realistically simulated the faults for the long-term
experiment, based on the survival curves. First, we sampled for every component a failure
time according to its survival curve. Then, a troubleshooting problem was created for the
component Ccurrent with the earliest failure time (line 5), and we invoked an AT algorithm
to choose whether C needs to be fixed or replaced (line 7). The age and survival curve of C
were then updated according to the chosen repair action. Next, we sampled new failure
time for the component that had been repaired. Then, we invoked again an AT algorithm
to choose whether there is a healthy component that should be replaced (line 12). If there
were such components, their ages and failure times were updated accordingly. This process
continued until the failure time of that component exceeded Tlimit. Then, we returned all
costs incurred throughout the experiment. Tlimit affects the depth of the MDP; therefore, in
our experiments we set Tlimit to 28, to enable the MDP algorithms to run in a reasonable
time.
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Algorithm 2: Long-term simulation algorithm.

1 TotalCosts← 0;
2 foreach Component C do
3 C f ail ← sample a failure time according to the survival curve of C

4 Tcurrent ← min
C∈COMPS

C f ail

5 Ccurrent ← arg min
C∈COMPS

C f ail

6 while Tcurrent ≤ Tlimit do
7 RepairAction← FixOrReplace(Ccurrent)
8 TotalCosts← TotalCosts + cost(overhead) + cost(RepairAction)
9 Update survival curve of Ccurrent according to RepairAction

10 C f ail ← sample a new failure time for Ccurrent

11 foreach Component C′ 6= Ccurrent do
12 if ReplaceHealthy(C′) then
13 TotalCosts← TotalCosts + cost(Replace)
14 Update survival curve of C′ accordingly
15 C′f ail ← sample a new failure time for C′

16 Tcurrent ← min
C∈COMPS

C f ail

17 Ccurrent ← arg min
C∈COMPS

C f ail

Note that we did not consider in these experiments the costs incurred due to sensing
action. This is because in the long-term experiments we focus on how the evaluated
algorithms solve the fix–replace and replace-healthy dilemmas. Thus, we measure only the
cost incurred by repair actions (cost(Fix(C)) and cost(Replace(C))) and the overhead cost
(cost(overhead)).

Evaluated Algorithms: In the experiments we compared the following algorithms to
solve the fix–replace and replace-healthy dilemmas:

• Always fix (AF), in which all faulty components are repaired using the Fix action.
• Always replace (AR), in which all faulty components are repaired using the Replace

action.
• DR1, in which DR1 (Section 5.1) is used to choose the appropriate repair action.
• N-MDPFixRep, our MDP-based solver for solving only the fix–replace dilemma. It

uses the MDPFixReplace, as described in Section 5.2.1, where N stands for the level of
granularity in the MDP.

• N-MDPRepHeal , our MDP-based solver that considers both dilemmas , as described in
Algorithm 1 in Section 5.2.3, where N stands for the levels of granularity in the MDPs.

Independent variables: We examined the effects of the following three independent
variables on the performance of the different AT algorithms:

• Punish factor. The punish factor parameter p controls the difference between the
AfterFix curve and the regular survival curve. We did this by computing the AfterFix
as follows:

SC(t, AgeC) = e−(λ·p·t)
p

(7)

This AfterFix curve holds the intuitive requirement that a replaced component is
expected to survive longer than a fixed component. The parameter p is designed to
control the difference between the original and the AfterFix curves. We refer to p as the
punish factor and set it in our experiments to values in the range of [1, 2.5]. Figure 6,
for example, shows the survival curves of a new component and a fixed component
that was fixed with a punish factor of 1.7. We set b = 2 in Equation (7) as a fixed
parameter. A greater value of b biased the results to always replace policy, since it was
not worthwhile to fix components.
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• Cost ratio. This is the ratio between cost(Replace) and cost(Fix). The range of cost
ratio values we experimented with was guided by the idea that the fix–replace ratio
would be higher than 1 because usually replacing is more expensive than fixing a
component.

