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Abstract: The method of analytical preconditioning combines the discretization and the analytical
regularization of a singular integral equation in a single step. In a recent paper by the author,
such a method has been applied to a spectral domain integral equation formulation devised to
analyze the propagation in polygonal cross-section microstrip lines, which are widely used as high-
speed interconnects in monolithic microwave and millimeter waves integrated circuits. By choosing
analytically Fourier transformable expansion functions reconstructing the behavior of the fields on
the wedges, fast convergence is achieved, and the convolution integrals are expressed in closed
form. However, the coefficient matrix elements are one-dimensional improper integrals of oscillating
and, in the worst cases, slowly decaying functions. In this paper, a novel technique for the efficient
evaluation of such kind of integrals is proposed. By means of a procedure based on Cauchy integral
theorem, the general coefficient matrix element is written as a linear combination of fast converging
integrals. As shown in the numerical results section, the proposed technique always outperforms the
analytical asymptotic acceleration technique, especially when highly accurate solutions are required.

Keywords: microstrip lines; method of analytical preconditioning; spectral domain

1. Introduction

The latest advances in the development of integrated circuit technology have increased
the attractivity of microstrip transmission lines for the realization of high-speed intercon-
nects in monolithic microwave and millimeter waves integrated circuits (MIMICs). In this
contest, the width and the thickness of the metallic region can be comparable, and the
transverse cross-section is closed to a trapezoidal shape due to the etching undercuts, or
because of the electrolytical growth process. For all these reasons, the classical approaches,
based on the modeling of the metallic region as a zero-thickness flat strip, are inappropriate
for an accurate analysis of the propagation. Great attention has been paid in the last few
decades to developing techniques which are able to evaluate the effect of the thickness and
the cross-sectional shape of the metallic strip on the propagation [1–10]. Among others,
integral equation formulations have been widely preferred.

In order to search for the solution of an integral equation which cannot be expressed
in a closed form, a discretization scheme has to be provided. On the other hand, it is
well-known that a direct discretization can lead to ill-conditioned and/or dense matrices
for which the convergence of the approximate solution to the exact one, if it exists, cannot
be guaranteed. A possible way to overcome this problem is the use of compression
techniques [11,12], the Nyström method [13,14], or the direct formulation of the problem
in terms of a Fredholm second-kind integral equation [15], just to give some examples.

In a recent paper [16], the analysis of bound and leaky modes propagation in single
and coupled polygonal cross-section microstrip lines was carried out by generalizing
the techniques presented in Refs. [17–30] for the analysis of propagation, radiation and
scattering problems. The problem has been formulated as a homogeneous one-dimensional
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electric field integral equation (EFIE) in the spectral domain. A converging matrix equation
has been achieved by means of the method of analytical preconditioning (MAP) [31], i.e.,
the Galerkin method, with suitable expansion functions such that Steinberg’s theorems can
be applied [32]. In Ref. [16], this goal was reached by selecting expansion functions with a
closed form Fourier transform reconstructing the physical behavior of the unknowns, even
on the wedges. As a result, just a few expansion functions are enough to reconstruct the
solution with good accuracy. Moreover, the Galerkin projection integrals have been written
in closed form, thus leading to coefficient matrix elements expressed as combinations of
one-dimensional integrals over the selected inverse Fourier transform integration path.

Unfortunately, the numerical evaluation of the coefficient matrix elements is burden-
some. Since the expansion functions are continuous functions defined on finite supports,
their spectral domain counterparts are oscillating functions with an algebraic asymptotic
decay along the inverse Fourier transform integration path. For this reason, the coefficient
matrix elements are improper integrals whose integrands are oscillating functions, which
can have a slow asymptotic decay. As such, the simulations can be time-consuming when
highly accurate solutions are searched for. A classical way to overcome this problem is the
extraction of suitable asymptotic contributions from the integrands, such that the integrals
of the extracted contributions can be expressed in closed form [33–35]. Unfortunately, such
a technique leads to accelerated integrands with a faster but still algebraic decay, and it
does not modify the asymptotic oscillating behavior of the integrands themselves. As a
result, a slower and slower numerical convergence is expected as the accuracy required for
the solution increases.

