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Featured Application: The proposed method has a potential application value in assisting the
normal driving of unmanned delivery vehicles and unmanned cleaning vehicles in urban street
scenes. It can aid unmanned vehicles to detect and segment surrounding objects and plan safe
driving routes to avoid obstacles according to the results of instance segmentation.

Abstract: Recently, multi-level feature networks have been extensively used in instance segmentation.
However, because not all features are beneficial to instance segmentation tasks, the performance
of networks cannot be adequately improved by synthesizing multi-level convolutional features
indiscriminately. In order to solve the problem, an attention-based feature pyramid module (AFPM)
is proposed, which integrates the attention mechanism on the basis of a multi-level feature pyra-
mid network to efficiently and pertinently extract the high-level semantic features and low-level
spatial structure features; for instance, segmentation. Firstly, we adopt a convolutional block at-
tention module (CBAM) into feature extraction, and sequentially generate attention maps which
focus on instance-related features along the channel and spatial dimensions. Secondly, we build
inter-dimensional dependencies through a convolutional triplet attention module (CTAM) in lateral
attention connections, which is used to propagate a helpful semantic feature map and filter redun-
dant informative features irrelevant to instance objects. Finally, we construct branches for feature
enhancement to strengthen detailed information to boost the entire feature hierarchy of the network.
The experimental results on the Cityscapes dataset manifest that the proposed module outperforms
other excellent methods under different evaluation metrics and effectively upgrades the performance
of the instance segmentation method.

Keywords: AFPM; multi-level features; inter-dimensional interaction; attention mechanism;
instance segmentation

1. Introduction

Object instance segmentation [1] is one of the most challenging tasks in computer
vision, which needs to locate the object position in the image, classify it, and segment
the pixels accurately [2]. The instance segmentation technology can be applied in many
fields. For example, in industrial robotics, instance segmentation algorithms can detect
and segment parts in different backgrounds, improve the efficiency of automatic assembly
and reduce labor cost. Moreover, it can be used for tumor image segmentation, to carry
diagnosis and for other aspects to assist the treatment of diseases in terms of intelligent
medicine. Especially in autonomous driving, instance segmentation technology can be
applied to the perception system of automatic driving vehicles to detect and segment
pedestrians, cars and objects in the driving environment, and it can provide data support for
the decision-making of automatic driving vehicles. Furthermore, the instance segmentation
methods can accomplish the segmentation of obstacles in the image captured by the
vehicle camera so as to facilitate the subsequent estimation of its trajectory and ensure safe
driving [3].
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At present, the instance segmentation methods based on a convolutional neural
network (CNN) are mainly divided into two categories, namely, one-stage instance segmen-
tation methods and two-stage instance segmentation methods [4]. The two-stage instance
segmentation methods contain two ideas: detection followed by segmentation [5–8] and
embedding cluster [9–11]. Two-stage instance segmentation methods which are based on
the principle of detecting then segmentation first exploit object detection algorithms to find
the bounding box of the instance, and then perform semantic segmentation algorithms in
the detection box and output the segmentation results as different instances. Two-stage
instance segmentation methods with the foundation principle of embedding cluster per-
form semantic segmentation at a pixel level in images, and then different instances are
distinguished by clustering and metric learning. The average precision of the instance seg-
mentation methods on account of two steps is not satisfactory when segmenting crowded,
occluded as well as irregular objects, and the speed of generating low resolution mask is
not ideal.

There are also two categories of one-stage instance segmentation methods according
to different solutions. One is inspired by the one-stage anchor-based object detection
algorithms, forgoing the sequential execution steps of two-stage instance segmentation
methods and making the network learn to locate the instance mask through a related
parallel design [12]. The other is aroused by one-stage anchor-free object detection methods
which get rid of the limitation of anchor location and scale in structure, and rely on a
dense prediction network to achieve precision object detection and segmentation [13]. One-
stage instance segmentation methods have more advantages in inference time and need
to be further improved in accuracy. Generally, two-stage instance segmentation methods
can achieve slightly higher accuracy compared with the one-stage instance segmentation
methods, but the inference speed of mask generation is slower.