• Overhead ratio. This is the ratio between cost(overhead) and cost(Replace). Recall
that this cost is incurred whenever the system fails; this variable is relevant only for
the replace-healthy dilemma.

The expected impact of each of these variables is as follows:

1. Higher punish factor means that fixing a component makes it more prone to error, so
we expect an intelligent AT algorithm to replace components more often.

2. Similarly, a lower cost ratio means replacing a component is not much more expensive
than fixing it, so we expect an intelligent AT to replace components more often.

3. Higher overhead ratio means it is more favorable to replace healthy components and
save the expensive overhead.

The results reported below corroborated these expected impacts of our independent
variables.

Figure 6. Two Weibull curves, one for a new component (upper) and one for a fixed component
(lower).

6.3.2. Results: Fix–Replace Dilemma

In the first set of experiments, we focused on the fix–replace dilemma, and thus
we compared the baselines always-repair (AR) and always-fix (AF) with DR1 and N-
MDPFixRep.

Figure 7 presents the long-term costs (y-axis) as a function of the punish factor. As
expected, using the N-MDPFixRep algorithm reduces the total troubleshooting cost. More-
over, the greater the granularity level (N), the lower the costs are, since the MDP’s depth
of the lookahead is greater and thus it is closer to find an optimal solution. Nevertheless,
increasing N beyond a certain value does not provide significant advantage in terms of
long-term troubleshooting costs. In fact, in our experiments it was never worthwhile to use
N that was greater than 4.

Figure 8 presents the long-term costs as a function of the cost ratio (the ratio between
replacing and fixing costs). When the cost ratio is small, fixing is significantly cheaper
than replacing, and thus the AF algorithm performed best. On the other hand, when the
ratio is high, there is a small difference between the cost of fixing and replacing, but a new
component is less likely to fail than a used component, and thus always-repair performs
best. In both cases the N-MDPFixRep algorithm achieves the same cost as fixing for small
ratio and as replacing for high ratio. In between, the N-MDPFixRep algorithm significantly
reduces the cost compared to the baseline algorithms and the DR1 algorithm.
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Figure 7. Long-term costs as a function of the punish factor. Evaluating the N-MDPFixRep algorithm.

Figure 8. Long-term costs as a function of the cost ratio. Evaluating the N-MDPFixRep algorithm.

6.3.3. Replace-Healthy Dilemma

In the second set of experiments we analyzed the benefit of using our MDP-based
solver to solve the replace-healthy dilemma. To that end, we compared N-MDPRepHeal to
N-MDPFixRep, both with N = 4, and to AF and AR.

Figure 9 shows the long-term troubleshooting costs (y-axis) as a function of the
overhead ratio (the ratio between cost(overhead) and cost(Replace)). The results show
clearly that using N-MDPRepHeal algorithm, which considers replacing healthy components,
reduces the long-term troubleshooting costs. Additionally, the larger the overhead ratio, the
bigger the benefit of N-MDPRepHeal . As a side note, observe that as the overhead ratio gets
higher, the AF method becomes worse in relation to the other approaches, since solving
every TP that arises becomes more expensive.
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Figure 9. Long-term costs as a function of the overhead ratio. Evaluating the N-MDPRepHeal algo-
rithm.

6.3.4. Discussion

The results above show the benefits of using our AT algorithm. However, there are
cases where using AT algorithms is not beneficial. For example, when the cost of replacing
is much more expensive than the cost of fixing, then it is clear from the results that always-
fix policy keeps the long-term costs the lowest. Similarly, when the gap between the
costs is very small, always-replace is the best policy. In between, our AT algorithms are
beneficial. Thus, to save computational resources of the MDP-based methods, it may be
worthwhile recognizing in advance the cases where always-replace or always-fix methods
are dominant.