Recently, a different perspective was proposed in Refs. [36–43]. Instead of trying
to speed up the convergence of the slowly converging integrals detailed above, fast-
converging alternative expressions have been individuated. This can be done by means
of a suitable application of the Cauchy integral theorem, which takes advantage of the
mathematical properties of the integrands. Even if a general and common line of reasoning
can be individuated for all the procedures presented in these papers, each of them is
devised for the solution of a specific problem.

Following the same line of reasoning, in this paper, a new fast-converging expression
for the improper integrals of oscillating and slowly decaying functions, arising from the
analysis of the propagation in polygonal cross-section microstrip lines when an EFIE
formulation in the spectral domain is discretized by means of MAP, is provided. A brief
overview of the formulation of the problem and the discretization technique adopted
in Ref. [16] is presented in Section 2. Section 3 is devoted to the fast evaluation of the
coefficient matrix elements: the general improper integral, whose integrand involves the
product of two confluent hypergeometric functions of the first kind (CHF1), is expressed
as a linear combination of proper integrals and improper integrals over integration paths,
along which the integrands, involving the products of two confluent hypergeometric
functions of the second kind (CHF2), are non-oscillating functions. The comparisons
between the presented technique and the analytical asymptotic acceleration technique
(adopted in Ref. [16]) provided in Section 4 clearly state that the technique proposed in
this paper always outperforms the analytical asymptotic acceleration technique, especially
when highly accurate results are required.

2. Background: Formulation of the Problem and Matrix Equation

Figure 1 shows the geometry of the problem in hand: a perfectly electrically conducting
(PEC) polygonal cross-section strip in a homogeneous and isotropic half-space (medium 2)
of relative dielectric permittivity εr2 placed on a grounded planar layer (medium 1) of
relative dielectric permittivity εr1 > εr2 and thickness d. Thus, kl = k0

√
εrl with l ∈ { 1, 2}

denotes the wavenumber in medium l, where k0 = ω
√

ε0µ0 = 2π/λ0 is the free-space
wavenumber in vacuum, ω is the angular frequency, ε0 and µ0 are the dielectric permit-
tivity and the magnetic permeability of vacuum, respectively, and λ0 is the wavelength
in vacuum.
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Figure 1. Geometry of the problem.

Let us introduce a Cartesian coordinate system (x, y, z) with the origin on the ground
plane, the y axis parallel to the strip axis and the z axis orthogonal to the interface between
the involved media. Moreover, let us number the L sides of the strip clockwise and
introduce a local Cartesian coordinate system (xi, y, zi) on the i-th side, of length 2ai, with
the origin at the center of the side itself in the position (xi, zi) with respect to the main
coordinate system, such that the zi axis is orthogonal to the i-th side and oriented in the
outward direction, and the angle of the xi axis with respect to the x axis is denoted by ϕi.

The analysis of the propagation needs to assume a behavior of the fields along the y
axis of the kind e−jvy, where v = vR − jvI is the mode propagation constant. According to
the procedure detailed in Ref. [16], the field can be written as the superposition of the fields
generated by the surface current densities on each side of the considered strip. Moreover,
remembering that the edge behavior of the components of the surface current density on
the i-th side is [44]

Jiy(xi),
∂Jixi (xi)

∂xi

xi→±ai∼
(

1∓ xi
ai

)t±i −1
(1)

with t±i ≥ 1/2, and that the transverse component of the surface current density is con-
tinuous even on the wedges, i.e., Ci = Jqxq

(
aq
)
= Jixi (−ai), where q and i denote two

consecutive sides, the following spectral domain integral representation for the longitu-
dinal and the transverse components of the electric field in the upper half-space can be
established [16]:

Es(x, y, z) = Et
s(x, y, z) + Ey

s (x, y, z) (2)

with s ∈
{

xj, y
}

, and the superscripts t and y denote the functional dependence on the
transverse current and the longitudinal current, respectively, where

Er
s(x, y, z) = j

e−jvy

2ωε0εr2

[
Er

s,P(x, y, z) + Er
s,S(x, y, z)

]
(3)

with r ∈ {t, y}, and P and S denote the primary (free-space) contribution and the scattered
contribution (due to the dielectric slab and the ground plane), respectively,

