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Abstract: Software collaboration platforms where millions of developers from diverse locations can
contribute to the common open source projects have recently become popular. On these platforms,
various information is obtained from developer activities that can then be used as developer metrics
to solve a variety of challenges. In this study, we proposed new developer metrics extracted from the
issue, commit, and pull request activities of developers on GitHub. We created developer metrics
from the individual activities and combined certain activities according to some common traits. To
evaluate these metrics, we created an item-based project recommendation system. In order to validate
this system, we calculated the similarity score using two methods and assessed top-n hit scores
using two different approaches. The results for all scores with these methods indicated that the most
successful metrics were binary_issue_related, issue_commented, binary_pr_related, and issue_opened. To
verify our results, we compared our metrics with another metric generated from a very similar study
and found that most of our metrics gave better scores that metric. In conclusion, the issue feature is
more crucial for GitHub compared with other features. Moreover, commenting activity in projects
can be equally as valuable as code contributions. The most of binary metrics that were generated,
regardless of the number of activities, also showed remarkable results. In this context, we presented
improvable and noteworthy developer metrics that can be used for a wide range of open-source
software development challenges, such as user characterization, project recommendation, and code
review assignment.

Keywords: developer metric; open source; project recommendation system; GitHub; issue; pull
request; commit

MSC: 68N30

1. Introduction

Thanks to the increasing capabilities of open source software (OSS) development tools,
the number of open-source users and projects is growing each year. Existing software
collaboration platforms include millions of developers with different characters and skill
sets, as well as a wide variety of projects that offer solutions to various problems. GitHub,
is the largest one among these platforms, that hosting more than 40 million repositories to
which over 100 million developers have contributed. On this platform, several features are
used to manage the distributed and open-source projects of which the most widely used
are issues, commits, and pull requests (PRs). Activities related to these features—such as
opening an issue, merging a PR, or commenting on a commit—can provide information
about the developers and projects. The knowledge obtained from this information can then
be used in the form of developer metrics to solve various software engineering challenges.
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The some of the developer metrics used are the number of lines of code in a project,
developer degrees of connection to one another, past experience, or common features
(e.g., nationality, location, occupation, gender, previously used programming languages).
These metrics offer solutions to different problems within OSS development and distributed
coding, including automatic assignments (task, issue, bug, or reviewer) [1–3], project
recommendation systems [4,5], and software defect detection [6].

However, on platforms with such a large amount of data, it is challenging for devel-
opers to find similar projects to their own, identify projects of interest, and reach projects
to which they can contribute. As developers primarily use search engines or in-platform
search menus to find projects, the constraints of text-based search [7] and challenges related
to finding the correct keywords also lead them to miss some projects [8]. While various
project recommendation systems are being developed to overcome this problem, projects
must be rated by users if recommendation models are to work properly. In the same way
that viewers give ratings to movies that they have watched, developers need to rate the
projects in which they are interested. However, this does not currently occur on software
collaboration platforms, meaning there is no labeled dataset for work on this problem. For
this reason, several developer metrics that can be extracted from the activity or features of
both developers and projects can be used to calculate the score that a user gives projects.

In this study, new developer metrics are presented to be used for a variety of open
source distributed software development challenges. We developed a project recommenda-
tion system due to evaluate these metrics using data from GitHub with the aim of making
recommendations to developers based on their GitHub activities. Moreover, to address the
sparsity problem on GitHub, we selected a dataset with a high project-user ratio. Despite
this handicap, we obtained remarkable results in comparison with a similar study [5]. We
present the following research questions for this study:

RQ1. Can we offer new evaluation methods for GitHub project recommendation problem?

RQ2. Can we use the activities of GitHub users as a developer metric individually?

RQ3. Can new metrics be obtained by combining similar properties or activities?

RQ4. Is a user’s amount of activity important in the context of developer metrics?

In light of these research questions, we organized this paper as follows. In the back-
ground section, we discuss the literature on previously proposed developer metrics that
have been used for a wide range of OSS development challenges. In the following sec-
tion, we describe our dataset, proposed metrics, and project recommendation model. We
evaluate the metrics using different approaches and methods in the last section.

2. Background

The activities of developers in platforms such as GitHub provide collaboration, learn-
ing, and reputation management in the community [9]. These activities are the metadata of
the platforms which directly correlated to reputation or performance of the developers [10].
Besides, the developer metrics are also created from these activities. In general, the metrics
are related to the features of distributed code development processes such as issue, commit,
and PR. We present some metrics that have been discussed in the literature in terms of these
features and explain the challenges on which studies using these metrics have focused.

PR allows users to inform others about changes they have pushed to a branch in a
repository on GitHub. PRs are a key feature when contributing code by different developers
to a single project [11]. The proposed metrics related to this feature are used to solve
different PR-related problems. PRs need to be reviewed (by a reviewer) in order to merge
projects. If the result of a review is positive, the PR is integrated into the master branch.
Finding the correct reviewer is thus an important parameter for ensuring rapid and fair
PR revisions. Different metrics have been used in this context to address the problem of
automatic PR reviewer assignment. The existing literature has proposed various metrics
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to solve this problem, including PR acceptance rate within a project, active developers
on a project [3], PR file location [12], pull requesters, social attributes [13], and textual
features of the PR [14], among others. Closing a PR with an issue, PR age, and mentioning
(@) a user in the PR comments have all been used to determine the priority of a PR [15].
Cosentino proposed three developer metrics (community composition, acceptance rates,
and becoming a collaborator) to investigate project openness and stated that project owners
could evaluate the attractiveness of their projects using these metrics [16].

Developer metrics are also used for software defect detection. In one study, defects
were estimated using different metrics grouped by file and commit level. The number of
files belonging to a commit, the most modified file of all files in a commit, the time between
the first and last commit, and the experience of a given developer on a committed file were
identified as important metrics [6].

Reliability metrics are used to quantitatively express the software product reliabil-
ity [17]. Metrics used to measure reliability in OSS include number of contributors, number
of commits, number of lines in commits, and certain metrics derived from them. Tiwari
proposed two important metrics for reliability, namely contributors and number of commits
per 1 K code lines [18].

Code ownership metrics are also important problem for OSS. One study used the
modified (touched) number of files to rank developer ownership according to code con-
tributions [19]. In another study, researchers used the number of changed lines in a file
(churn) to address this problem [20]. Foucault confirmed the relationship between these
code ownership metrics and software quality [21].