In addition, there are cases where it is never worthwhile to replace a healthy compo-
nent. An obvious setting where this occurs is when the overhead cost is close to the cost
of replacing. Another setting when replacing a healthy component is useless is when the
component’s age has no effect on the probability that it will survive more time. That is, the
probability that a component that has survived up to time t will fail before time t + t′ is
equal to the probability that a new component will fail before time t′. This occurs when the
conditional probability of a component to survive t′ more time given that it survived up
to time t is equal to the unconditional probability that it will survive t′ more time. That
means the probability of failure is the same in every time interval, no matter the age of
the component. Such distributions are known as "memoryless" probability distributions.
An example of such a distribution is the Weibull distribution with the parameter b equal
to 1 (known as exponential distribution). We experimented with this setting, and as ex-
pected, observed that there is no difference between a regular N-MDPFixRep solver and an
N-MDPRepHeal solver.

7. Related Work

There are several lines of work that are related to this research. We discuss them
below. Probing and testing are well-studied diagnostic actions that are often part of the
troubleshooting process. Intuitively, one would like to seek for the most informative
observations and actions while doing the troubleshooting process. Probes enable one to
observe the outputs of internal components, and tests enable further information, such as
observing system output. Placing probes and performing tests can be very expensive. The
basic idea is that not all probing and test choices are equal. Using this technique requires
considerations, such as probe placement and which tests to choose. Those aspects have
been studied over the years, and are also known as sequential diagnosis [17,22,26–28].
Most works use techniques such as greedy heuristics and information gain; e.g., measuring
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the amount of information that observation Y tells us about the diagnosis state X. Some
researchers present locally optimal solutions that run in linear time [28–30]. Rodler [29]
proposes to use active learning techniques in order to achieve a nearly optimal sequence
of queries. It should be noted that there are techniques that concentrate on saving system
tests (e.g., a test that shows whether the system returned to its healthy state) and therefore
consider batch repair in a period of time [6,31] rather than fix one component in each
iteration [3].

Many papers on automated troubleshooting are based on the seminal work of Hecker-
man et al. [3] on decision theoretic troubleshooting (DTT). Our paper can be viewed as a gen-
eralization of DTT by taking prognosis into consideration. A decision theoretic approach
integrates planning and diagnosis to a real-world troubleshooting application [32,33]. In
their setting, a sequence of actions may be needed to perform repairs. For example, a
vehicle may need to be disassembled to gain access to its internal parts. To address this
problem, they use a Bayesian network for diagnosis and the AO* algorithm [34] as the
planner.

Friedrich and Nedjl [35] propose a troubleshooting algorithm aimed at minimizing the
breakdown costs, a concept that corresponds roughly to a penalty incurred for every faulty
output in the system and for every time step until the system is fixed. Hakan and Jonas [32]
consider future repair actions using expected cost of repair and heuristic functions. They
use a Bayesian network as the MBD and update the current belief state after each iteration.
McNaught and Zagorecki [36] also used two "repair" actions, but they do not use the
prognostic information to decide which repair action to perform. Additionally, they did
not use survival curves, but rather a dynamic Bayesian network which was unfolded to
take time into consideration.

The novelty of our work is three-fold. First, none of these previous works incorpo-
rated prognosis estimates into the troubleshooting algorithm (as we did in Section 3.2).
Second, none of these previous works integrated prognosis estimates into a troubleshooting
algorithm that aims at improving decision making when repairing the current fault, as
we did. Finally, none of these works considered the dilemmas we present in this paper.
Our anticipatory troubleshooting model and algorithm directly attempt to minimize costs
incurred due to current and future failures through considering which repair action to take
in each time step. Our goal is to minimize repair costs incurred through the lifetime of the
system until a time threshold T is reached.

A related line of work is in prognostics, where diagnostic information is used to
provide more accurate remaining useful life estimations [37–39]. In this research we used
survival functions to improve the expected costs of repairing future system failures. There
are many research fields where researchers use survival analysis to estimate the life time of
an item or entity. For example, in electricity it is necessary to predict remaining battery life
time [40], and in chemistry it is required to predict failure scenarios of a nuclear system [41].
Previous work showed how survival functions can be learned automatically from real
data [2,41–43], or by deep learning methods [44]. Alternatively, survival functions can be
obtained from physical models.