Et
xj ,P(x, y, z) =

L
∑

i=1

{
Ci

2π j
∫
C

[ Fq,j(u,x,z)

e−juaq − Fi,j(u,x,z)
ejuai

]
du+

+
∫
C

Ui,j(u, x, z)Jixi
(u)Vi(u, x, z)du

} (4a)

Ey
xj ,P(x, y, z) =

L

∑
i=1

∫
C

vTi,j(u, x, z) J̃iy(u)Vi(u, x, z)du, (4b)



Appl. Sci. 2021, 11, 933 4 of 12

Et
y,P(x, y, z) =

L
∑

i=1

{
Ci

2π j
∫
C

[
Vq(u,x,z)

e−juaq −
Vi(u,x,z)

ejuai

]
vdu+

+
∫
C

uvJixi
(u)Vi(u, x, z)du

} (4c)

Ey
y,P(x, y, z) =

L

∑
i=1

∫
C

(
v2 − k2

2

)
J̃iy(u)Vi(u, x, z)du, (4d)

Et
xj ,S(x, y, z) =

L
∑

i=1

{
Ci

2π j
∫
C

[
G(1,1)

q,j (u)
Sq(u)

−
G(1,1)

i,j (u)
Si(u)

]
Wi(u,x,z)
ejSi(u)ai

du+

+
∫
C

G(1,1)
i,j (u)Jixi

(Si(u))Wi(u, x, z)du

} (4e)

Ey
xj ,S(x, y, z) =

L

∑
i=1

∫
C

G(1,2)
j (u) J̃iy(Si(u))Wi(u, x, z)du, (4f)

Et
y,S(x, y, z) =

L
∑

i=1

{
Ci

2π j
∫
C

[
G(2,1)

q (u)
Sq(u)

− G(2,1)
i (u)
Si(u)

]
Wi(u,x,z)
ejSi(u)ai

du+

+
∫
C

G(2,1)
i (u)Jixi

(Si(u))Wi(u, x, z)du

} (4g)

Ey
y,S(x, y, z) =

L

∑
i=1

∫
C

G(2,2)(u) J̃iy(Si(u))Wi(u, x, z)du, (4h)

C denotes the selected inverse Fourier transform integration path in the complex plane
u = uR + juI , J̃i(u) is the Fourier transform of the current on the i-th side with respect to xi,
Jixi

(u) = J̃ixi (u)− J̃∞
ixi
(u), J̃∞

ixi
(u) =

(
−Cie−juai + Cpejuai

)
/(2π ju), q, i and p denote three

consecutive sides, and the kernels are summarized in the Appendix A.
As such, by forcing the tangential components of the electric field to be zero on the

strip surface, a homogeneous EFIE in the spectral domain is obtained

Es(x, y, z)||xj |≤aj ,zj=0 = 0 (5)

with s ∈
{

xj, y
}

and j = 1, 2, . . . L.
In order to guarantee fast convergence, the Galerkin method, with the expansion

functions introduced in Ref. [27], reconstructing the physical properties of the fields even
on the wedges of the PEC strip, is used to discretize the equation in (5). The Fourier
transforms of the selected expansion functions can be expressed in closed form as [27]

φ̃
(α,β)
−1 (au) =

ejua − e−jua
1F1(β; α + β; j2ua)
2jπu

(6a)

φ̃
(α,β)
n (au) = ξ

(α,β)
n (2jua)ne−jua

1F1(n + β + 1; 2n + α + β + 2; 2jua) (6b)

ξ
(α,β)
n =

√
a2α+β−1Γ(n + α + 1)Γ(n + β + 1)Γ(n + α + β + 1)

π2n!Γ(2n + α + β + 1)Γ(2n + α + β + 2)
(6c)

where the symbol 1F1(· ; · ; ·) denotes the CHF1 and Γ(·) is the Gamma function [45]. On
the basis of this property and the reciprocity theorem, it is not difficult to demonstrate that
the convolution integrals resulting from Galerkin projection can be reduced to algebraic
products [16]. As such, the elements of the obtained matrix equation can be expressed
as linear combinations of one-dimensional integrals over the selected inverse Fourier
transform integration path.
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3. Fast Evaluation of the Matrix Coefficients