It is difficult for single-layer feature maps, whether high-level or low-level, to cope
well with the scale change of instance objects and the imbalance of category data. Therefore,
multi-level feature networks are more and more widely used in instance segmentation
algorithms to meet the challenge [14]. By fusing the detailed location information of low-
level features and rich semantic information of high-level features [15], multi-level feature
networks can enhance the representation capacity of features and provide more abundant
and beneficial information for detection and segmentation. However, due to the different
contributions of different feature maps or even different regions in the same feature map
to the object, the features obtained by the multi-level feature networks are sweeping and
multifarious, which cannot meet the requirements of the task accurately. Consequently, it
is necessary to screen the information extracted from the multi-level network, and improve
the performance of the instance segmentation method by biasing the allocation of usable
computational resources to the most informative components [16].

An attention mechanism has been successfully applied to many computer vision
tasks, such as object recognition and pose estimation, because it can assist the network to
choose efficient features pertinently and enhance the learning ability of the network [17].
Furthermore, the rapid development of the attention mechanism also shows that the
attention module makes the model pay more attention to the region of the image related to
the object, filters out the feature map that interferes with the task, and helps the subsequent
neural network precisely select effective features through learning [18,19]. Consequently,
the combination of the attention mechanism and the multi-level network can be conducive
to the instance segmentation method to extract efficacious features related to the object.

In this paper, the distinctive structure of an attention-based feature pyramid mod-
ule (AFPM) is proposed for instance segmentation. The AFPM combining the attention
mechanism and branches used to enhance location information based on feature pyra-
mid networks (FPN) [15] is composed of feature extraction, lateral attention connections
and feature enhancement. Specifically, we apply a convolutional block attention module
(CBAM) [20] in bottom-up feature extraction architecture to increase the attention of a
multi-level network to instance-related features. Then, a convolutional triple attention
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module (CTAM) [21] is included in lateral connections to filter the redundant information
in network by capturing the interaction of cross-dimension between the spatial and channel
dimension. Finally, we exploit the branches of strengthening spatial information to improve
entire feature hierarchy; for instance, segmentation without additional parameters. The ex-
perimental results show that the proposed module can significantly boost the performance
of instance segmentation on the Cityscapes dataset.

2. Related Work

There are a number of approaches; for instance, segmentation. Mask R-CNN (Region-
CNN) [6] increased a branch on the basis of Faster R-CNN [22], which can detect and
segment the instance objects efficiently. Succeeding Mask R-CNN, Li et al. [7] proposed an
end-to-end instance segmentation method based on the fully convolutional network by
introducing position-sensitive internal and external score maps. To solve the problem of
instance segmentation, sequential grouping networks (SGN) [23] gradually constructed
object instance mask through a series of sub-grouping networks, and can tackled the
problem of object occlusion faced by instance segmentation. To enhance information flow
in proposal-based framework, Liu et al. extended Mask R-CNN by adding a bottom-up
path augmentation and presents adaptive feature pooling to avoid arbitrary allocation of
proposal [14]. In order to deal with the instance-aware features and semantic segmentation
labels simultaneously, single-shot instance segmentation with affinity pyramid networks
(SSAP) [24] was proposed, which was a proposal-free instance segmentation method and
calculated the probability that two pixels pertained to the same object in a hierarchical
way according to a pixel-pair affinity pyramid. However, the real-time problem of in-
stance segmentation was not completely solved. Bolya et al. [12] decomposed the instance
segmentation problem into two parallel subtasks to improve real-time performance, and
combined the prototype masks with the mask coefficients produced by the two subtasks
linearly to generate the final result. After that, Wang et al. allocated categories to per-pixel
within an instance based on the location and size of the instance, and transforms instance
segmentation into a solvable single classification problem [25]. Besides, Xie et al. [26]
presented two valid methods to cope with high-quality center samples and optimize the
dense distance regression, respectively, which can obviously enhance the performance of
instance segmentation and simplify the inference process. In addition, SOLOv2 [27] also
followed the idea of segmenting objects by location (SOLO) [25] to learn the mask head of
the instance segmenter dynamically to develop masks with higher accuracy.