While prognosis has been discussed considering troubleshooting, we are not aware of
prior work that integrated survival functions, or any remaining useful life estimates, to
minimize maintenance costs over time. Intelligently considering future costs raises many
challenges that have not been addressed by prior work, such as fix faulty components
rather than repairing them or replacing healthy but fault-prone components.

8. Conclusions

In this work we have discussed the concept of anticipatory troubleshooting that
aims to save troubleshooting costs over time. We have presented two dilemmas that an
anticipatory troubleshooting agent may face: the fix–replace dilemma and the replace-
healthy components dilemma. The former deals with the question of which repair action
to use to repair a given faulty component and the latter deals with the question of which
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currently healthy components to repair now in order to save future system failures. We
solved both dilemmas by modeling them as a single MDP problem. Additionally, we
have proposed a simple heuristic rule that solves the fix–replace dilemma. Key in this
modeling is the use of survival functions to estimate the likelihood of future failures. We
demonstrated the benefit of our approach experimentally, showing that our MDP-based
solver can reduce the long-term troubleshooting costs. We have also proposed a way to
improve the diagnosis phase by integrating diagnoses and prognoses that aim to reduce
troubleshooting costs.

Our work opens up the possibility of future research in some directions. One such
direction is to relax our assumption that components fail independently. While commonly
used, this assumption does not hold in some settings. Thus, proposing an anticipatory
troubleshooting algorithm that considers the relationships between components’ failures
has the potential to be more effective. The challenge is how to relax this independence
assumption while keeping the solution tractable. Similarly, we limited our discussion to the
single-fault case, where only a single fault can occur in a time. This makes the MDP simpler
and manageable. To extend our approach to multiple-fault scenarios, we will need to
extend the MDP state space so that more than one fault can occur in a given time step. This
will make the MDP state space exponentially larger, suggesting that intelligent methods
will be needed to make it scale. Similarly, having more than two possible repair actions is
also challenging, increasing the branching factor of the MDP state space. Another important
direction for future work is to implement an anticipatory troubleshooting algorithm in a
real-life system.

Author Contributions: Conceptualization, N.H. and M.K.; methodology, N.H. and M.K.; software,
N.H.; validation, N.H. and M.K.; formal analysis, N.H. and M.K.; investigation, N.H.; resources, N.H.;
data curation, N.H. and M.K.; writing—original draft preparation, N.H. and M.K.; writing—review
and editing, N.H. and M.K.; visualization, N.H. and M.K.; supervision, M.K.; project administration,
M.K.; funding acquisition, M.K. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by ISF grant number 1716/17.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the source code used to run the experiments described in this
paper is publicly available in the Github repository https://github.com/Hasidi/Anticipatory_
Troubleshooting.

Acknowledgments: This research was funded in part by ISF grant 1716/17 to Meir Kalech.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Miller, R.G., Jr. Survival Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 66.
2. Eyal, A.; Rokach, L.; Kalech, M.; Amir, O.; Chougule, R.; Vaidyanathan, R.; Pattada, K. Survival Analysis of Automobile

Components Using Mutually Exclusive Forests. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 246–253. [CrossRef]
3. Heckerman, D.; Breese, J.S.; Rommelse, K. Decision-theoretic troubleshooting. Commun. ACM 1995, 38, 49–57. [CrossRef]
4. Choi, A.; Darwiche, A.; Zheng, L.; Mengshoel, O.J. A tutorial on Bayesian networks for system health management. In Machine

Learning and Knowledge Discovery for Engineering Systems Health Management; Chapman & Hall/CRC: Boca Raton, FL, USA; London,
UK; New York, NY, USA, 2011; Volume 10, pp. 1–29. Available online: https://www.routledge.com/Machine-Learning-and-
Knowledge-Discovery-for-Engineering-Systems-Health/Srivastava-Han/p/book/9781439841785 (accessed on 22 January 2021).

5. Hasidi, N.; Stern, R.; Kalech, M.; Reches, S. Anticipatory Troubleshooting. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence ( IJCAI’16), New York, NY, USA, 9–15 July 2016; pp. 3133–3139.