Recommender systems are an important research topic in software engineering [22,23].
In ordinary recommendation models, previously known user-item matrices are used. In
other words, the rating given by a user for an item is known. In such cases, the essential
research topic involves using different algorithms and models to estimate the rating that
the user has already given [24]. However, this differs on software collaboration platforms
like GitHub. Considering the developer as the user and the project (repository or repo) as
the item, the rating that a developer gives to a project is unknown. In this context, the first
problem that must be solved is how to create an accurate developer-project matrix. At this
point, different developer metrics come into play.

In a study aiming to predict whether a user would join a project in the future, the
metrics used included a developer’s GitHub age (i.e., when their account was opened),
the number of projects that they had joined, the programming languages of their commits,
how many times a project was starred, the number of developers that joined a project, and
the number of commits made to a project [25].

In another study that explored the factors that led a user to join a project, the metrics
used included a developer’s social connections, programming with a common language,
and contributions to the same projects or files [26]. Liu et al. designed a neural network-
based recommendation system that used metrics such as working at the same company,
previous collaboration with the project owner, and different time-related features of a
project [27].

Sun et al. relied on basic user activity to develop a project recommendation model
using GitHub data. Specifically, when rating a project for a developer, they used “like-star-
create” activities related to projects [5].

To sum up, some developer metrics that were noted as considerable in their papers
are given in Table 1. In this table, we have also presented the fields of the metrics (the
related feature), their definitions, and the target challenge, along with the reference studies.
These metrics have been used to address various challenges in OSS development, among
them project characterization, reviewer assignment for issues or PRs, and project recom-
mendation are prominent ones. Generally, researchers have aimed to use these metrics to
characterize developers by analyzing their activities in order to solve a problem [28]. Thus,
developer metrics become crucial factors for solving these challenges. In this study, we
offer a number developer metrics that can be used for a variety of challenges.



Appl. Sci. 2021, 11, 920 4 of 26

Table 1. Used metrics samples in the literature with GitHub data.

Metric Name Definition Target Challenge Ref

Is
su

e

Maintenance Type The type of issue that related with (fea-
ture, bug, etc.)

Finding issue resolution
time factors

[29]

A_D_issue_rep_assi The total number of issues that as-
signed to specific developers

Understanding issue clo-
sure rates

[30]

ContainsFix Is the pull request whether solve an is-
sue?

Pull request prioritization [15]

Owned_issues The number of issues which is opened
by the project’s owner

Prediction of joining a
repository

[25]

C
om

m
it

D_languages The committed programming lan-
guages of a developer

[25]

Contibutors_SLOC The number of contributors per 1K
code lines

Exploring of reliability
metrics

[18]

TotalLoc The number of lines in the last commit Defect prediction with de-
veloper experience

[6]

ExpLoc The code line experience of a developer
on a committed file

[6]

ExpCom The experience of a developer on a com-
mitted file

[6]

NumofFile The number of modified file in the last
commit

[6]

Past Experience The number of files committed the past
same-language.

Finding factors of joining
a project

[26]

Readme tf_idf The tf-idf values of ReadMe and code
files of project

Project recommendation [5]

Pu
ll

R
eq

ue
st

NumCommits The number of commit in a PR Automatic assignment of
integrators to PR

[3]

AcceptanceRate The acceptance rates of PRs on a project [3]

TotalLines The number of changed lines in a PR [3]

Age Time between opening and closing a PR Pull request prioritization [15]

FileLocation The directory of files in a PR Automatic code-reviewer
assignment

[12]

DecisionTime PR decision time Exploring the openness of
a software project

[16]

Files_changes The number of changed files (some vs
many)

Understanding the factors
of assigning PR reviewers

[31]

Comment Network The network of pull request comments Discovering factors of the
PR process

[32]
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3. Research Design
3.1. Dataset

One of the most serious challenges in developing a recommender system is spar-
sity [33], a problem that occurs when most users rate only a few items [34]. This issue
is also present on GitHub, as it is not possible for developers to be aware of most of the
millions of repositories on the platform. Most of the studies mentioned in the previous
section used limited (less sparse) and ad hoc (unpublished) datasets (Table 2). In Table 2,
we present the number of users, the number of projects, and the ratio of them (user/project
or project/user) in the datasets of ours and others. Higher ratios indicates sparsity in
the dataset. The greater a dataset’s sparsity, the more difficult it is to make the correct
recommendations. Thus, the results of the related studies are controversial in terms of real
platform data (because of working on a smaller dataset). Therefore, in this study, we used
a public dataset called GitDataSCP (https://github.com/kadirseker00/GitDataSCP) that
is reflective of the sparsity problem inherent in the nature of GitHub [35].

Table 2. The dataset sparsity of related studies.

Paper ID Number of User Number of project Ratio (~)

[5] 1700 22,000 0.07
[26] 1255 58,092 0.02
[27] 1070 1600 0.66
[25] 62,607 9447 0.15
[30] 62,607 9447 0.15
Our study 100 41,280 0.002

The dataset contained data related to 100 developers and 41,280 projects (repositories).
The creators of the dataset indicated that they selected the most active users on the platform
and extracted some related data from the activities of these GitHub users (Figure 1).

Commits
(500,069)

Issues
(3,181,545)

Pull Requests (PR)
(3,181,545)

Issue Comments
(9,159,630)

Commit Comments
(254,994)

PR comments
(1,227,655)

Watchers
(46,138) Forks

(5928)

Users
(100)

Repos
(41,800)

Figure 1. The dataset content.

The number of records in the dataset is also given in Figure 1 (below the name of
collections). The Repos and all other collections include records that related to the Users
collection. All details regarding the creation of the dataset are provided in the source study
of the dataset [35].

https://github.com/kadirseker00/GitDataSCP
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3.2. Recommendation Model

We created a recommendation model based on item-item collaborative filtering. The
collaborative filtering method is usually involves gathering and analyzing information
about a user’s behavior, activities, or preferences and predicting what they will like based
on their similarity to other users. Collaborative filtering is based on the assumption that
different individuals who have had similar preferences in the past will make the same
choices in the future. For example; if a user named John prefers A, B, and C products, and a
user named Alice prefers B, C, and D products, it is likely that John will also prefer product
D and Alice will prefer product A. Item-item logic can thus recommend similar items to a
user who consumes any item.