Multi-level feature networks are widely used in instance segmentation tasks to im-
prove the performance of algorithms [28]. The low-level features in instance segmentation
networks obtain high resolution and abundant detail information but lack semantic infor-
mation. Moreover, the high-level features contain abundant semantic information, but the
resolution is low and the perception of details is weak. Therefore, the appropriate fusion of
low-level features and high-level features can improve the network performance. Fully
convolutional networks (FCN) [29] merged semantic features from deep and coarse layer
with appearance features from shallow and fine layer through skip-connections to segment
accurately and in detail. Correspondingly, Inside-outside net (ION) [30] adopted skip
pooling to connect the feature maps of different convolutional layers to realize multi-level
feature fusion. Subsequently, Ronneberger et al. [31] combined high-level features with
low-level features by a contraction path for capturing context and a symmetric extension
path for precise positioning. Inspired by the human visual pathway, Top-down modu-
lation (TDM) networks [32] utilized a top-down modulation network to supplement the
standard bottom-up feedforward network, which is accomplished by lateral connections.
Similarly, FPN [15] exploited the inherent multi-scale and pyramid hierarchy of convo-
lutional networks to build feature pyramids, and proposes a top-down structure with
lateral connections to construct high-level semantic feature maps. Besides, single shot
multibox detector (SSD) [33] integrated the predictions of multiple feature maps from
different resolutions to deal with objects of various sizes naturally.
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Many researchers have successfully integrated an attention mechanism into a convo-
lutional neural network. Wang et al. [17] proposed a residual attention network embedded
with bottom-up and top-down feedforward structures, and the deep residual attention
network can be well trained by their proposed attention residual learning method. How-
ever, the residual attention network was quite computationally complex in comparison
to other recent attention methods. Squeeze-and-Excitation Networks (SENet) [16] were
devised by Hu et al., which can effectively increase the depth of the network and solve the
over-fitting problem after increasing the number of layers in the deep network. It explicitly
modelled the interdependence between channels, and designed Squeeze-and-Extraction
module to improve the quality of neural network representation. Compared with SENet,
Convolution Block Attention Module (CBAM) [20] proposed by Woo et al. generated the
attention maps of input feature map from channel-wise and spatial-wise, which made the
network focus more on the region of interest to boost the performance of the network.
After definitely analyzing the advantages and disadvantages of SENet, Cao et al. pro-
posed Global-Context Networks (GC-Net) [34], which can effectively model the global
context and keep the network lightweight. More recently, Misra et al. [21] introduced a
convolutional triplet attention module (CTAM) which aimed to catch cross-dimension inter-
action. It established inter-dimensional correlation through rotation operation and residual
transformations, which can improve the representation of network while maintaining low
computational cost.

3. Materials and Methods

In this section, we present the architecture of the proposed module and successively
introduce feature extraction, lateral attention connections and feature enhancement in
detail. Moreover, we also show the implementation details in the experiment.

3.1. The Framework

As shown in Figure 1, the workflow of the attention-based feature pyramid module
(AFPM) consists of three parts: feature extraction, lateral attention connections and feature
enhancement. In the bottom-up feature extraction structure, ResNet-50 [35] network is
utilized to forward propagation, and the output of the last residual block in each stage
is denoted as {C1, C2, C3, C4, C5}, and {C2, C3, C4, C5} is considered to participate in the
subsequent calculation. In order to improve the expression of the region of interest, convo-
lutional block attention module (CBAM) is added to the end of the first stage and the last
stage. The output of the last residual block in each stage is denoted as

{
C′1, C2, C3, C4, C′5

}
after adding convolutional block attention module. In the lateral attention connections,
convolutional triplet attention module is included to focus on the cross-dimension depen-
dencies and capture the abundant discriminating feature representation by catching the
interaction between spatial dimension and channel dimension. The feature map after 3 × 3
convolution operation is defined as {P2, P3, P4, P5}. The top-down feature enhancement
structure of feature pyramid network only enhances the strong semantic information of the
high-level layer but lacks the reinforcement of the low-level features [14]. Based on this, we
add branches to strengthen the location information in the network to achieve the purpose
of increasing the whole feature hierarchy by propagating low-level features for instance
segmentation.
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Figure 1. The architecture of the attention-based feature pyramid module (AFPM).