6. Stern, R.; Kalech, M.; Shinitzky, H. Implementing Troubleshooting with Batch Repair. 2016. Available online: https://ojs.aaai.
org/index.php/AAAI/article/view/10075 (accessed on 22 January 2021).

7. Feldman, A.; Provan, G.; van Gemund, A. Approximate model-based diagnosis using greedy stochastic search. JAIR 2010,
38, 371–413. [CrossRef]

https://github.com/Hasidi/Anticipatory_Troubleshooting
https://github.com/Hasidi/Anticipatory_Troubleshooting
http://doi.org/10.1109/TSMC.2013.2248357
http://dx.doi.org/10.1145/203330.203341
https://www.routledge.com/Machine-Learning-and-Knowledge-Discovery-for-Engineering-Systems-Health/Srivastava-Han/p/book/9781439841785
https://www.routledge.com/Machine-Learning-and-Knowledge-Discovery-for-Engineering-Systems-Health/Srivastava-Han/p/book/9781439841785
https://ojs.aaai.org/index.php/AAAI/article/view/10075
https://ojs.aaai.org/index.php/AAAI/article/view/10075
http://dx.doi.org/10.1613/jair.3025


Appl. Sci. 2021, 11, 995 21 of 22

8. Williams, B.C.; Ragno, R.J. Conflict-directed A* and its role in model-based embedded systems. Discrete Appl. Math. 2007,
155, 1562–1595. [CrossRef]

9. De Kleer, J.; Williams, B.C. Diagnosing multiple faults. Artif. Intell. 1987, 32, 97–130. [CrossRef]
10. Metodi, A.; Stern, R.; Kalech, M.; Codish, M. Compiling Model-Based Diagnosis to Boolean Satisfaction. 2012. Available online:

https://ojs.aaai.org/index.php/AAAI/article/view/8222 (accessed on 22 January 2021).
11. Metodi, A.; Stern, R.; Kalech, M.; Codish, M. A novel SAT-based approach to model based diagnosis. J. Artif. Intell. Res. 2014, 51,

377–411. [CrossRef]
12. Diedrich, A.; Maier, A.; Niggemann, O. Model-Based Diagnosis of Hybrid Systems Using Satisfiability Modulo Theory. In Pro-

ceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, HI, USA, 27 January–1 February 2019; pp. 1452–1459. [CrossRef]

13. Li, P.; Niggemann, O. Non-convex hull based anomaly detection in CPPS. Eng. Appl. Artif. Intell. 2020, 87, 103301. [CrossRef]
14. Mengshoel, O.J.; Darwiche, A.; Uckun, S. Sensor Validation using Bayesian Networks. In Proceedings of the 9th International Sym-

posium on Artificial Intelligence, Robotics, and Automation in Space (iSAIRAS-08), Los Angeles, CA, USA, 25–29 February 2008.
15. Stern, R.; Kalech, M.; Rogov, S.; Feldman, A. How many diagnoses do we need? Artif. Intell. 2017, 248, 26–45. [CrossRef]
16. González-Sanchez, A.; Abreu, R.; Groß, H.; van Gemund, A.J.C. Spectrum-Based Sequential Diagnosis. 2011. Available online:

https://ojs.aaai.org/index.php/AAAI/article/view/7844 (accessed on 22 January 2021).
17. Zamir, T.; Stern, R.; Kalech, M. Using Model-Based Diagnosis to Improve Software Testing. 2014. Available online: https:

//ojs.aaai.org/index.php/AAAI/article/view/8873 (accessed on 22 January 2021).
18. Mengshoel, O.; Chavira, M.; Cascio, K.; Poll, S.; Darwiche, A.; Uckun, S. Probabilistic Model-Based Diagnosis: An Electrical

Power System Case Study. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2010, 40, 874–885. [CrossRef]
19. Abreu, R.; Zoeteweij, P.; Golsteijn, R.; Van Gemund, A.J. A practical evaluation of spectrum-based fault localization. J. Syst. Softw.