For n, m ≥ 0, the general integral associated with the primary contribution can be
written as

IP =
∫
C

fi
(
u, xj, zj

)
φ̃
(αi ,βi)
n (aiu)φ̃

(αj ,β j)
m

(
−aj

[
Ti,j
(
u, xj, zj

)]∗)du (7)

where fi
(
u, xj, zj

)
is one of the kernels in Equations (4a)–(4d), Ti,j

(
u, xj, zj

)
is defined in

Equation (A1f), and the star denotes the complex conjugate of a complex number, while
the general integral associated to the scattered contribution is

IS = I′S + I ′′S (8a)

I′S =
∫
C

[
gi
(
u, xj, zj

)
− g∞

i
(
u, xj, zj

)]
φ̃
(αi ,βi)
n (aiSi(u))φ̃

(αj ,β j)
m

(
−aj

[
Sj(u)

]∗)du (8b)

I ′′S =
∫
C

g∞
i
(
u, xj, zj

)
φ̃
(αi ,βi)
n (aiSi(u))φ̃

(αj ,β j)
m

(
−aj

[
Sj(u)

]∗)du (8c)

where gi
(
u, xj, zj

)
is one of the kernels in Equations (4e)–(4h), g∞

i
(
u, xj, zj

)
is obtained

starting from gi
(
u, xj, zj

)
by replacing CK(u) for K ∈ {E, H}, defined in Equations (A1m)

and (A1n), respectively, with C∞
K (u) = lim

d→+∞
CK(u), and Sj(u) is defined in Equation (A1p).

Since the coefficient matrix elements for n = −1 and/or m = −1 can be written in a similar
way, they are here omitted for the sake of brevity.

The integrals in Equations (7), (8b) and (8c) are improper integrals. According to the
asymptotic behavior for the large argument of the CHF1 [45], i.e.,

1F1(a; b; u)
|u|→+∞∼ e±jπau−aΓ(b)

Γ(b− a)
+

euua−bΓ(b)
Γ(a)

(9)

where the upper sign has to be chosen for −π/2 ≤ arg(u) < 3π/2 and the lower sign

for −3π/2 < arg(u) ≤ π/2, and observing that CK(u)− C∞
K (u)

|u|→+∞∼ e−2|u|d, it can be
concluded that the integrand of the integral in Equation (8b) has an asymptotic exponential
decay, while the integrals in Equations (7) and (8c) involve asymptotically oscillating
functions with an algebraic decay in the worst cases. As a result, the numerical evaluation
of such kinds of integrals is less and less efficient as the accuracy required for the solution
is higher. The asymptotic decay of the integrands in Equations (7) and (8c) can be sped
up by pulling out the asymptotic behavior of the integrand such that the integrals of the
extracted contributions can be expressed in closed form. Nevertheless, such a procedure
does not change the oscillating nature of the integrands, which keep on having an algebraic
decay. Therefore, the numerical convergence of the accelerated integrals, even if faster, is
still strongly dependent on the accuracy required for the solution.

A new procedure, overcoming this problem, is shown in the following. For the sake
of brevity, only the integrals associated to the primary contribution for n, m ≥ 0 and the
propagation of bound modes are considered, the generalization of the proposed technique
to the other cases being straightforward. For bound modes propagation, the propagation
constant is real, i.e., v = vR, and such that k2 < vR < k1; therefore, the square-roots branch
points of the free-space Green’s function in the spectral domain are imaginary numbers. Let
us assume the real axis of the complex plane u as the inverse Fourier transform integration
path C.

As a first task, observing that the CHF1 can be written as [45]

1F1(a; b; u) =
Γ(b)e±jπa

Γ(b− a)
U(a; b; u) +

Γ(b)eue∓jπ(b−a)

Γ(a)
U(b− a; b;−u) (10)
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where U(· ; · ; ·) denotes the CHF2 [45], the upper sign has to be chosen for −π/2 ≤
arg(u) < 3π/2 and the lower sign for −3π/2 < arg(u) ≤ π/2, the following alternative
expression for the expansion functions in the spectral domain defined in Equation (6b) can
be introduced:

φ̃
(α,β)
n (u) = ψ̃

(α,β)
n (u) + (−1)nψ̃

(β,α)
n (−u) (11)

where

ψ̃
(α,β)
n (u) =

ξ
(α,β)
n Γ(2n + α + β + 1)

Γ(n + α + 1)
e±jπ(n+β+1)(2ju)ne−jzU(n + β + 1; 2n + α + β + 2; 2ju) (12)

the upper sign has to be chosen for −π/2 < arg(u) ≤ π/2 and the lower sign for
π/2 < arg(u) ≤ 3π/2.

