
applied  
sciences

Article

Applying Knowledge Inference on Event-Conjunction for
Automatic Control in Smart Building

Hangli Ge 1,* , Xiaohui Peng 2 and Noboru Koshizuka 1

����������
�������

Citation: Ge, H.; Peng, X.;

Koshizuka, N. Applying Knowledge

Inference on Event-Conjunction for

Automatic Control in Smart Building.

Appl. Sci. 2021, 11, 935. https://

doi.org/10.3390/app11030935

Academic Editor: Jordi Solé-Casals

Received: 23 December 2020

Accepted: 14 January 2021

Published: 20 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Interfaculty Initiative in Information Studies, The University of Tokyo, Tokyo 1130033, Japan;
noboru@koshizuka-lab.org

2 Chinese Academy of Sciences, Institute of Computing Technology, Beijing 100190, China;
pengxiaohui@ict.ac.cn

* Correspondence: hangli@g.ecc.u-tokyo.ac.jp; Tel.: +81-03-38155411

Abstract: Smart building, one of IoT-based emerging applications is where energy-efficiency,
human comfort, automation, security could be managed even better. However, at the current stage,
a unified and practical framework for knowledge inference inside the smart building is still lacking.
In this paper, we present a practical proposal of knowledge extraction on event-conjunction for
automatic control in smart buildings. The proposal consists of a unified API design, ontology model,
inference engine for knowledge extraction. Two types of models: finite state machine(FSMs) and
bayesian network (BN) have been used for capturing the state transition and sensor data fusion.
In particular, to solve the problem that the size of time interval observations between two correlated
events was too small to be approximated for estimation, we utilized the Markov Chain Monte Carlo
(MCMC) sampling method to optimize the sampling on time intervals. The proposal has been put
into use in a real smart building environment. 78-days data collection of the light states and elevator
states has been conducted for evaluation. Several events have been inferred in the evaluation, such as
room occupancy, elevator moving, as well as the event conjunction of both. The inference on the users’
waiting time of elevator-using revealed the potentials and effectiveness of the automatic control on
the elevator.

Keywords: smart building; Internet of Things (IoT); Markov Chain Monte Carlo (MCMC); ontology;
graph model

1. Introduction

Internet of Things (IoT) technologies [1] have enabled a variety of sensors and de-
vices inside building, such as light, HVAC (heating, ventilating, and air conditioning),
alarm system, surveillance camera, power meters, occupancy sensor, etc. being real-
time monitored or controlled. Furthermore, artificial intelligence (AI) provides oppor-
tunities for innovative application development, for instance, supervisory automation,
occupancy comfort optimization, energy efficiency improvement, indoor health manage-
ment, security management, thus empower the building to be smart.

The most appealing benefit of smart building technologies is this revolution in build-
ing management systems (BMSs) [2], where the data collected from various sensors is
processed and analyzed for enabling energy optimization, automation, and so on. In terms
of revenues, researchers estimated that connected devices into the global BIoT market
generated revenues of more than $1.2 billion in 2018. While building automation market
will grow at a compound annual growth rate (CAGR) of 44 percent to reach 19.4 million
in 2022. This trend will grow at a CAGR of 21 percent to almost $2.7 billion in 2022.

However, studies show that dynamic automation solutions are still insufficient [2].
Deploying automation in smart buildings requires a large amount of manual effort and
building specific domain expertise. Yet, this vision is far from realization. It is still a
challenge for modeling the context including users, sensors, actuators (so-called smart
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device), spaces, etc, in an effective way for knowledge computation. Various sensory data
collected from sensors need to be analyzed by algorithms, transformed into information,
and minted to extract knowledge so that machines can have a better understanding of
humans [3]. So far, most existing studies mainly focus on human activity recognition in a
small-size space with limited numbers of devices or sensors. These machine learning-based
approaches usually treat the building as a black-box. They ignore the building’s physical
structure, do not capture the global relations among the deployed sensors, spaces, as well
as the observation of both the sensor value and the timestamp in a holistic view.

We consider in most applications of smart building, there must be tight relationships
among the users, sensors, and the physical structure of the space. Especially, regarding
human motion trace, there are strong spatial dependencies among the sensor observations.
Therefore, a holistic and conditional probabilistic approach that considers human activity
contexts and human-machine interactions (e.g., elevator motion, door-open, light-on, etc.)
could be suggested. As shown in Figure 1, while a user entered a building and was heading
to his/her sit, he/she activates multiple sensors/devices along the path.