2009, 82, 1780–1792. [CrossRef]
20. Perez, A.; Abreu, R. Leveraging Qualitative Reasoning to Improve SFL. In Proceedings of the Twenty-Seventh International Joint

Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018; pp. 1935–1941. [CrossRef]
21. Elmishali, A.; Stern, R.; Kalech, M. Data-Augmented Software Diagnosis. IAAI/AAAI. 2016. Available online: https://dl.acm.

org/doi/10.5555/3016387.3016470 (accessed on 22 January 2021).
22. Elmishali, A.; Stern, R.; Kalech, M. An artificial intelligence paradigm for troubleshooting software bugs. Eng. Appl. Artif. Intell.

2018, 69, 147–156. [CrossRef]
23. Bellman, R. A Markovian decision process. J. Math. Mech. 1957, 6, 679–684.
24. Barto, A.G.; Bradtke, S.J.; Singh, S.P. Learning to act using real-time dynamic programming. Artif. Intell. 1995, 72, 81–138.

[CrossRef]
25. Kocsis, L.; Szepesvári, C. Bandit based monte-carlo planning. In European Conference On Machine Learning; Springer: Berlin,

Germany, 2006; pp. 282–293.
26. Brodie, M.; Rich, I.; Ma, S. Intelligence Probing: A Cost-Effective Approach to Fault Diagnosis Computer Networks. IBM Syst. J.

2002, 41, 372–385. [CrossRef]
27. de Kleer, J.; Raiman, O. Trading off the Costs of Inference vs. Probing in Diagnosis. In Proceedings of the International Joint

Conference on Artificial Intelligence IJCAI, Montreal, QC, Canada, 20–25 August 1995; pp. 1736–1741.
28. Feldman, A.; Provan, G.; van Gemund, A. A model-based active testing approach to sequential diagnosis. J. Artif. Intell. Res.

(JAIR) 2010, 39, 301–334. [CrossRef]
29. Rodler, P.; Jannach, D.; Schekotihin, K.; Fleiss, P. Are query-based ontology debuggers really helping knowledge engineers?

Knowl. Based Syst. 2019, 179, 92–107. [CrossRef]
30. Rodler, P. Towards Optimizing Reiter’s HS-Tree for Sequential Diagnosis. arXiv 2019, arXiv:1907.12130
31. Shinitzky, H.; Stern, R. Batch repair actions for automated troubleshooting. Artif. Intell. 2020, 283, 103260. [CrossRef]
32. Warnquist, H.; Kvarnström, J.; Doherty, P. Planning as heuristic search for incremental fault diagnosis and repair. In Proceedings

of the Scheduling and Planning Applications Workshop (SPARK) at ICAPS, Thessaloniki, Greece, 19–23 September 2009.
33. Pernestål, A.; Nyberg, M.; Warnquist, H. Modeling and Inference for Troubleshooting with Interventions Applied to a Heavy

Truck Auxiliary Braking System. Eng. Appl. Artif. Intell. 2012, 25, 705–719. [CrossRef]
34. Nilsson, N.J. Principles of Artificial Intelligence; Springer: Berlin, Germany, 1982.
35. Friedrich, G.; Nejdl, W. Choosing Observations and Actions in Model-Based Diagnosis/Repair Systems. KR 1992, 92, 489–498.
36. McNaught, K.R.; Zagorecki, A. Using dynamic Bayesian networks for prognostic modelling to inform maintenance decision

making. In Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management (IEEM),
Hong Kong, China, 8–11 December 2009; pp. 1155–1159.