Constructing a recommendation model for GitHub is different from classic (movie)
principles. When recommending a movie to a user, the ratings of movies are known.
However, this is not the case on GitHub, where developers do not rate projects. In this
context, it is thus necessary to determine a metric that can be used as a rating. In addition,
the model should recommend projects with which a developer is unfamiliar (just as a movie
recommender should suggest movies that the user has not watched). We constructed a
model taking into account these conditions.

A project recommender system for software collaboration development platforms
includes stages as generating a project-developer rating matrix according to a certain metric,
finding similarities between projects, generating recommendations, and evaluating results.
First, we generated a project-developer rating matrix (Table 3) using specific metrics. As
seen the Table 3, columns represent the users, rows represent the projects (repos). We
selected a metric, then, input the metric’s values (quantity, ratio, or binary) into the cells.
For example, as shown in Table 3a, User-1 opened seven issues in Project-2.

Table 3. A sample project-developer matrix belongs to the metric issue_opened.

(a) Actual values of the metric

User-1 User-2 . . . User-100

Project-1 0 51 . . . 96
Project-2 7 0 . . . 0
Project-3 0 0 . . . 4

. . . . . . . . . . . . . . .
Project-n 0 34 . . . 0

(b) Normalized values of the metric

User-1 User-2 . . . User-100

Project-1 0 4 . . . 10
Project-2 0.08 0 . . . 0
Project-3 0 0 . . . 0.5

. . . . . . . . . . . . . . .
Project-n 0 3 . . . 0

We normalized the values of the project-developer matrix using min-max normal-
ization. The values of the metrics were scaled from 0 to 10. As in the movie-user model,
we assumed that each developer gave a rating (0–10) to each project (Table 3b). First, we
calculated similarity scores between projects using two methods (cosine and TF-IDF simi-
larity). We then recommended the top-n projects to each developers. Finally, we evaluated
the correct recommendations using two evaluation methods (community relation and
language experience).
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3.3. Similarity Methods

First, we found similar projects to recommend to developers. The memory-based
collaborative filtering recommendation system selects a set of similar item neighbors for a
given item [36]. Therefore, we used two memory based approaches.

3.3.1. Cosine Similarity (Context Free)

For our first method, we choose a method without textual features. We used the cosine
similarity to calculate the similarity score of the two projects (with explicit rating scores).

1. A project vector consists of related rows from the project-developer matrix
(Equation (1)).

~PmetricXpiq “ pu1, u2, u3, ¨ ¨ ¨ , u100q (1)

2. To calculate the similarity score between Project-i (Pi) and Project-j (Pj) according to
the metricX rating, we used the Equation (2).

similaritycontext_ f ree
pPi ,Pjq

“ cosp~PmetricXpiq, ~PmetricXpjqq “
~PmetricXpiq ¨ ~PmetricXpjq

‖~PmetricXpiq‖ ˚ ‖~PmetricXpjq‖
(2)

3.3.2. TF-IDF Similarity (Context Based)

For our second method, we used text-based similarity. We used all of the comments
in a project to (implicitly) calculate the similarity score between projects. In Figure 2,
we showed the most frequent words in the comments in the dataset to provide a rough
understanding of the corpus.

Figure 2. The corpus of comments words at a glance.
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1. We obtained all comments that belonging to commits, issues, and PRs from all projects.
Table 4 presents samples from issue comments.

Table 4. Issue comments at a glance.

User id Issue id Project id Body

55859 138 1

I’d like to see this commit, or at least this feature,
included. I’m trying to build something which
uses the time information for a distributed team
and I’d like to retain the timezone information . . .

145667 629 27
Here is a simpler example that I think shows the
problem better.\r \n require ŕubinius/debugger
. . .

. . . . . . . . . . . .

2. We applied text preprocessing to these documents.

• Convert all text into lower case.
• Remove all digits.
• Remove all punctuations.
• Remove stopwords.
• Remove extra whitespace.

3. We grouped all comments by projects and merged all comments into a single field
(using the comments column of Table 5).We thus aimed to generate one comment
document for each project.

Table 5. A sample project-developer matrix belongs to metricX

Comments Commit
Comments

Issue
Comments

Pull Request
Comments

Project-1 like included
exception . . . exception . . . like included . . . NaN

Project-2 . . . . . . . . . . . .
. . . . . . . . . . . . NaN

Project-n . . . NaN . . . . . .

4. The documents we generated were too large to be processed by an ordinary PC (The
average word count for each project’s issue comments was approximately 11,000).
Therefore, we decided to select the most n frequent words for each comment. We
applied Zipf’s law to determine the cutoff point (n) [37]. As seen in Figure 3, we
selected words with a rank greater than 100 and right of the second knee (function
words). Thus, we generated documents for all projects that each included a maximum
of 100 words.
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Figure 3. The zipf distributions of words in comments.

5. We calculated the TF-IDF similarity scores for all projects with the documents gener-
ated in the previous step using the Equations (3) and (4).

t f id fpt,d,Projectiq
“ t f pt, Projectiq ˚ id f pt, Projectiq (3)

similaritycontext_based
pPi ,Pjq

“ t f id f pProjectiq ˚ t f id f pProjectjq (4)

3.3.3. Handling Unknown Projects

After we calculated similarities using above two methods, we generated ratings of
unrated (unknown) projects for each developer. The similarity between unknown projects
(We assumed that unknown projects were those to which developers had no relationship
and had made no contributions.) and rated projects was used to calculate the rating of
known projects [5]. We calculated the rating of an unknown project using the dot product
of the similarity values between the projects that the user rated and the unknown project
(Equation (5)). An example scenario involving this calculation is presented in Figure 4.

unknownrating “

i
ÿ

n“0

knowni
rating ˚ similarityknowni ,unknown (5)

userX

Similarity scores
between project_D and

rated ones
Projects Ratings for

userX

0.17

0.78

0

4.92

Project_A
rating : 6

Project_B
rating : 5

Project_D
rating : NaN

Project_C
rating : 3

Figure 4. Calculating unrated project with the help of similarity rated projects.
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3.4. Evaluation Methods

RQ1: Can we offer new evaluation methods for GitHub project recommendation problem?

We recommended the top-n highest-rated projects among the unknown projects to
each developer. We then evaluated the recommendations using two methods we pro-
posed. When recommending projects to developers, there should be a ground truth for
evaluating the proposed projects. Unlike ordinary recommender systems, this is an unsu-
pervised model. The evaluation criteria used in some studies related to this subject are set
forth below.