3.2. Feature Extraction

The features extracted by multi-level feature pyramid network are not all beneficial to
the instance segmentation tasks, because some of the extracted features contain redundant
and disturbing information. Therefore, in order to avoid the interference of redundant
features and improve the effectiveness of instance segmentation network parameters, a
convolutional block attention module (CBAM) is introduced into the feature extraction
network. The CBAM as an important attention mechanism can focus on effective features
and suppress unnecessary features by paying attention to what is meaningful and where is
useful information in the input image. The size of the feature map generated by the first
stage of ResNet-50 network before max pooling is reduced by 2 times compared with the
input image. And {C2, C3, C4, C5} have strides of {4, 8, 16, 32} pixels relative to the input
image. In ResNet-50 network, the feature map generated by the first stage before max
pooling has the smallest size reduction with respect to the input image and contains the
most abundant detail information such as contours, edges and textures in the five stages.
Besides, the feature map generated by the last stage possesses the largest size reduction
in relation to the input image and includes the richest abstract semantic information after
many convolution and pooling operations in all stages. Therefore, the CBAM is included
in front of the max pooling of the first stage and behind the last residual block of the last
stage in ResNet-50 network to generate attention maps which focuses on instance related
features in the low-level detail information and high-level semantic information. The
detailed architecture is shown in Figure 2.
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Figure 2. The architecture of feature extraction. We exploit ResNet-50 with convolutional block attention module (CBAM)
to extract instance related features.

The convolutional block attention module (CBAM) is composed of a channel attention
module and spatial attention module, which can capture the essential features along the
channel dimension and spatial dimension. The architecture of CBAM is shown in Figure 3.
In the channel attention module, spatial information of input features is obtained through
the global average pooling (GAP) and global max pooling (GMP) operations, and two
spatial context descriptors Fc

avg and Fc
max are generated. Then, Fc

avg and Fc
max generate

channel attention map Mc through a shared network of multi-layer perceptron (MLP) with
a hidden layer.
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When input tensor is F ∈ RC×H×W (RChannel×Height×Width), the calculation formula of
channel attention in CBAM is as follows:

Mc(F) = σ(W1R(W0g(F)) + W1R(W0δ(F))) = σ(W1R(W0Fc
avg) + W1R(W0Fc

max)), (1)

where Mc(F) ∈ RC×1×1; W1 ∈ RC×C/r; W0 ∈ RC/r×C; r represents the reduction ratio
in the bottleneck of the MLP and the value of r is set to 16; σ(·) represents the sigmoid
activation function; R(·) represents the rectified linear unit; g(·) is the global average
pooling (GAP) function; δ(·) is the global max pooling (GMP) function.
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In the spatial attention module, the pooling operations including average pooling
and max pooling are performed along the channel axis, and two two-dimensional feature
maps F′savg and F′smax are generated. Then, they are concatenated and convoluted through
the standard convolution layer to generate the spatial attention map Ms. The calculation
formula of spatial attention in CBAM is as follows:

Ms(F′) = σ( f7×7([g(F′); σ(F′)])) = σ( f7×7(F′savg; F′smax)), (2)

where f7×7 denotes a convolution operation in which the convolution kernel is 7 × 7;
Ms ∈ R1×H×W ; F′savg ∈ R1×H×W ; F′smax ∈ R1×H×W .

The overall process of calculating attention map can be summarized as:{
F′ = Mc(F)� F

Fout = Ms(F′)� F′
, (3)

where � represents element-wise multiplication.

3.3. Lateral Attention Connections

Promotion in instance segmentation performance requires constructing high-level
semantic feature maps at all levels to improve bottom-up and top-down pathways. The
lateral connections act on the bottom-up feature extraction structure and provide feature
maps with abundant information for the top-down feature enhancement structure, which
play a significant connecting role in building high-level semantic mapping. To propagate
effective and instance-related feature maps between feature extraction structure and fea-
ture enhancement structure, convolutional triplet attention module (CTAM) is added to
the lateral connections to obtain useful semantic feature information by capture cross-
dimension interaction. The architecture of CTAM is shown in Figure 4. CTAM consists
of three branches, two of which focus on the dependencies between the spatial axis and
channel axis, and the other branch is used to establish spatial attention. More specifically,
the first branch captures the dependencies between the channel dimension and the height
dimension of input tensor, the second branch captures the dependencies between the
channel dimension and width dimension of input tensor, and the final branch captures the
dependencies between the height dimension and width dimension of input tensor. The
attention map with the same shape as the input tensor is obtained by averaging the outputs
of the three branches of CTAM.
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When input tensor is Fin ∈ RC×H×W , the calculation formula of CTAM is as follows:

Fout =
1
3
(F̂1σ(ψ1(F̂∗1 )) + F̂2σ(ψ2(F̂∗2 )) + Finσ(ψ3(F̂3))) =

1
3
(F1

out + F2
out + F3

out), (4)

where Fout ∈ RC×H×W ; F1
out ∈ RC×H×W ; F2

out ∈ RC×H×W ; F3
out ∈ RC×H×W ; ψ(·) is the

standard two-dimensional convolutional operation; F1
out represents a clockwise rotation of

90 degrees by F1
out along the height axis; F2

out represents a clockwise rotation of 90 degrees by
F2

out along the width axis; F̂1 is obtained by rotating input tensor 90 degrees anti-clockwise
along the height axis; F̂2 is obtained by rotating input tensor 90 degrees anti-clockwise
along the width axis; F̂∗1 represents the result of Z-pool operation of F̂1; F̂∗2 represents the
result of Z-pool operation of F̂2; F̂3 represents the result of Z-pool operation of Fin.

The Z-pool operation is applied to decreasing the zeroth dimension to two through
concatenating the features generated by average pooling and max pooling across that
dimension. For example, the Z-Pool operation of an input tensor of shape (C × H ×W)
leads to a tensor of shape (2 × H ×W). It can be formulated by the following equation:

Z−pool(x) = [σ0d(x), g0d(x)], (5)

where 0d is the 0th-dimension across which the max pooling and average pooling opera-
tions take place.

3.4. Feature Enhancement

The bottom-up feature mapping contains plentiful detail information, but has a low-
level semantic. Zeiler et al. [36] indicate that high-layer neurons energetically respond to
whole objects but other neurons are more possible to be stimulated by regional texture and
patterns. The insightful point demonstrates the indispensability of augmenting a top-down
pathway to propagate strongly semantical features in FPN [15]. Therefore, in order to boost
the feature hierarchy of the whole pyramid, the top-down feature enhancement pathway
is extended. Specifically, the top-down pathway produces higher resolution features by
up-sampling the spatially coarser but semantically stronger feature map from a higher
pyramid level. The features generated by each lateral connection are integrated into the
top-down architecture for up-sampling and fusion at the next level. At last, feature maps
are generated, which combines the low-level detail information and the high-level semantic
information.

In addition, we further improve the localization capability of the overall feature
hierarchy by adding two branches to propagate powerful responses of low-level patterns.
Compared with the input image, the resolution of the feature map generated by the C2 level
is decreased by a quadruple amount, which includes rich detailed feature information but
also contains certain interfering noise information. In order to reduce the introduction of
disturbing information when enhancing the network localization capability, we chose the
feature maps generated by C3 and C4 which performed a more effective feature extraction
to add to the subsequent network. More explicitly, the feature maps generated by C3 level
with 512 channels and C4 level with 1024 channels are enhanced in the lateral attention
connections. A 3 × 3 convolution is acted on each merged map from top-down structure
and generate the feature map of P3 as well as P4 with 256 channels. The feature maps
generated by C3 and C4 levels after being acted by CTAM are integrated with P3 and P4
respectively to boost the overall feature hierarchy of the pyramid network.

3.5. Implementation Details

We took SOLOv2 [27] and FPN [15] as a base-network and applied the proposed
module to it. The detailed software and hardware environment are shown in Table 1.
Besides, at the beginning of training, the weight decay for SGD optimizer is set to 0.0001,
and learning rate updated by step policy is set to 0.0025. The proposed architecture is
trained with 145 epochs (203 k iterations) on 2048 × 1024 original training images, and
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reduces the learning rate to 0.00025 at 6 epochs. The pre-trained models used in the
experiments are publicly available, and the corresponding pre-trained models originate
from ImageNet. We applied two images in one image batch for training and used one
NVidia Titan V GPU.

Table 1. Hardware and software environment of experiments.