Though, camera-based image processing approaches could achieve relatively high
accuracy for human trajectory tracking. Contrary to the outdoor environment or other
open/public spaces (roads, streets, etc.), privacy preservation is generally required while
indoors (e.g., offices, meeting rooms, residential spaces, etc.). Therefore, non-invasive
sensing technologies (sensor data of devices/appliances, etc.) are more appropriate than
the use of cameras. In this study, we focus on such non-invasive sensor nodes.

Figure 1. Scenario of user walking outside to inside the smart building with the sensors
being triggered.

However, while deploying machine learning (ML) approaches for detection, a large
scale of label data was required if pursuing high level of accuracy. Especially,
regarding human motion trace related event, the label data could be collected is small or
sometimes incomplete. For an example, the room occupancy event happens several times
per day, or rarely happens if the functionalities of the room are restricted or the space is
not publicly open. That means it is quite difficult and time-costly to collect such room
occupancy label data at a large scale. Moreover, it is still an ad-hoc process of defining
which sensor node should be used and how to combine them for ML computation. Finally,
it hinders the development of machine learning methods to extract knowledge of event
in an automatic manner, for realizing such as room occupancy detection, human motion
tracking, and so on.

In this paper, we present our proposal: a practical proposal of knowledge inference on
event in IoT-enabled smart building environment. The proposal leverages the Building
Topology Ontology (BOT) for constructing spatial graphs among sensors and spaces for
further enabling conditional reasoning. In particular, considering the collected data is small,
we utilized the Markov Chain Monte Carlo (MCMC) sampling method to approximate the
time interval values of two correlated events. The proposal has been put into use in a real
smart building environment. Several inference scenarios have been conducted. Moreover,
the inference on users’ waiting time revealed the effectiveness of automatic control on
elevator for pursuing zero-waiting time. Hence, the primary contributions and novelties of
this work can be summarized as follows:
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• Unified API development of IoT sensor network for event inference based on sensor-
data collaboration in the smart building;

• Ontology-based graph model for constructing the spatial relations among sensors and
space for further enabling automatic event extraction based on conditional reasoning;

• Inference engine, in which two types of models: FSMs (finite state machine) and
BN (Bayesian Networks) have been proposed for event-mapping. Further, Markov
Chain Monte Carlo (MCMC) model has been utilized for enhancing the accuracy of
sampling the small-size dataset of time-interval values.

• Usage scenario of automatic control on elevator control has been conducted for
evaluation. The numerical results demonstrate the potential and effectiveness of
automatic control application based on knowledge inference in the smart building.

2. Related Work
2.1. Machine Learning Approaches

Most existing solutions that use machine learning (ML) for smart building applications
focused on the occupant, including occupancy detection [2,4], activity recognition [5],
and estimating users’ preferences and identification [2]. Khan et al. [4] dealt with occupancy
of premise range from binary occupancy (occupied or out of occupied), categorical and
exact numbers by integrating several types of sensors, including PIR, acoustic noise,
humidity, and light, and so on. Hossain et al. [6] proposed using an active learning
approach for activity recognition in residential buildings. The proposal was motivated
by the variety of human activities thus based on K-means algorithm. It requires the
provision of vast amounts of labeled data for ensuring the supervised learning approaches
be effective, which is not always possible. Most of these existing ML-based works focused
on solving the detection problem which has been taken in a limited space. The physical
sensor deployment has been ignored.

To reduce the complexity of knowledge transfer across different domains,
Chiang et al. [7] focused on exploring the differences caused by the ambient sensors
and the target domain, proposed a framework that knowledge transfer that uses standard
SVM (support vector machine) and RBF (radial basis function). However, in their proposal,
only single-resident scenario was considered. Similarly, Hong et al. [8] proposed automatic
inference on the type of sensors in a building. They focused on the classification of sensor
types without manual labeling. However, these related works focused on the inference
of sensor types, parameters and so on. They did not capture sensor observations for
event detection.

2.2. Modeling Tool of Spatial Graph

In regard to the modeling tools of sensor deployment, standard practical solutions
are still lacking. Building Information Modeling (BIM) is a framework to support the
planning and construction of buildings. Industry Foundation Classes (IFC) standard [9],
which is a well-known representation of BIM, considers the elements inside a building
as objects that are defined by a 3D geometry and normalized semantics. The Green
BuildingbXML (gbXML) [10] emerged to allow sharing information between BIM and
energetic analysis software. However, the main intentions of these tools are the modeling
of the physical structure and used materials, which is static. Their main focus is on the
physical environment setup. That means they are often used for structural analysis or
2D/3D modeling by using CAD tools. The functional aspects of knowledge extraction of
building systems are not covered by these approaches.