• A project-user rating matrix was split randomly into test and training subsets. Ac-
curacy or recall scores were then calculated from the intersection between the top-n
scores of the test and train subsets [5]. However, another study argued that this
method should not be used on platforms like GitHub where time is an important
parameter, pointing out that problems would arise regarding predicting past activity
with future data will occur when using k-fold cross-validation by randomly dividing
the data [3].

• In another study, the accuracy of project recommendations was evaluated using the
developer’s past commits to the related project. A recommendation was assumed to
be correct if the number of commits a certain developer made to the project exceeded
a certain value. The average number of commits per project was set as the threshold
value in the dataset [27].

• In a study predicting whether a developer would join a project in the future, the
dataset was split into two different sets by time. In this way, the predicted result was
verified with actual future data [25].

• In a survey-based study, the authors asked respondents which features could be
used as a recommendation tool. Most of them stated that the languages in which
developers already coded or with which they were familiar were important for
recommendations [38].

In this study, we used two evaluation methods to analyze our proposed developer
metrics.

3.4.1. Community Relation Approach

First, with the community relation approach, we used GitHub’s watching and forking
features as the ground truth. GitHub users can follow, or watch projects whose develop-
ments they want to monitor [39]. If a developer is watching a project, this indicates that
he or she is interested in the project. Similarly, forking is used to contribute independently
to the project of interest [40]. Developers usually make changes in their forked project
(local branch) and can then send their contribution via PRs to base project (master branch).
External developers mostly use the fork-pull mechanism to contribute to projects of interest.
In this context, we believe that both of features are important for recommendations. While
we used “watching or forking” as an evaluation criteria, we fine-tuned the criteria as detailed
below.

The full name of a GitHub repository is created by concatenating the owner’s name
(login) with the repository name (e.g., davidteather/handtracking). In analyzing our
results, we noticed that the model recommended some project to developers that had
only the correct owner login or repository name. In other words, the model suggested an
incorrect project of the correct owner or the exact opposite. We evaluated these suggestions
as a half point (0.5), as recommending only the correct owner to a developer will still allow
the developer to to learn other projects by that owner. Similarly, if the model recommends
only a correct repository name with an incorrect owner, this indicates that it has suggested
the forked version of a correct repository. Thus, the related developer can discover with
the master (base) repository.
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An example scenario demonstrating this situation is given in Table 6. The projects
recommended for Alice are listed in the first column Table 6a. Two of them are among the
repos that Alice watches, with the two correct matchs, the initial score is 2. There are two
repos by a developer named fengmk2 among Alice’s watched projects (fengmk2/parameter
and fengmk2/cnpmjs.org) (Table 6b). The model suggested the project fengmk2/emoji that
belongs to a developer who Alice is familiar with him. Similarly, Alice watches a forked
project of visionmedia/co. Thus, two half -score are added to the initial score and 3: (2 + 0.5 +
0.5) is the final score.

Table 6. A sample scenario for recommending with correct and half matches.

(a) Recommendations for Alice

Top-5 recommendations Correct matches Half matches

visionmedia/co co
fengmk2/emoji fengmk2
iojs/io.js iojs/io.js
julgruber/co-read julgruber/co-read
koajs/compose/

(b) Alice’s watched repos

Score a Repo full names
Ë

adamwiggins/co
Ë

fengmk2/parameter
À

iojs/io.js
À

julgruber/co-read
Á

fengmk2/cnpmjs.org
. . . . . .
a À

: correct,
Ë

: half,
Á

:wrong.

We used the Equation (6) to calculate hit score (In other words, the scores of correct
recommendations). Our analysis showed that some developers had only a few watched
projects. Thus, the case of a developer interested in (watching or forking) fewer than n
projects was considered in the updated score Equation (6).

hitcommunity
score “

$

’

’

’

&

’

’

’

%

100 ˚
hit f ullname ` phitpartial ˚ 0.5q

n
, if numwatch_or_ f ork ě n

100 ˚
hit f ullname ` phitpartial ˚ 0.5q

numwatch_or_ f ork
, otherwise

(6)

To sum up, in this evaluation approach, if the recommended project is among the
developer’s watched or forked projects, the project is considered a hit.
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3.4.2. Language Experience Approach

With our second approach, we wanted to benefit from the developer’s coding language
experience. Thus, we processed the languages of projects and used the knowledge obtained
as an evaluation criterion. The projects in our dataset included 94 unique coding languages.
The most used 20 languages are shown in Figure 5. Due to the diversity of languages in the
dataset, we believe that the language feature can be used as another evaluation criterion.

Figure 5. The most common used languages in the dataset.

We extracted all programming languages for projects that developers owned or
watched or to which they made commits (Table 7). We aimed to discover the languages in
which a developer had any activity. We then sorted them by frequency and identified the
three most used languages (“expert languages” column in Table 7).

Table 7. The coding languages that experienced in past for each developer.

User id All Languages Expert Languages

21 [c, ruby, ruby, ruby, go, ruby, ruby, . . . ] [ruby, javascript, go]
13760 [objective-c, objective-c, c, haskell, . . . ] [objective-c, c, ruby]
3346407 [css, python, python, lua, c++, . . . ] [python, javascript, css]
. . . . . . . . .

Similarly, in this evaluation approach, if the recommended project’s language was
among a developer’s top languages, the project was considered a hit. This evaluation’s
scores were considerably higher than the first’s. However, our aim was to validate the
significant metrics with another evaluation criterion.

hitexperience
score “ 100 ˚

hitlanguage

n
(7)

In this way, we created a project recommendation model has been created for software
collaboration platforms. The algorithm of the recommendation model is presented in
Figure 6, starting with selecting a feature as a metric and ending with calculating hit scores.
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Step 1

Give score 
related project 

to developer

Find similarity
between projects

according to 
ratings or comments

Calculate new scores
with multiply the

existing similarity
scores

Step 2

Calculate 
scores of unknown

projects

METHOD 2

Calculate match count
between

top languages of user
and

top-n projects' language 

METHOD 1

Calculate match score
 between 

watched/forked projects 
and 

topN projects

for each match of
full-name
score += 1

for each match of
only 

owner or repo name
score += 0.5

(100*match count) / N

hit score / 100

Select a developer metric

Create developer - project score matrix

Recommend top-n projects among unknowns 
to each developer

Calculate hit score of a user

Calculate overall hit score

Figure 6. The flowchart of project recommendation system.