Items Contents

Processor Intel i9-10940x
Graphics card NVIDIA Titan V
CPU memory 128 GB

Graphics memory 24 GB
Deep learning framework Pytorch [37]

Deep learning toolbox MMDetection [38]

4. Results and Discussion

In this section, we perform a set of experiments based on the Cityscapes dataset [39]
in the same environment to explore the validity of the proposed module.

4.1. Dataset and Evaluation Metrics

The Cityscapes dataset records the urban street scenes data of 50 European cities in
several seasons such as spring, summer and autumn. It is composed of 5000 finely anno-
tated images with both semantic and instance information and 20,000 coarsely annotated
images with only semantic information that are all at a resolution of 2048 × 1024 pixels.
There are 19 object classes in the Cityscapes dataset, including 11 “stuff” classes and 8
instance-specific “thing” classes. Moreover, 5000 finely annotated images are divided
into 2975 for the training set, 500 for the validation set and 1500 for the test set. The task
of instance segmentation is to complete the detection and segmentation of 8 instance-
specific classes. We have counted the respective object number of 8 instance classes in the
Cityscapes dataset, as shown in Table 2.

Table 2. The number of each instance class in the Cityscapes dataset.

Car Rider Bicycle Person Bus Train Motorcycle Truck

Size (k) 26.9 1.8 3.7 19.9 0.4 0.2 0.7 0.5

In addition, as shown in Table 3, we make statistics on the scale of 8 instance classes
according to the size of each class. In Table 3, the scale of each instance object is obtained by
multiplying the width and height of the object and then taking the square. The mean, range
and standard deviation are found by statistical analysis of scale values. The drastic change
of object size and scale as well as the dynamic scene of object occlusion and aggregation
increase its complexity, which makes it a challenging dataset for instance segmentation
methods.

Table 3. The scale statistics results of each instance class in the Cityscapes dataset.

Mean (pixel) Range (pixel) Standard Deviation (pixel)

car 101.4 1.7–850.7 104.5
rider 76.6 6.5–474.6 64.2

bicycle 73.8 3.9–538.1 61.5
person 63.1 2.0–669.8 61.5

bus 160.2 6.9–816.6 146.6
train 255.0 14.5–1045.8 230.3

motorcycle 93.0 4.5–462.0 76.6
truck 143.9 9.8–908.3 145.5
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Besides, we employ average precision (AP) as the evaluation metric to assess the
performance of the instance segmentation method. Explicitly, we follow the Cityscapes
dataset instance segmentation evaluation criteria and adopt 10 overlaps in the range of 0.5
to 0.95 in steps of 0.05 to avoid bias for some specific values. As minor metric, we add AP50
for an overlap value of 50% as well as frames per second (FPS) to assess the performance
of the network.

4.2. Instance Segmentation Results

In this subsection, we show the result of instance segmentation on the Cityscapes
validation set. In the SOLOv2 network, the total loss function consists of category loss
and mask loss. As shown in Figure 5, with the increase of network iterations, the loss
function of each method gradually tended to be dynamically stable, and finally the instance
segmentation models were obtained.
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As shown in Table 4, the instance segmentation method containing AFPM achieves
the best performance. More specifically, AP gets 2.7% improvement and 9.5% improvement
rate over baseline as well as AP50 gets 2.4% improvement and 4.6% improvement rate
over baseline, which demonstrates that the proposed module can efficaciously assist the
performance of instance segmentation. Although the proposed architecture makes the
parameter increase slightly, which is 0.53 million, the average precision of the instance
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segmentation algorithm improves obviously. We proved the effectiveness of each step
by ablation experiments. Explicitly, we initially adopted SOLOv2 [28] with FPN [15] as
backbone to conduct baseline experiments. The AP value and AP50 value of base-network
was 28.3% and 51.7%, respectively. When we added convolutional triplet attention module
(CTAM) to baseline, we got 28.7% AP value and 52.0% AP50 value. Then we added
convolutional block attention module (CBAM) on the basic network and got 30.2% AP value
as well as 52.5% AP50 value, which made the overall average precision was significantly
promoted. Subsequently, we employed CTAM to the model which involved CBAM and the
AP50 value increased effectively from 52.5% to 53.3% with negligible parameters. On this
basis, we included branches that incorporate low-level features to construct the proposed
framework and achieved 31.0% AP value as well as 54.1% AP50 value.