Many research projects are actually elaborating semantic models for facilitating build-
ing management, such as rule-based methods for supervision [11], definition or classifi-
cation of metadata schema for facilitating building management [8,12,13]. An ontology
is a vocabulary based method for defining the concepts and relationships used to de-
scribe an area of concern based on RDF (Resource Description Framework) [14]. A few of
specific ontologies have been proposed for the domain of smart homes and
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buildings [11,15–19]. Most of these ontologies focus on realizing specific applications
like energy management [18–20], or automated design and operation [11,16–19].

The SOSA (sensor, observation, sample, and actuator) ontology [21] and semantic
sensor network (SSN) ontology are W3C recommendations, providing an approach to
describe hardware, observation of physical entities and actuation, etc. The BOnSAI [15]
ontology was proposed for describing the functionality of sensors, actuators, and appli-
ances. However, it does not provide sufficient information on spatial relationships among
the sensors and other building assets. The Building Topology Ontology (BOT) [17] defines
the relationships between the sub-components of a building. It also follows general W3C
principles and was suggested as an extensible baseline for reuse.

To summarize these ontology-based studies, whether merely for modeling the re-
source description or knowledge extraction, ontology that constructs the physical relations
in the smart building is considered as suitable to present graph concepts. Moreover,
aiming for removing ambiguity, and pursuing application portability, unifying the sensor
data format is one of the most important considerations. In addition, the W3C endorsed
ontologies demonstrate high potentials of upper-layer application development. Thus,
rather than proposing a new ontology, our approach preferred to reuse the existing ontolo-
gies, and extend them by adding other necessary specific information.

3. Problem Definition

Before knowledge inference in the smart building being ubiquitous, there are still
several technical challenges to confront:

• Integration and interoperability of heterogeneous data set
The most fundamental problem is the compatibility of heterogeneous sensors/devices,
providing different networking features, protocols, and interfaces from different ven-
dors. The transition and integration between the heterogeneous sensors are costly
and make smart building implementation slow down. High level of manual effort
is currently required to integrate the sensor or device nodes, which are often decen-
tralized in both the cyber and physical dimensions, varying with their parameters.
Such processes are both time-consuming and error-prone [12]. That leads to, while de-
ploying inference framework for smart building, the developers need to map various
data from heterogeneous sensors without a common format or unit.

• Lack of semantic approach
Relevant description logics (DL) is required to deal with environmental data within
smart buildings, such as the type, instance as well as the relevance, relation among
the entities for knowledge extraction. However, the complicated indoor environment
with various features including general, spatial, temporal, spatio-temporal leads to
a standard description logics (DL) for the IoT sensor network in the smart building
being lacked. Ontology could be used for constructing the relational graph among
sensors and spaces, etc. However, the ontology needs to capture the dependencies
accurately, while not being excessively complex to make inference hard.

• The small and incomplete data features
Although environmental data could be collected over time, the human-motion related
sensor data is somehow sparsely triggered in both the spatio and temporal dimen-
sions. Most of the sensor data would be got rid of being labels for machine learning.
Thus, it is difficult to collect the label data at a large scale in the real phenomenon.
That means while developing knowledge inference on event conjunction by tak-
ing into account continuous changes inside the whole environment, the problem of
handling small and incomplete data should not be ignored.

4. Proposal and Experiment

We introduce our proposal as below: a practical knowledge extraction platform in
IoT-enabled smart building environment. The proposal fuses various IoT-enbled devices or
sensors inside the building for knowledge extraction on events. It consists of three major
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components: (1) unified IoT API for sensor data collaboration; (2) knowledge base in which
ontology for constructing the physical relational graph was utilized; (3) inference engine.
Figure 2 describes the overview of our proposal.

Figure 2. Overview of our proposal for knowledge extraction.

4.1. Unified API Design

In order to solve the above-mentioned problems, the development of a unified API
for interoperability among IoT devices becomes a fundamental aspect. Unifying the
device API would ease and accelerate the new service development in the smart building,
which brings innovation and productivity. However, unifying of device API is considered
challenging, because the heterogeneous devices with different functionalities have different
specifications and configurations. A unified API has to cover all IoT devices and simplify
the properties of such devices.