4. Empirical Results

We generated 40 different developer metrics that provide information about a de-
veloper’s past activity on a project. All metrics used were scaled from 0 to 10 using the
min-max normalization technique. The project-developer relationship was thus rated in
the range of 0 to 10 (as with a viewer’s rating of a movie). We then applied all of these
metrics to the project recommendation model and evaluated the results with the top 1, 3, 5,
10, and 20 recommendations hit scores.

4.1. Generating Developer Metrics

We created developer metrics using several methods. To extract metrics for a developer
in a project, we used the number of activities, the ratio between some number of activities,
and the status of whether an activity exists or not. First, using activities individually, we
created metrics called single metrics. We then combined the single metrics according to
common features to obtain the fusion metrics. Lastly, we created binary fusion metrics
indicating whether a particular activity existed in a project.
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4.1.1. Single Metrics

RQ2: Can we use the activities of GitHub users as a developer metric individually?

Developer activity on projects was handled as a metric. Activity includes all kinds of
comments, code contributions, revisions, and so on. In this section, all metrics were treated
individually in order to evaluate the significance of each. These metrics refer to the number
of activities per project for a given developer (Table 8).

Table 8. Single developer metrics definitions.

Metric Definition

1 issue_opened Number of issue opened
2 issue_commented Number of comment to issue
3 issue_closed Number of issue closed
4 issue_hasPR Number of issue that has a PR
5 issue_assigned Number of issue assigned
6 commit_commented Number of comment to commit
7 commit_authored Number of authorship in commit
8 commit_committed Number of commit
9 pr_opened Number of pull requests
10 pr_merged Number of PR merged
11 pr_assigned Number of PR assigned
12 pr_commented Number of comment to PR

In addition to these metrics, we calculated the optimized metrics from the values of
single developer metrics. We named these metrics with the prefix ’O_’. For example, name
of optimized pr_closed is O_pr_closed. We aimed to show the contribution ratio of each user
for each project. For example, John closed 10 PRs in a projectA, and 10 in projectB. The total
number of closed PRs is 100 in projectA and 1000 in projectB. Therefore, John contributed
much more to projectA (10% contribution) than to projectB (1% contribution), as his closing
PR ratio in projectA is higher. We calculated the rating with Equation (8).

O_activityx “
#_o f _activityuser

x

#_o f _total_activityproject
x

(8)

For comparison purposes, we added another metric proposed by Sun et. al. They
scored developers and projects using like, star, create activities and used textual data ex-
tracted from projects’ README and source code files to find project similarities [5]. Their
dataset included approximately 22,000 repositories and 1700 developers. In our dataset, the
ratio of number of developers to number of projects was approximately 1:400, in Sun et al.’s
study it was 1:14. We also planned to use this less sparsed dataset to make a fair comparison
but could not because the dataset was unshared. As we were unable to communicate with
the authors, we applied a very similar rating to our dataset.

4.1.2. Fusion Metrics

RQ3: Can new metrics be obtained by combining similar properties or activities?

In our results, we observed that some metric groups came to the forefront, especially
issue related metrics. New metrics can be proposed by grouping comments, code contribu-
tions, or other common feature metrics. Fusion metrics were created from combinations of
single metrics.

1. Sun’s metric: is mentioned previous section. It is metrics from similar study [5].
2. code_contributions: is created from the sum of all code contribution-related metrics.

code_contributions “ pr_opened` issue_opened` issue_hasPR` pr_merged` commit_committed (9)
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3. comments: is created from the sum of all comment-related metrics.

comments “ issue_commented` commit_commented` pr_commented (10)

4. issue_related: is created from the sum of all issue-related metrics.

issue_related “ issue_opened` issue_hasPR` issue_commented` issue_assigned (11)

5. pr_related is created from the sum of all PR-related metrics.

pr_related “ pr_opened` pr_merged` pr_closed` pr_assigned (12)

6. commit_related: is created from the sum of all commit-related metrics.

commit_related “ commit_commented` commit_authored` commit_committed (13)

7. commit2comment is created from the (commit_committed divided by commit_commented)

commit2comment “
commit_committed
commit_commented

(14)

8. issue2comment is created from the (issue_opened divided by issue_commented)

issue2comment “
issue_opened

issue_commented
(15)

9. pr2comment is created from the (pr_opened divided by pr_commented)

pr2comment “
pr_opened

pr_commented
(16)

10. code2comment is created from the ratio of two fusion metrics (contribution divided by
comment)

code2comment “
contribution

comment
(17)

4.1.3. Binary Fusion Metrics

RQ4: Is a user’s amount of activity important in the context of developer metrics?

The above metrics offer information about how many activities were made. For in-
stance, if John opened 18 issues in projectX, the John-projectX rating is 18. As an alternative,
a set of metrics was created that simply showed whether a given activity existed. For
instance, even so, if John opened an issue in projectX, the John-projectX rating is 1; if John
did not open an issue in projectY, the John-projectY rating is 0. We created the binary metrics
using the Equation (18) from the fusion metrics.

BinaryMetrics “

#

1, if SingleMetric ą 0
0, otherwise

(18)

Because of the binary metrics consisted only of 0 s and 1 s, we did not used them
directly. Instead, we created binary fusion metrics. We named these metrics with the prefix
‘binary_’; for example, the name of the binary fusion metric for comments is binary_comments.
from the binary metrics using the same equations while creating fusion metrics from the
single metrics.
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4.2. Project Recommendation Results

In this section, we showed the only top 1, 5, and 10 hit scores of the most significant
metrics. Most of the ratio-based fusion metrics and optimized single metrics were very
weak in all cases. Therefore, we removed them from the score tables below. The results of
all metrics according to all n values are provided in the Appendix A.

We used two similarity metrics to calculate project’s similarity scores. To evaluate
the accuracy of developer metrics, we used from two approaches. Thus, we give four
results for the recommendation system with the combinations of similarity methods and
evaluation approaches (Figure 7).

DEVELOPER METRICS

COMMUNITY
RELATION APPROACH

LANGUAGE
EXPERIENCE APPROACH

Fork or watch

Same code 
language

CONTEXT-FREE
(cosine similarity)

CONTEXT-BASED
(tf-idf similarity)

CONTEXT-FREE
(cosine similarity)

CONTEXT-BASED
(tf-idf similarity)

Top-n Results

1

2

3

4

Figure 7. The hit scores calculations with 4 different parameters combinations.