Table 4. Results of instance segmentation on the Cityscapes validation set.

Method AP (%) AP50 (%) Parameters(M)

Baseline 28.3 51.7 32.79
Baseline + CTAM 28.7 52.0 32.79
Baseline + CBAM 30.2 52.5 33.32

Baseline + CBAM + CTAM 30.7 53.3 33.32
Baseline + AFPM 31.0 54.1 33.32

In Table 5, we report in detail the average precision of different methods on 8 instance
class. By adding CBAM to the feature extraction structure, the redundant features extracted
by the multi-level network are well filtered and the effectiveness of network parameters is
improved, which makes the performance of instance segmentation method significantly
boosted on all instance categories, especially in person class and rider class. Through com-
bining lateral connections with CTAM, the high-level semantic features between bottom-up
and top-down pathways are efficiently propagated. Among them, bus class and train class
are enhanced by 0.9% and 0.7%, respectively. In the method in which AFPM is applied,
the bus class with AP of 52.5% and car class with AP of 50.9% perform well. Furthermore,
compared with the base-network, bicycle class and person class obtain higher improvement
rate, which are 23.1% and 14.5%, respectively.

Table 5. Comparison of AP (%) for each instance class on the Cityscapes validation set.

Method Person Rider Car Truck Bus Train Motorcycle Bicycle

Baseline 25.5 21.5 48.4 26.3 48.1 24.4 16.0 16.0
Baseline + CTAM 25.7 22.0 49.0 26.7 49.1 24.8 16.4 16.0
Baseline + CBAM 28.9 24.6 49.3 26.4 51.2 25.2 16.5 19.5

Baseline + CBAM +
CTAM 28.9 24.8 49.8 26.9 52.3 26.5 17.0 19.6

Baseline + AFPM 29.2 24.8 50.9 27.0 52.5 26.9 17.3 19.7

Moreover, as shown in Figure 6, we qualitatively display the segmentation results of
ablation experiments. In Figure 6b, the basic network has the problems of missing and false
detection in instance segmentation. For example, the network mistakenly segmented the
car in the right edge of the first image when multiple objects overlap and failed to correctly
identify the bicycle in the second image as well as the car in the right middle of the third
image. As shown in Figure 6c, when CBAM and CTAM are integrated to the baseline,
the problems mentioned above are powerfully improved and more object contours are
detected and segmented. For instance, the distant bicycle in the first image and the car in
the third image are accurately identified, and the outline of the truck in the second image
is roughly segmented compared with the base-network. In Figure 6d, AFPM can assist the
instance segmentation algorithm to detect different sizes and categories of objects more
precisely, which aids the network to exactly segment two people on the left edge of the first
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image, distant objects in the second image and the white truck similar to the background
in the third image.
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As shown in Figure 7, we also qualitatively compare the instance segmentation results
of ground-truth and the proposed module. The proposed method which combined atten-
tion modules and a multi-level feature network can not only recognize the object correctly,
but also detect and segment the instance object, which is contained in the input image but
not labeled in the ground-truth. More intuitively, it can be seen from the first two rows of
images in Figure 7 that the instance object in the input image can be accurately segmented
by exploiting the proposed module. Furthermore, as shown in the last two rows of images
in Figure 7, our method can also predict more correct objects that are not annotated in the
ground-truth.
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4.3. Comparison with Other Methods

Table 6 shows the evaluation results of the proposed approach and five high perform-
ing instance segmentation methods including Mask R-CNN on the Cityscapes test set in
terms of AP and AP50 criteria. The proposed methodology outperforms other frameworks
and gets the best results in terms of AP and AP50, which proves the efficiency of the method
in Table 6. More specifically, by applying AFPM, the AP of the instance segmentation
algorithm is improved by 2.1% and AP50 is improved by 2.7% compared with that of the
base-network. Therefore, AFPM effectively enhances the network performance. Besides,
the accuracy of the proposed method not only exceeds the accuracy of the method trained
on the fine set, but is also better than the accuracy of the method trained on both the fine
set and coarse set.

Table 6. Comparison of instance segmentation results on the Cityscapes test set.