Based on the exploration of device properties, we designed a unified API for receiving
the monitored state information in real-time. The details of API is interpreted by the
following Figure 3. The following set of properties has been contained: (1) ‘ucode’ [22]
that used as the identifier of the sensor node; (2) ‘name’ that assigned with the description
of the node; (3) ‘data’, that composed by the sub-properties of ‘instance’ and ‘time’, with
‘instance’ showing the sensed value and ‘time’ indicating the timestamp.

Figure 3. The unified API design.

The ‘ucode’ [22] is a 128-bit fixed-length identifier. It could be used as a unique
identification for associating the objects in different databases. While accessing the API
for retrieving data, the ‘ucode’ is required to be given whereas the time duration is not
necessary. The system would capture the monitored sensing data during the time window
for a response if the parameters of ‘from’ and ‘to’ were assigned. Meanwhile, if the
timestamp was omitted, only the latest data value would be responded.

Table 1 lists several examples of sensor data that could be retrieved from the unified
API. The timestamp value is automatically detected by the system, such as the example
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of ‘2020-10-07 09:46:54’. In addition, as sensor features consists of both numerical values
and logic state (on/off) causing computation complexity, the state data are converted to
numerical data with logical meanings, where 1 represents on/active/open, etc; 0 represents
off/inactive/close, etc.

Table 1. Data value examples of the unified API.

Sensor/device The meaning of binary state value (1/0)
Human detector human-detected; otherwise
Light on; off
Fan on; off
Air conditioner on; off
Elevator_potion 3F, 2F, 1F, B1F, B2F

4.2. Knowledge Database

Spatial and functional relationships inside buildings could be considered as being
graphical. In this research, our goal is not to develop a new ontology for modeling
the building structure, but to show how IoT collaboration platforms in smart buildings
leveraging semantic technologies could implement some global knowledge inference
functions for automatic control.

Therefore, to comply with and take full advantage of existing standard works in
this field, the Building Topology Ontology (BOT) was imported. The BOT is an OWL-
DL ontology [23] for defining both the physical and semantic relationships of the sub-
components inside a building. It was used to describe the semantic schema such as the
physical relationships, functionality parameters inside the building, of whom the data set
was static.

As shown in Figure 4a, high-level concepts of node hierarchies have been defined
by BOT. It was composed of: classes (e.g., Building, Space, etc.) for representing a spatial
entity; properties (e.g., has_storey, has_space, interface_of, etc.) for representing the
relations between entities; rules (e.g., wall could be modeled as an interface of two rooms;
door within a wall could be modeled as a tuple of <wall, has_element, door>). According
to the BOT ontology, the corresponding triplets (representing the entities and relationships)
of our building have been created. We referred the classes of BOT, i.g, site, building, zone,
space, element, etc. The details have been described as follows.

• Site: An area contains one or more buildings, that further could be used in the field of
city area computing.

• Building: Building node assembles all the sub-nodes within the building. Thus the
whole context inside the building could be referenced through the building node.

• Storey: A level/floor part of the building.
• Zone: Elevator and stairwells are modeled as a Zone, used as links of multiple storeys

through the BOT:intersectsZone relation.
• Space: A part of a storey, whose 3D spatial extent is bounded actually or theoretically.

In general, it represents a common space, e.g., a room, an elevator hall, toilet, corridor,
and so on. The space node assembles all the elements (i.g., sensor, actuator, device)
located within it.

• Element: Sensor, actuator, device were defined as element nodes deployed in space.
For each element, an identifier of ‘ucode’ has been assigned for associating the dy-
namic sensor observations through the unified API.
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Figure 4. (a) Classes and relationships involved in the Building Topology Ontology; (b) The hierarchy
of entities and relationships in BOT.

As shown in Figure 4b, aiming to interconnecting heterogeneous devices for further
efficient reasoning and heuristics, the model was hierarchically structured along with the
building architecture. We consider the graph-based hierarchical structure of the model
fits the building structure for the reasoning strategy because the indoor users’ motion
trace follows the features and layouts of the building. The model that is on representing
hierarchy in the building and it fits bottom-up data collection and decomposition. Also,
the model follows ordinary building designs that make it practicable for almost all the
common buildings.

RDF Data Store and Sparql Query Language

We separated the static ontology and dynamic sensing data into RDF store and rela-
tional database store. Spatial relationships were constructed by a BOT graph. Meanwhile,
sensor nodes (which were described as Element in the BOT) are continuously submit-
ting data in real-time that causes the data store to be large and get updated frequently.
We chose a relational database to store the sensor data. Those two data stores were asso-
ciated with the unique identification of ‘ucode’. Combining the ontology and relational
database enables to process of spatial-temporal data efficiently.