After we generated these single, fusion, and binary fusion metrics, we applied all
developer metrics to the model. We presented the hit scores percentiles that were obtained
according to the two evaluation approaches (detailed in the Section 3.4 ) in Tables 9 and 10.

In these tables, the columns represent the top-n hit scores in percentiles, and the green
(1st), blue (2nd), and red (3rd) cells show the leading metrics in each top-n scores. In
addition, we styled the most successful five metrics according to overall scores in bold.
We used the mean reciprocal rank (MRR) (It is commonly used in question-answering
systems. Here, we used number of models instead of number of queries.) evaluation
method (Equation (19)) to calculate this overall score where n represents the number of
models created (n:6).

scoreMRR “
1
n

n
ÿ

i“0

1
ranki

(19)

For example, as shown in Table 9, the MRR value of comments is calculated as in
Equation (20). The metric ranks for all metrics were used in each of the six models.

scorecomments
MRR “

1
6
˚ p

1
2
`

1
1
`

1
2
`

1
15
`

1
16
`

1
18
q “ 0.36 (20)

In addition to Tables 9 and 10, we presented all top-n hit scores charts of the most
successful five metrics (+1 Sun_metric) for each methods in Figures 8 and 9.

Table 9 shows the results of hit scores using the context-free and context-based sim-
ilarity methods as evaluated using the community relation approach. When the results
were analyzed, the pr_opened metric was the most successful according to MRR scores. As
PRs indicate projects to which a developer contributed directly, we believe that modeling
based on PR creation in a given project increases the success of the project recommendation
system. In addition, the fusion metrics comment, binary_pr_related, binary_issue_related, and
binary_comment also attracted our attention, as these metrics all related to commenting
activity. The results therefore indicate the importance of discussion on the collaboration
platforms.
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Table 9. Developer metrics scores according to evaluate with the community relation approach.

top1 top5 top10 top1 top5 top10 MRR

1 commit_authored 14.00 12.70 11.55 28.50 23.10 18.45 0.10

2 commit_commented 22.00 19.20 16.95 26.00 20.50 18.45 0.08

3 commit_committed 15.50 12.90 11.55 29.00 22.60 18.50 0.11

4 issue_assigned 7.00 8.30 7.50 26.50 17.40 14.25 0.06

5 issue_closed 11.50 8.10 6.25 20.00 14.80 13.15 0.05

6 issue_hasPR 26.00 17.90 16.20 34.00 24.20 21.70 0.25

7 issue_commented 30.00 25.50 23.80 22.00 18.20 16.95 0.20

8 issue_opened 23.00 20.70 18.70 26.00 22.10 18.65 0.10

9 pr_assigned 4.00 4.20 4.30 12.50 9.30 8.50 0.04

10 pr_commented 20.00 19.60 17.85 20.00 20.10 18.60 0.07

11 pr_merged 16.00 12.80 11.80 28.00 20.70 18.90 0.09

12 pr_opened 26.10 19.20 16.00 35.50 24.70 22.30 0.48

13 comments 31.00 26.50 24.15 22.00 19.30 16.95 0.36

14 code_contributions 23.00 22.20 21.00 24.00 20.50 18.25 0.09

15 commit_related 23.00 18.40 17.75 26.00 19.40 19.00 0.08

16 pr_related 25.00 23.60 22.05 22.00 23.90 20.10 0.15

17 issue_related 25.00 24.40 23.35 18.50 17.00 15.20 0.11

18 binary_commit_related 24.00 19.30 19.10 31.00 23.00 20.20 0.17

19 binary_pr_related 23.50 22.50 22.35 28.50 27.50 21.90 0.34

20 binary_issue_related 25.50 25.90 24.90 15.00 17.70 16.40 0.30

21 binary_code_contributions 24.00 24.40 23.55 22.00 20.70 18.05 0.12

22 binary_comments 32.00 24.80 23.35 17.50 18.80 17.60 0.26

23 O_issue_commented 22.00 21.20 19.25 15.00 13.00 12.25 0.06

24 code_2_comment 22.50 19.80 17.85 27.50 22.20 19.40 0.11

25 Sun_metric 8.00 7.60 7.75 14.50 11.50 9.90 0.04
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(b) context based similarity
Figure 8. The most successful 5 developer metrics all hit scores (community).

Table 10 shows the results of hit scores according to the context-free and context-based
similarity methods as evaluated using the language experience approach. This approach
elicited higher hit scores than the first approach as we expected. (In the community relation
approach, the model recommends the top-n projects of the approximately 40,000 projects.
On the contrary, the language experience approach makes only recommendation from
94 distinct language projects). However, it is important that evaluate the success rate of
the two approaches independently. The binary fusion metrics clearly stand out and most
fusion metrics gave better hit scores than single metrics. In this context, because a fusion
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metric represent many features about a developer, we believe that projects developed in
the languages in which the developer specializes are better explored. In addition, in this
approach, the binary_issue_related metric leads among the fusion metrics. The issue that
is the primary function of project management operations is the most crucial feature in
terms of developer-project correlation. Lastly, the results of Sun_metric drew attention here,
unlike with the previous approach.

Table 10. Developer metrics scores according to evaluate with the language experience approach.