The properties of the function in Equation (12) can be immediately deduced from the
following relation between the CHF1 and the CHF2 [45]:

U(a, b, u) =
π

sin(πb)

[
1F1(a, b, u)

Γ(1 + a− b)Γ(b)
− u1−b 1F1(1 + a− b, 2− b, u)

Γ(a)Γ(2− b)

]
(13)

As such, ψ̃
(α,β)
n (u) is a many-valued function if α + β is a non-integer number with a

branch-cut for uR = 0 and uI > 0, and is singular for u = 0 except when α = β = −1/2
and n = 0 simultaneously.

Let us introduce the auxiliary function:

F(i,j)
n,m,w,s,t(u) = (−1)ns+mt fi

(
(−1)wu, xj, zj

)
·

·ψ̃(t(s)i ,t(|s−1|)
i )

n

(
(−1)w+saiu

)
ψ̃
(t(t)j ,t(|t−1|)

j )
m

(
−(−1)taj

[
Ti,j
(
(−1)wu, xj, zj

)]∗) (14)

where w, s, t ∈ {0, 1}, t(0)l = αl and t(1)l = βl , with l ∈ {i, j}. Such a function is generally
a many-valued function with two extra branch-cuts associated with the involved CHF2.
The first one is along the imaginary axis of the complex plane u (uR = 0) with a branch
point at u = 0, while the second one lies on the hyperbole described by the equation
s2

i,ju
2
R − c2

i,ju
2
I + s2

i,jc
2
i,j
(
v2

R − k2
2
)
= 0, where si,j and ci,j are defined in the Appendix A, with

a branch point at u = −jsgn(zi(x, z))si,j

√
v2

R − k2
2.

By setting

F(i,j)
n,m (u) = fi

(
u, xj, zj

)
φ̃
(αi ,βi)
n (aiu)φ̃

(αj ,β j)
m

(
−aj

[
Ti,j
(
u, xj, zj

)]∗) (15)

the following new representation for the integral in Equation (7) can be immediately stated

+∞∫
−∞

F(i,j)
n,m (u)du =

r∫
−r

F(i,j)
n,m (u)du +

1

∑
w,s,t=0

+∞∫
r

F(i,j)
n,m,w,s,t(u)du (16)

where r > 0 in order to avoid the singularity of F(i,j)
n,m,w,s,t(u) for u = 0.

The asymptotic behavior for the large argument of the CHF2, i.e., [45]

U(a; b; u)
|u|→+∞∼ u−a (17)

for −3π/2 < arg(u) < 3π/2, allows us to obtain the following representation for the
function in Equation (14) on its principal sheet:

F(i,j)
n,m,w,s,t(u) = F̂(i,j)

n,m,w,s,t(u)e
G(i,j)

w,s,t(u) (18)
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where F̂(i,j)
n,m,w,s,t(u) is a non-oscillating function with an asymptotic algebraic decay of the

kind 1/uγ with γ ≥ 2,
G(i,j)

w,s,t(u) = jα(i.j)w,s,tu− β
(i,j)
t R2(u) (19a)

α
(i,j)
w,s,t = (−1)w

[
−(−1)sai + (−1)tajci,j − xi

(
xj, zj

)]
(19b)

β
(i,j)
t = (−1)tajsgn

(
zi
(

xj, zj
))

si,j +
∣∣zi
(

xj, zj
)∣∣ (19c)

where R2(u) is defined in Equation (A1r), and it is simple to observe that β
(i,j)
t ≥ 0.