The choice of ontology informed the RDF data model [24], and SPARQL query lan-
guage [25] being selected for representing and querying graphs, respectively. The RDF
triple is a 3-tuple of <subject, predicate, object> that states a subject has a relationship
predicate (directed edge) to an entity object. SPARQL [25] defines a set of patterns that
constrains the set of RDF terms returned from the graph. Figure 5a shows a part of the
triple examples of our ontology data store. We chose Apache Jena for storing the ontology
data by RDF data structure. Apache Jena [26] is an open-source framework for managing
and querying RDF data. It contains a web frontend (Fuseki) and a SPARQL backend (TDB)
that supports all SPARQL 1.1 features. It also provides an API to extract data from and
write to RDF graphs by sparql protocol and RDF query language (SPARQL).
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Figure 5. (a) The triple value examples of our data store, using the turtle format of RDF metadata;
(b) SPARQL query example of our proposal.

All entities and relationships exist in a namespace, identified by a URI. For exam-
ple, the namespace of our proposal is ‘https://URIoftheresearchbuilding/daiwa_BOT#’.
As the query example shown in Figure 5b, a graph of ‘all the sensor nodes within the spaces
(e.g., room, hall, corridor, etc.) that belong to the floors connected by the elevator’ could
be extracted.

4.3. Inference Engine

The inference engine combines the ontology and sensor observations to keep detection
of events inside the building. Sensor or device nodes change their states according to user
activities as well as their motion trajectories. The events that could be inferred by sensor
observations have been classified into two types: deterministic and probabilistic. Therefore,
a hybrid graphical model was chosen to implement the inference engine. Two different
methods including probabilistic and deterministic were used. Those are Bayesian Network
(BN) and Finite State Machine (FSM), shown in Figures 6 and 7, respectively.

Figure 6. The FSM model for presenting the state transition of elevator.

Figure 7. An intuitive example shows the Bayesian network.

Finite state machine (FSM). Finite state machines are suitable to describe the state
logic of observations on deterministic sensor values. As described above, the elevator
has been modeled as Zone entity in our ontology model. It works for transporting users
in the vertical dimension of the building. In general, elevator moves with a constant

https://URI of the research building/daiwa_BOT#
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moving speed (Tmoving) and several deterministic states. Therefore, finite state machines
are suitable to describe the state logic of observations on elevator’s moving. As shown in
Figure 6, a graph model of FSMs was used to implement the state transition of the elevator.
The details of parameters description were listed in Table 2.

Table 2. Parameters of the FSM model.

No. Symbol Description

1 ∆t the time duration after the last sensed time
2 Tmoving the constant time of moving between two floors
3 Tthreshold the time threshold value to distinguish the states of “Boarding” and “Waiting”

In essence, the elevator changes its states according to passengers’ activities and
requests. Thus, the simultaneous state-mapping on users and elevator has been clarified
as shown in Figure 8. According to the predefined state transition of both the elevator
and users, the following event patterns could be elaborated: (1) while the elevator was
moving for picking-up, the user remains to wait at the departure floor; (2) while the elevator
was transporting, the user was riding on the cabin for heading to the destination floor;
(3) while the elevator was boarding for picking-off, that means the user had arrived at the
destination floor.

Figure 8. The state transitions of both the elevator and user.

Byesian network (BN). On the other hand, a few of events with high-level semantics
were inferred based on the conjunction of multiple correlated events. Graphical depen-
dencies among these event and sensor data observations in both the spatial and temporal
dimensions could be observed. A probabilistic graphical model has been proposed based
on the conditional inference on two correlated events. For example, there are bidirectional
effects on both the use of elevator and room-occupancy event (namely that when the user
leaves the room, he/she would call the elevator to move to another floor; when the elevator
comes to the floor for picking-off users, an event that user enters the room might happen).

In this proposal, Bayesian network (BN) was utilized for modeling the probabilistic
graph on these conditional events inside the building. As the probabilistic state transitions
shown in Figure 7, let Pe|(si, S) denotes the probability of estimated event based on the
sensor observation of si on the overall observations of S. The sensor observation si was
denoted as the tuple values <vi, ti> and could be directly extracted from the unified
API. For every sensor node in the BOT graph we defined the true state on the probability
distribution. The sensor observations S = {s1, s2..sn}was used for computing the probability
distributions with the measurement of mean, median, minimum and maximum, etc.