top1 top5 top10 top1 top5 top10 MRR

1 commit_authored 23.00 35.60 36.30 65.00 58.80 57.00 0.05

2 commit_commented 74.00 57.60 51.90 72.00 66.60 63.90 0.10

3 commit_committed 23.00 35.60 35.30 65.00 57.60 55.70 0.04

4 issue_assigned 64.00 52.20 53.80 59.00 57.80 53.30 0.05

5 issue_closed 68.00 59.60 55.40 50.00 49.40 46.40 0.05

6 issue_hasPR 72.00 62.60 61.10 73.00 70.80 69.00 0.09

7 issue_commented 66.00 66.80 65.60 75.10 70.60 70.20 0.12

8 issue_opened 68.00 67.60 66.40 75.00 71.80 70.70 0.14

9 pr_assigned 44.00 26.60 20.50 36.00 30.00 29.80 0.04

10 pr_commented 48.00 47.80 48.00 60.00 61.40 60.10 0.05

11 pr_merged 74.00 50.40 45.00 65.00 62.20 60.30 0.08

12 pr_opened 70.00 61.80 61.10 70.00 69.20 68.30 0.08

13 comments 67.00 63.40 63.70 76.00 72.00 70.60 0.18

14 code_contributions 75.00 67.00 64.90 70.00 70.40 70.80 0.15

15 commit_related 69.00 61.80 60.10 72.00 67.60 64.50 0.07

16 pr_related 63.00 62.80 64.00 69.00 71.20 67.60 0.08

17 issue_related 74.00 71.80 67.30 76.00 71.40 69.60 0.20

18 binary_commit_related 72.00 64.60 60.40 70.00 69.20 65.90 0.08

19 binary_pr_related 70.00 67.00 66.50 78.00 77.40 74.40 0.45

20 binary_issue_related 86.00 77.40 74.40 75.00 72.60 75.00 0.65

21 binary_code_contributions 73.00 72.60 70.70 76.00 73.40 74.30 0.30

22 binary_comments 77.00 68.60 70.10 75.00 74.40 75.20 0.43

23 code_2_comment 52.00 61.00 61.20 65.00 70.20 68.90 0.07

24 O_issue_closedPR 73.00 55.80 51.20 60.00 56.60 57.20 0.06

25 Sun_metric 73.00 74.00 70.70 68.00 71.40 72.00 0.22

Degrees: 1st 2nd 3th
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Figure 9. The most successful five developer metrics all hit scores (experience).
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Analyzing both Tables 9 and 10 together, we saw that binary metrics were quite
successful. It is also a noteworty that comment-based metrics achieved higher scores than
code activity-based metrics.

4.3. Threats to Validity

The scope of this study was limited to active developers on GitHub. The first challenge
is whether these metrics will work well for inactive developers, a case resembling the
cold start problem in classic recommender systems. It is even more difficult to make
recommendations for inactive developers due to the comparative lack of information about
them. Our proposed metrics must therefore be analyzed in other datasets that include such
developers.

The project recommendation problem is important for collaboration platforms. GitHub
has recently started to offer project recommendations on the “Explore” page based on certain
user activities. Apart from the metrics we proposed, metrics applied to other challenges
can successfully be used for the recommendation problem. We encourage researchers to
work on this problem using different metrics.

Another problem involves studying private datasets for software engineering chal-
lenges. Making comparisons to studies that use different datasets can be challenging. In
this sense, our results are limited to our own dataset (which is public). Finally, unlike
classic recommender systems, there are no labeled data (ground truth) for our problem.
For this reason, we consider it important to create a labeled dataset that can be used to
work on the project recommendation systems for platforms such as GitHub.

5. Conclusions

We extracted different types of metrics using the number of activities, the ratio of some
metrics, and only the case of whether activity exists. To evaluate our metrics, we developed
a top-n project recommender system based on collaborative filtering using item similarity
logic which finds items similar to those with which a user has already interacted (e.g.,
liking, disliking, or rating). In our study, an interaction with an item refers to a contribution
to a project. We used two different methods to calculate the similarity between projects.
The context-based similarity method had a positive impact on the hit scores. We then
evaluated the accuracy of metrics with two particular approaches.

In a movie recommender system, the ground truth is users’ actual ratings. However,
there is no common evaluation baseline for GitHub project recommendation systems. Ac-
cordingly, in this paper, we proposed two approaches—community relation and language
experience—as ground truth. The community relation approach checks whether a devel-
oper has watched (or forked) a given project, while the language experience approach
uses as a baseline whether the language of the project is one in which the developer has
previous experience.

First, we extracted developer metrics for individual activities. Among these single
metrics, the most prominents were pr_opened, issue_hasPR, and issue_commented. In this
context, we believe that these metrics are adequate even when used individually to obtain
knowledge about developers. The crucial single metrics have common traits (such as the
issue feature or commenting activity). Next, we created some fusion metrics by combining
single metrics. Of these fusion metrics, the comments metric produced significant results.
Lastly, as we were curious about whether the amount of activity was important in the
context of developer metrics, we created the binary fusion metrics based on the case of
activities existence. Taking all results together, the peak scores were gained from these
metrics. In particular, the binary_issue_related and binary_comments were the most attention-
grabbing metrics.
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As PRs indicate projects to which a developer has contributed directly, we believe
that modeling based on PR creation in a given project increases the success of the project
recommendation system. The issue that is the primary function of project management
operations is the most crucial feature in developer–project correlation.

Our results indicate that quantity is not a crucial parameter for some metrics. For
example, the issue- and PR-related metrics are quantity-free metrics. Effectively, this means
that, when using these metrics, it is sufficient to know whether the feature in question is
present. Even if a developer contributes to only one issue on a project, the relation between
the developer and the project is tight. In this regard, it is revealing that this issue was a
significant feature for collaboration platforms.

In conclusion, we have proposed remarkable and improvable developer metrics based
on user activities in GitHub. In particular, we found that commenting on any feature was
as important as code contributions. Issue-related activities were also highly important in
developer metrics.

We took into consideration the challenge of the sparsity inherent in the nature of
GitHub. Despite the sparsity problem, our hit scores were notable compared with a similar
study, with most of our metrics more successful than their metric.

Finding similarities between documents is very difficult. In future research, we plan
to use word embedding (e.g., word2vec, GloVe, etc.) methods instead of TF-IDF. We
plan to apply the proposed metrics to different datasets for validation purposes. We are
curious about why some of the new developer metrics we presented became prominent. In
light of this study, we are planning another study involving a survey of junior and senior
developers whom we can contact to understand the ground truth of our metrics’ success
(especially metrics related to commenting activities). In addition, we plan to apply these
metrics to solve various problems. For instance, many developers, in addition to owners
and collaborators, can make contributions to projects thanks to the open-source nature of
GitHub. On some projects, external developers even contribute more than the core team.
These metrics can reveal developers’ contribution rankings on a particular project.
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Appendix A

Table A1. All developer metrics all scores to evaluate with the community approach (context-free).

top1 top3 top5 top10 top20 mean
1 binary_code_contributions 24.00 25.33 24.40 23.55 22.08 23.87
2 binary_comments 32.00 25.83 24.80 23.35 21.78 25.55
3 binary_commit_related 24.00 21.83 19.30 19.10 17.30 20.31
4 binary_issue_related 25.50 27.17 25.90 24.90 22.22 25.14
5 binary_pr_related 23.50 21.83 22.50 22.35 21.08 22.25
6 code_2_comment 22.50 21.00 19.80 17.85 15.82 19.39
7 code_contributions 23.00 22.33 22.20 21.00 19.23 21.55
8 comment_2_code 24.00 18.17 17.20 16.35 14.70 18.08
9 comments 31.00 24.67 26.50 24.15 22.40 25.74