Method Training Data AP (%) AP50 (%)

DIN [11] fine + coarse 23.4 45.2
SGN [24] fine + coarse 25.0 44.9

PolygonRNN++ [40] fine 25.5 45.5
Mask R-CNN [6] fine 26.2 49.9

GMIS [41] fine + coarse 27.6 44.6
Baseline fine 25.7 47.9

Baseline + AFPM fine 27.8 50.6

In Table 7, we present in detail the average precision of each category of object for
different algorithms on the Cityscapes test set. The AP of the instance segmentation method
based on AFPM is higher than that of the basic network in all instance classes. Besides, due
to the fact that the proposed module can extract the refined features of instances in different
scales and sizes, the average precision of the instance segmentation method using AFPM
surpass that of other methods in multiple categories. We perform well on the rider (23.8%
vs. 23.7%), car (50.2% vs. 46.9%), bus (38.5% vs. 32.2%), train (24.7% vs. 18.6%) and bicycle
(16.5% vs. 16.0%) than Mask R-CNN [6]. Moreover, compared with GMIS [41] which trains
on both the fine and coarse sets, our method achieves well in person, car, bus and bicycle
class. Especially on the bicycle class, the average precision exceeds them by 4.6%.

Table 7. Comparison of average precision (AP) (%) for each instance class on the Cityscapes test set.

Method Person Rider Car Truck Bus Train Motorcycle Bicycle

DIN [11] 20.9 18.4 31.7 22.8 31.1 31.0 19.6 11.7
SGN [24] 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4

PolygonRNN++ [40] 29.4 21.8 48.3 21.1 32.3 23.7 13.6 13.6
Mask R-CNN [6] 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0

GMIS [41] 29.3 24.1 42.7 25.4 37.2 32.9 17.6 11.9
Baseline 28.4 22.7 48.6 19.6 34.6 20.0 16.0 16.0

Baseline + AFPM 29.3 23.8 50.2 21.8 38.5 24.7 17.4 16.5

In addition, as shown in Table 8, we quantitatively display the results of FPS and AP
of different instance segmentation methods when the input pixel is 2048 × 1024. Because
CBAM increases the number of parameters in the instance segmentation network and
CTAM has three branches, the total inference time is lightly expanded. In a word, we add
attention mechanism and branches in turn to improve the average precision of the network
from 25.7% to 27.8%, and at the same time slightly decrease the inference speed of the
network, that is, from 7.3 to 5.5. Compared with other algorithms in Table 8, although our
algorithm does not get the maximal inference speed, we achieve a relative balance between
inference time and average precision.
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Table 8. Comparison of frames per second (FPS) and AP on the Cityscapes test set [42].

Method AP (%) AP50 (%) FPS (s−1)

Box2Pix [42] 13.1 27.2 10.9
BAIS [43] 17.4 36.7 <1

Discriminate Loss [44] 17.5 35.9 5
DWT [9] 19.4 35.3 <3
DIN [11] 20.0 38.3 <3
SGN [24] 25.0 44.9 0.6

Mask-RCNN [6] 26.2 49.9 2.2
Baseline 25.7 47.9 7.3

Baseline + CTAM 26.0 48.3 6.5
Baseline + CBAM 27.2 49.0 6.4

Baseline + CBAM + CTAM 27.5 49.8 5.5
Baseline + AFPM 27.8 50.6 5.5

5. Conclusions

In this work, we propose a unique AFPM for the task of instance segmentation, which
utilizes the attention mechanism as well as multi-level feature pyramid network and
consists of feature extraction, lateral attention connections and feature enhancement. By
introducing a convolutional block attention module and a convolutional triplet attention
module into the instance segmentation method, the features of objects can be extracted effi-
ciently and discriminatively. Moreover, the branches used to enhance location information
are added to the feature enhancement structure to strengthen the entire feature hierar-
chy with negligible computational overhead. The experimental results on the Cityscapes
dataset demonstrate that the average precision of the instance segmentation method using
AFPM is significantly improved compared with base-network and exceeds the performance
of other excellent instance segmentation approaches including Mask R-CNN. In the future,
we will explore more challenging datasets covering COCO dataset and extend our model
to other computer vision tasks, such as semantic segmentation and object detection.
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