Algorithm 1 shows the overall algorithm that was applied for inferring the continuous
events based on the sensor observations. For every sensor node in the original dependency
graph, we add an event based on the observed state and timestamp in the event graph.
For every ∆t value on edge i, j of two estimated events, if the conditional probability of ∆t
is greater than the threshold value, the event conjunction was estimated and event Ei→m
was set to be true and be added on the event graph.
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Algorithm 1: Generic Knowledge Extraction Algorithm
Input: KG with the data triple of (ei, si) where ei is an element in the sensor

knowledge graph; si denotes the sensor observation consisting of vi and ti,
which could be queried from the unified API

Output: {E} is noted as the set of (Ei, ti), means the inferred event Ei at the time
of ti based on P(Ei |si ,Si)

1 For each sensor observation si on the space entity ei:
2 Compute P(Ei |si ,Si)

3 while P(Ei |si ,Si)
> π̌ do

4 Add (Ek, ti) to {E}
5 while exits the linked neighbor em of which P(Em |sm ,Sm) > π̂ do
6 Add (Em, tj) to {E}
7 ∆t = tj − ti
8 Compute P(Em|Ei, ∆t)
9 end

10 end

Markov Chain Monte Carlo (MCMC) Sampling Process

One of the main challenges in this inference engine is the probabilistic modeling on
∆t. The graph needs to capture the probability based on the statistical analysis of time
intervals. As shown in Equation (1), the Bayesian paradigm (so-called Bayes theorem)
was deployed to express the relation between three terms: a prior knowledge, a likelihood
(the knowledge coming from the observation), and a “posterior” (the updated knowledge).
Meanwhile, it can be noticed that one of the main difficulties faced when dealing with a
Bayesian inference problem comes from while the size of posterior samples is not enough
to converge.

In this proposal, we utilized the MCMC sampling method to overcome the mentioned
above issue. MCMC algorithms are aimed at generating samples from a given probability
distribution. It is useful for obtaining a sequence of random samples from a probability
distribution in which direct sampling is difficult, or the sample data is small or incomplete.
Thus, instead of trying to deal with intractable computations involving the posterior, we
can get samples from using the existing samples and some definite prior value to compute
various punctual statistics to approximate the distribution by kernel density estimation.

posterior︷ ︸︸ ︷
p(µ | Data) =

likelihood︷ ︸︸ ︷
p(Data | µ) ·

prior︷︸︸︷
p(µ)

p(Data)︸ ︷︷ ︸
marginal likelihood

(1)

The Metropolis–Hastings algorithm, one of the most common methods of MCMC
based sampling process, was utilized for drawing samples from probability distribution
P(∆t), provided that we know a function f (∆t) is proportional to the density of P(∆t) and
the values of f (∆t) can be calculated. The requirement that f (∆t) must only be proportional
to the density, rather than exactly equal to it, makes the Metropolis-Hastings algorithm
particularly useful while the size of event-related sensor observations is relatively small.

Local distance-based adjustment In this sampling process, as shown in Equation (2),
the prior distribution of ∆t was adjusted according to the shortest distance Dist(ei, ej)
between two space entities (ei, ej) extracted from the BOT graph, where the prior prob-
ability P(µ) is the probability of the hypothesis µ before the Data D, was modeled as a
Gaussian distribution.

µ ∼ N( fDist(ei ,ej
), σ) (2)
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where the value of fDist(ei ,ej)
showing the shortest distance is linearly-correlated with the

count of hops between two triggered sensor nodes in the graph, as denoted in Equation (3).

fDist(ei ,ej)
= ax + b (3)

Based on the shortest distance values extracted from the BOT graph and the ∆t values
collected in the evaluation, the values of a, b in the linear regression could be calculated
by the Equations (4) and (5). Figure 9 shows the result of linear regression optimization of
Dist(ei, ej) with several distance examples have been illustrated as well.

C =
n

∑
1
(y− ŷ)2, where

∂C
∂a

= 0,
∂C
∂b

= 0 (4)

a =
∑n

1 xy− 1
n ∑n

1 x ∑n
1 y

∑n
1 x2 − 1

n
(∑n

1 x)2
, b =

1
n

n

∑
1
(y− ax) (5)

Collected data of ∆t1, . . . , ∆tn, was used for computing the prior probability.
With given the measured quantities ∆t1, . . . , ∆tn, the probability function has been modeled
as normally distributed, shown in Equation (6).