37. Ferreiro, S.; Arnaiz, A.; Sierra, B.; Irigoien, I. Application of Bayesian networks in prognostics for a new Integrated Vehicle Health
Management concept. Expert Syst. Appl. 2012, 39, 6402–6418. [CrossRef]

38. Tobon-Mejia, D.; Medjaher, K.; Zerhouni, N. CNC machine tool’s wear diagnostic and prognostic by using dynamic Bayesian
networks. Mech. Syst. Signal Process. 2012, 28, 167–182. [CrossRef]

http://dx.doi.org/10.1016/j.dam.2005.10.022
http://dx.doi.org/10.1016/0004-3702(87)90063-4
https://ojs.aaai.org/index.php/AAAI/article/view/8222
http://dx.doi.org/10.1613/jair.4503
http://dx.doi.org/10.1609/aaai.v33i01.33011452
http://dx.doi.org/10.1016/j.engappai.2019.103301
http://dx.doi.org/10.1016/j.artint.2017.03.002
https://ojs.aaai.org/index.php/AAAI/article/view/7844
https://ojs.aaai.org/index.php/AAAI/article/view/8873
https://ojs.aaai.org/index.php/AAAI/article/view/8873
http://dx.doi.org/10.1109/TSMCA.2010.2052037
http://dx.doi.org/10.1016/j.jss.2009.06.035
http://dx.doi.org/10.24963/ijcai.2018/267
https://dl.acm.org/doi/10.5555/3016387.3016470
https://dl.acm.org/doi/10.5555/3016387.3016470
http://dx.doi.org/10.1016/j.engappai.2017.12.011
http://dx.doi.org/10.1016/0004-3702(94)00011-O
http://dx.doi.org/10.1147/sj.413.0372
http://dx.doi.org/10.1613/jair.3031
http://dx.doi.org/10.1016/j.knosys.2019.05.006
http://dx.doi.org/10.1016/j.artint.2020.103260
http://dx.doi.org/10.1016/j.engappai.2011.02.018
http://dx.doi.org/10.1016/j.eswa.2011.12.027
http://dx.doi.org/10.1016/j.ymssp.2011.10.018


Appl. Sci. 2021, 11, 995 22 of 22

39. Daigle, M.; Roychoudhury, I.; Bregon, A. Integrated Diagnostics and Prognostics for the Electrical Power System of a Planetary
Rover. In Proceedings of the Annual Conference of the Prognostics and Health Management Society 2014, Fort Worth, TX, USA,
27 September–3 October 2014.

40. Saha, B.; Goebel, K.; Christophersen, J. Comparison of prognostic algorithms for estimating remaining useful life of batteries.
Trans. Inst. Meas. Control 2009, 31, 293–308. [CrossRef]

41. Zio, E.; Di Maio, F. A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear
system. Reliab. Eng. Syst. Saf. 2010, 95, 49–57. [CrossRef]

42. Heimes, F.O. Recurrent neural networks for remaining useful life estimation. In Proceedings of the International Conference on
Prognostics and Health Management (PHM), Denver, CO, USA, 6–9 October 2008; pp. 1–6.

43. Wang, P.; Li, Y.; Reddy, C.K. Machine learning for survival analysis: A survey. ACM Comput. Surv. (CSUR) 2019, 51, 1–36.
[CrossRef]

44. Rietschel, C. Automated Feature Selection for Survival Analysis with Deep Learning. Ph.D. Thesis, University of Oxford, Oxford,
UK, 2018.

http://dx.doi.org/10.1177/0142331208092030
http://dx.doi.org/10.1016/j.ress.2009.08.001
http://dx.doi.org/10.1145/3214306

	Introduction
	Traditional Troubleshooting
	Troubleshooting with Survival Analysis
	Survival Functions
	Integrating Survival Functions to Improve Diagnosis

	Anticipatory Troubleshooting
	The Fix or Replace Dilemma
	The Replace Healthy Dilemma

	Solving the Dilemmas
	Solving the Dilemmas with Heuristic Rules
	Anticipatory Troubleshooting Dilemmas as a Markov Decision Process
	Fix–Replace Dilemma as an MDP
	Replace-Healthy Dilemma as an MDP
	Solving the MDPs

	DR1 vs. MDP-Based Solution

	Evaluation
	Benchmark Systems
	Diagnosis Experiments
	Long-Term Experiments
	Experimental Setup
	Results: Fix–Replace Dilemma
	Replace-Healthy Dilemma
	Discussion


	Related Work
	Conclusions
	References