The condition

=
{

G(i,j)
w,s,t(u)

}
= 0⇔ ŝ2u2

R − ĉ2u2
I + ŝ2 ĉ2

(
v2

R − k2
2

)
= 0 (20)

where ={·} denotes the imaginary part of a complex number and the quantities

ŝ = α
(i,j)
s,t /

√(
α
(i,j)
s,t

)2
+
(

β
(i,j)
t

)2
and ĉ = β

(i,j)
t /

√(
α
(i,j)
s,t

)2
+
(

β
(i,j)
t

)2
have been introduced

for the sake of the simplicity of notation, identifies the path along which F(i,j)
n,m,w,s,t(u) does

not oscillate. On the other hand, assuming the condition (20), the integrability of F(i,j)
n,m,w,s,t(u)

is guaranteed by the extra condition

<
{

G(i,j)
w,s,t(u)

}
≤ 0⇔ sgn(ŝ)uI ≥ 0 (21)

where <{·} denotes the real part of a complex number.
To conclude, we can simply demonstrate that the general improper integral at the

right-hand side of Equation (16) can be expressed as a combination of a proper integral
and an improper integral of a non-oscillating function by means of the Cauchy’s integral
theorem and the Jordan’s lemma. Indeed, supposing, just for an example, that 0 ≤ ŝ <

∣∣si,j
∣∣,

due to the properties of F(i,j)
n,m,w,s,t(u) detailed above, it is simple to state that

lim
R→∞

∮
C

F(i,j)
n,m,w,s,t(u)du = 0⇔

+∞∫
r

F(i,j)
n,m,w,s,t(u)du =

r+jr∫
r

F(i,j)
n,m,w,s,t(u)du +

∫
C′

F(i,j)
n,m,w,s,t(u)du (22)

where C is the dotted gray closed contour defined in Figure 2, C′ (the black solid line
in Figure 2) is the integration path defined by the Equations in (20) and (21) along with the

function F(i,j)
n,m,w,s,t(u) does not oscillate, and (r, r) denotes the intersection point between

the path C′ and the straight line u = r.
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this line of reasoning, the effectiveness of the discretization scheme presented in Section 2
has been widely demonstrated. Indeed, few expansion functions have been needed to
achieve accurate solutions for both bound and leaky mode propagations. As such, in order
to avoid unnecessary repetitions, no details are given in this section about the convergence
of the method and the comparisons with the literature. Instead, this section is aimed at
showing that the procedure detailed in Section 3 always outperforms the classical analytical
asymptotic acceleration technique used in Ref. [16] in terms of computation time.

Let us define the CPU time ratio as the ratio between the computation time needed
to fill the coefficient matrix as obtained by using the analytical asymptotic acceleration
technique with respect to the technique detailed above. The simulations are performed on
a laptop equipped with an Intel Core I7-10510U 1.80 GHz–2.30 GHz, 16 GB RAM, running
Windows 10 Home 64 bit and the integrals are evaluated by means of an adaptive Gaussian
quadrature routine.

The geometry of the examined problem is sketched in Figure 3a: a general trape-
zoidal cross-section strip in vacuum (εr2 = 1) with AB = 3w/4, BC = t, CD = w
and B̂ = Ĉ = π/2 on a grounded dielectric layer of thickness d = 0.2117λ0 and a rela-
tive dielectric permittivity εr1 = 9.8. We assume vR/k0 = 1.5, w/λ0 = 0.5, 1.0, 2.0 and
t/w = 0.1, 0.5, 1.0 as test cases and set the accuracy of the quadrature routine in such a way
as to guarantee the convergence of six significant digits in the numerical evaluation of the
integrals. As can be clearly deduced by inspecting Figure 3b–d, where the CPU time ratio
is plotted as a function of the number of expansion functions used for each component
of the surface current density on each side (N), the technique proposed in this paper al-
ways outperforms the classical analytical asymptotic acceleration technique. Moreover,
the proposed results clearly show that the CPU time ratio is substantially independent
of the size of the strip with respect to the wavelength and of the shape of the strip, thus
demonstrating the effectiveness of the proposed technique. It is important to note that the
CPU time ratio dramatically increases as the number of expansion functions used becomes
higher. At the same time, for a given number of expansion functions used, the CPU time
ratio increases as the accuracy set for the quadrature routine becomes higher. Indeed, in
spite of what happens for the improper integrals of asymptotically oscillating functions,
the computation time of the new representation of the coefficient matrix elements is weakly
affected by the accuracy required for the numerical evaluation of the integrals. Just for an
example, for w/λ0 = 1.0, t/w = 0.5 and N = 20, the proposed method is four time faster
than the analytical asymptotic acceleration technique (see Figure 3c). However, for the
same case, the CPU time ratio becomes 7 when the convergence of 8 significant digits in
the numerical evaluation of the integrals is required, and even reaches 18 for 10 significant
digits of accuracy. Moreover, it is worth noting that this exponential behavior is confirmed
also for the other cases examined in Figure 3b–d. To conclude, the technique presented in
this paper is particularly advantageous when highly accurate results are searched for.
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5. Conclusions