∆ti ∼ N(µ, σ), where f (∆ti|µ, σ) =
1√

2πσ2
e−

(∆ti−µ)2

2σ2 (6)

In order to derive the approximated value µ of ∆t1, . . . , ∆tn, PyMC3 [27] was uti-
lized for performing Bayesian statistical sample processing focused on MCMC. PyMC3
is an open-source probabilistic programming framework written in Python. It is based
on Theano.

Figure 9. (a) Result of linear regression of the shortest-distance in the graph and the µ value of ∆t,
where the value of a, b are estimated to be 14.46, 26.7, respectively; (b) Several shortest distance
examples between rooms and elevator in our building.

5. Experiment and Evaluation

The experiments have been conducted in a real smart building named “Daiwa ubiq-
uitous computing research building” in the University of Tokyo. Figure 10 shows the
IoT-enabled environment of our smart building. The building has 5 floors including B2F,
B1F, 1F, 2F, 3F, and 43 space entities (i.e., room, hall, or corridor, etc.) and 1 elevator. At the
meantime, 846 spatial relation triples have been restored in the BOT graph.
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Figure 10. The IoT-enabled smart building environment.

In this experiment, we used the data collection of 114 lights and 1 elevator for knowl-
edge inference on the events of room occupancy and elevator motion. Figure 11 shows
the visualization of the light status in several rooms of the building, spanning 78-days
(from 13 September 2020 to 30 November 2020). The sizes of the sensor observations have
been listed in Table 3. It is worth to note that during the covid-19 pandemic, the collected
occupancy-related or event-conjunction-related sensor observations were much less than
normal periods.

Table 3. Sizes of the collected data.

Item Raw Validate
Data Data

Light state 1,260,139 2669
Elevator state 14,377 14,377

Figure 11. The real examples of the monitored light states in several rooms.

5.1. Trace on Event Conjunction

Based on the MCMC sampling process, the value of ∆t between two corresponding
events has been approximated. Figure 12 shows the results of approximated time inter-
vals between the event of elevator-arriving and light-up of several representative spaces.
Table 4 listed the detail results as well. Further, based on the approximated ∆t, such as the
event conjunction of ‘light_turn_off -> elevator_arriving’ could be inferred. As a result,
the count of inferred room occupancy (Er), event conjunction (Er->Eel) and their conditional
probabilities have been summarized (see the details listed in Table 5). Here, the room of
which a total number of events over 80 have been picked on the list.
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Figure 12. Examples of approximated µ values of ∆t, where (a-1,b-1,c-1) show the mean value result
on the observed raw data, while (a-2,b-2,c-2) show the approximated ∆t after MCMC posterior
sampling process.

Table 4. MCMC sampling results ∆t of several representative spaces.

Short_Dist µ Based on µ̄ of Observed MCMC Sampling Process

(Hops) by LR Optimization Sensor Data µ̆ hdi_3% hdi_97%

Room_A305 2 55.62 60.76 60.68 54.852 66.673
Room_A304 3 70.08 118.38 116.933 110.495 123.556
Room_A202 5 99.00 136.09 134.465 126.945 142.471
Room_B202 5 84.54 109.72 109.144 103.462 115.141
Room_B204 3 70.08 58.78 55.62 54.366 63.421

Table 5. Inferred results on event-conjunction of several representative spaces.

Er Er->Eel Per->eel
(Count) (Count) Conditional Probability

Sum 1331 471 0.35

Room_A305 110 38 0.345
Room_A304 129 32 0.248
Room_A202 122 22 0.180
Room_B202 90 39 0.433
Room_B204 89 72 0.809

5.2. Assumption for Automatic Control on Elevator for Zero-Waiting Time

In order to evaluate the usability of the proposed framework, an automatic control
scenario on elevator has been assumed. In general, when the user wanted to use the
elevator, he/she has to first reach the elevator hall and press the upward or downward
button to make a call on the elevator (given the timestamp of t2 shown in Figure 13).
Then the elevator received the command and arrived at the floor (given the timestamp of t3
shown in Figure 13) to pick-up the user. The automatic control scenario was an assumption
based on knowledge inference on event conjunction. Suppose:

1. Room occupancy has been monitored in real-time based on the sensor observations;
2. If the agent detected a user leaving the room and further predicted the user has an

intention of using the elevator;
3. Then, the agent triggers the elevator in-advance to move to the user’s departure floor.
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Figure 13. Example shows the real event trace of room-usage and elevator.