Fast convergence was achieved in Ref. [16] by applying the MAP to an integral
equation formulation in the spectral domain for the analysis of the propagation in polygonal
cross-section microstrip lines. In this paper, the technique proposed in Ref. [16] has
been improved by devising a new expression for the coefficient matrix elements, leading
to a drastic reduction in the computation time. It is worth observing that the line of
reasoning proposed in this paper is versatile, and can be applied to a wide class of problems
formulated in the spectral domain and discretized by means of MAP. On the other hand, a
specific procedure has to be conceived for the particular problem in hand, which can be seen
as the only limitation to the proposed approach. Particularly attractive is the application
of the proposed technique to the analysis of the radiation characteristics of a microstrip
antenna array, because the integrands of the integrals of mutual contributions between
two antennas oscillate faster as the distance between the antennas increases. Moreover,
the method can be readily generalized to the analysis of the propagation in polygonal
cross-section optical waveguides.
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Appendix A

The kernels of the functions defined in Equation (4) are summarized in the following:

Fi,j(u, x, z) =
Ui,j(u, x, z)Vi(u, x, z)−U∞

i,j(u, x, z)V∞
i (u, x, z)

u
(A1a)

Ui,j(u, x, z) = R2(u)
[

jusgn(zi(x, z))si,j + R2(u)ci,j − v2
]

(A1b)

Vi(u, x, z) =
e−juxi(x,z)−R2(u)|zi(x,z)|

R2(u)
(A1c)

U∞
i,j(u, x, z) = |u|

[
jusgn(zi(x, z))si,j + |u|ci,j

]
(A1d)

V∞
i (u, x, z) =

e−juxi(x,z)−|uzi(x,z)|

|u| (A1e)

Ti,j(u, x, z) = jR2(u)sgn(zi(x, z))si,j + uci,j (A1f)

G(1,1)
i,j (u) = v2 Ai,j(u) + u2Bi,j(u) (A1g)

G(1,2)
j (u) = uv

[
B0,j(u)− A0,j(u)

]
(A1h)

G(2,1)
i (u) = uv[Bi,0(u)− Ai,0(u)] (A1i)

G(2,2)(u) = u2 A0,0(u) + v2B0,0(u) (A1j)

Ai,j(u) = cicj
k2

2
R2(u)(u2 + v2)

CH(u) (A1k)

Bi,j(u) = −
[

sisj
u2 + v2

u2R2(u)
+ cicj

R2(u)
u2 + v2 + jsi,j

1
u

]
CE(u) (A1l)

CH(u) = [R1(u)− R2(u) t(u)]/[R1(u) + R2(u) t(u)] (A1m)

CE(u) = [ε1R2(u)− ε2R1(u) t(u)]/[ε1R2(u) + ε2R1(u) t(u)] (A1n)

t(u) = tanh(R1(u) d) (A1o)
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Si(u) = uci + jR2(u)si (A1p)

Wi(u, x, z) = e−ju(x−xi)−R2(u)(z+zi−2d) (A1q)

Rl(u) =
√

u2 + v2 − k2
l (A1r)

where i, j ∈ {1, 2, . . . L}, l ∈ {1, 2}, ci,j = cos
(

ϕi − ϕj
)
, si,j = sin

(
ϕi − ϕj

)
, ci = cos ϕi,

si = sin ϕi, c0 = 1 and s0 = 0.
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