The above assumption means when the user arrives at the elevator hall at t2 time,
the elevator has been ready for picking up the user. Thus, he/she can take a ride on the
elevator immediately and no waiting time (t3 − t2) was needed.

Therefore, the effectiveness of automatic control on elevator was evaluated by extract-
ing the historical users’ waiting time. The numbers of inferred event conjunction of room
occupancy -> elevator arriving (Er->Eel) has been listed in Table 6. Regarding the eleva-
tor usage, the count of non-waiting, waiting have been calculated as well. Furthermore,
the percentages of the different waiting time also have been inferred, respectively.

Table 6. Statistics of the users’ waiting event on elevator based on the mapping result of FSMs.

Er->Eel Without Waiting With Waiting

Sum 471 210 267

Probability
5 s 10 s 15 s 20 s

0.232 0.446 0.101 0.221

Figure 14 shows the statistical result of users’ waiting time calculated from collected
sensor data. The result demonstrated there were 267 waiting events happened among the
total of 471 elevator-using events, with the probability of waiting was 56.7%. In addition,
the total amount of waiting time was 3085 s and the average waiting time per user was
11.55 s (SD = 5.30 s).

Figure 14. The statistics of users’ waiting time on elevator mapped by FSMs.

These numerical results of users’ waiting time demonstrated the great potentials of
automatic control on elevator for pursuing the goal of zero-waiting of using the elevator.
The quantitative results also showed the effectiveness of the knowledge inference on
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event conjunction in smart building, for further improving the transport efficiency and
productivity of indoor users.

6. Discussion

In the experiments, room occupancy was determined as binary-mapping from light
state changing. The rule was set as: while the light is turning-on, the room is in occupancy;
otherwise, the room is out of occupancy. However, in real usage, more complicated
situations could be taken into consideration. Since people left the room without turning off
the light sometimes happens, multi-modal sensor fusion should be considered if pursuing
the inference accuracy. For example, the state of light and smart lock could be combined
for improving the accuracy of room occupancy detection. Nevertheless, the BOT-based
graph has provided opportunities for modeling other sensor observations in a structured
hierarchical graph. There could be few challenges for modeling other different types of
sensors to the existing ontology graph. Thus we consider that our approach could be
adapted to other sensor resources in the smart building if available, and the methodology
is practical for other smart buildings.

On the other hand, various sensors are currently installed in the smart building.
In addition to the diversity of sensors, more benefits of our proposal could be quantified
after a diverse range of automatic control application being implemented. For example,
tracing on human motion in the smart building, to automatic control the appliance pur-
suing reducing the energy consumption, improving human comfort, health in the smart
building. These mentioned-above application scenarios rely on knowledge inference in
smart building. Each part of this proposal:unified API of sensor network, knowledge graph
of the physical environment and the inference engine, was considered to be indispensable.
In this experiment, we formed a graph with the physical relations. Semantic schema (e.g.,
users’ identification, preferences, relations, as well as space affiliations, etc.) has not been
modeled in the graph. However, adding to these attributes, the inference engine would be
capable of analyzing user-related semantics.

7. Conclusions

In this paper, we presented a practical approach of event inference for automatic
control in IoT-enabled smart building environment. The proposal consists of unified API
development, knowledge base and inference engine. The event inference models based
on sensor observations was separated into deterministic and probabilistic. Therefore,
two types of models: finite state machine (FSMs) and bayesian network (BN) have been
used for capturing the state transition and sensor data fusion. As opposed to earlier
straightforward machine learning-based methods, our proposal focused on the conditional
conjunction and transition of two correlated events, for which a graph model of the physical
environment was considered necessary.

To tackle the problem of the sizes of time interval (∆t) observations were too small
to derive accurate results, MCMC sampling process has been utilized for approximating
the time intervals (∆t). Specifically, linear regression of local distances between two space
entities on the ontology graph has been leveraged for the optimization of the sampling
process. The proposal has been implemented in a real smart building environment and
78-days data collection of the state on light and elevator has been conducted for evaluation.
Event conjunctions on the light and elevator have been utilized for further inferring room
occupancy and indoor users’ trajectories.

To show the usability of the proposal, we extracted the knowledge of users’ waiting
time on the elevator. The FSM mapping result of elevator-using demonstrated the probabil-
ity of users’ waiting event was 56.7%, with the total waiting time during the evaluation
was 3085 s and average waiting time was 11.55 s. The numerical results demonstrated the
potential of automatic control for zero-waiting on elevator based on knowledge inference
on event conjunction in smart building.
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