10 commit_2_comment 14.00 10.33 10.30 9.75 7.65 10.41
11 commit_authored 14.00 12.17 12.70 11.55 10.45 12.17
12 commit_commented 22.00 20.17 19.20 16.95 14.65 18.59
13 commit_committed 15.50 12.33 12.90 11.55 10.20 12.50
14 commit_related 23.00 20.17 18.40 17.75 16.18 19.10
15 issue_2_comment 23.50 20.17 17.50 16.50 14.58 18.45
16 issue_assigned 7.00 8.83 8.30 7.50 5.95 7.52
17 issue_closed 11.50 9.50 8.10 6.25 5.98 8.27
18 issue_hasPR 26.00 20.83 17.90 16.20 14.90 19.17
19 issue_commented 30.00 26.17 25.50 23.80 23.40 25.77
20 issue_opened 23.00 21.67 20.70 18.70 16.77 20.17
21 issue_related 25.00 25.17 24.40 22.55 20.85 23.59
22 O_commit_authored 14.50 11.67 12.60 11.45 10.20 12.08
23 O_commit_commented 19.50 18.33 18.20 17.25 15.20 17.70
24 O_commit_committed 15.00 11.67 12.80 11.15 9.90 12.10
25 O_issue_assigned 7.00 8.83 8.30 7.50 5.95 7.52
26 O_issue_closed 11.50 9.50 8.10 6.25 5.98 8.27
27 O_issue_closedPR 16.00 16.00 14.40 14.00 12.88 14.66
28 O_issue_commented 22.00 23.17 21.20 19.25 17.62 20.65
29 O_issue_opened 15.00 15.17 15.80 15.40 15.48 15.37
30 O_pr_assigned 4.00 5.33 4.20 4.30 3.95 4.36
31 O_pr_commented 21.50 19.00 20.10 18.15 17.10 19.17
32 O_pr_merged 15.50 12.33 12.50 10.90 10.65 12.38
33 O_pr_opened 20.00 16.50 15.30 13.60 12.10 15.50
34 pr_2_comment 14.50 14.83 15.00 14.05 11.58 13.99
35 pr_assigned 4.00 5.33 4.20 4.30 3.95 4.36
36 pr_commented 20.00 18.00 19.60 17.85 15.50 18.19
37 pr_merged 16.00 13.00 12.80 11.80 11.18 12.96
38 pr_opened 26.00 19.83 19.20 16.00 14.20 19.05
39 pr_related 25.00 24.17 23.60 22.05 20.80 23.12
40 Sun_metric 8.00 7.00 7.60 7.75 7.63 7.60

Context-free similarity
ID Developer Metrics 

(community approach)
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Table A2. All developer metrics all scores to evaluate with the community approach (context-based).

top1 top3 top5 top10 top20 mean
1 binary_code_contributions 22.00 23.00 20.70 18.05 16.50 20.05
2 binary_comments 17.50 18.17 18.80 17.60 15.40 17.49
3 binary_commit_related 31.00 25.00 23.00 20.20 17.92 23.42
4 binary_issue_related 15.00 17.00 17.70 16.40 14.98 16.22
5 binary_pr_related 28.50 30.50 27.50 21.90 18.27 25.33
6 code_2_comment 27.50 22.17 22.20 19.40 17.12 21.68
7 code_contributions 24.00 22.17 20.50 18.25 15.22 20.03
8 comment_2_code 25.00 22.83 23.20 20.25 18.10 21.88
9 comments 22.00 20.00 19.30 16.95 14.75 18.60

10 commit_2_comment 25.00 20.83 18.30 14.35 12.18 18.13
11 commit_authored 28.50 24.50 23.10 18.45 15.35 21.98
12 commit_commented 26.00 20.50 20.50 18.45 15.60 20.21
13 commit_committed 29.00 24.50 22.60 18.50 15.28 21.98
14 commit_related 26.00 20.17 19.40 19.00 16.12 20.14
15 issue_2_comment 24.50 18.67 19.80 17.35 16.68 19.40
16 issue_assigned 26.50 19.50 17.40 14.25 11.85 17.90
17 issue_closed 20.00 17.67 14.80 13.15 11.55 15.43
18 issue_hasPR 34.00 29.83 24.20 21.70 18.02 25.55
19 issue_commented 22.00 18.83 18.20 16.95 15.08 18.21
20 issue_opened 26.00 22.33 22.10 18.65 16.05 21.03
21 issue_related 18.50 16.50 17.00 15.20 13.68 16.18
22 O_commit_authored 28.00 22.17 20.10 17.70 15.12 20.62
23 O_commit_commented 21.50 19.33 17.80 16.65 15.82 18.22
24 O_commit_committed 25.50 24.33 20.50 18.10 15.18 20.72
25 O_issue_assigned 17.00 17.50 14.40 12.70 10.32 14.38
26 O_issue_closed 13.00 10.83 10.20 10.40 9.02 10.69
27 O_issue_closedPR 21.00 18.33 16.60 14.50 12.82 16.65
28 O_issue_commented 15.00 13.67 13.00 12.25 11.10 13.00
29 O_issue_opened 16.50 15.83 15.60 13.00 12.65 14.72
30 O_pr_assigned 14.00 10.00 9.10 9.60 7.78 10.10
31 O_pr_commented 24.50 24.33 21.50 19.70 16.68 21.34
32 O_pr_merged 19.50 16.67 14.70 13.45 13.35 15.53
33 O_pr_opened 17.50 18.17 17.00 15.25 13.40 16.26
34 pr_2_comment 23.00 21.00 18.90 16.20 15.05 18.83
35 pr_assigned 12.50 10.67 9.30 8.50 7.55 9.70
36 pr_commented 20.00 21.83 20.10 18.60 16.15 19.34
37 pr_merged 28.00 21.33 20.70 18.90 17.05 21.20
38 pr_opened 35.50 29.50 24.70 22.30 18.95 26.19
39 pr_related 22.00 26.50 23.90 20.10 17.02 21.90
40 Sun_metric 14.50 12.00 11.50 9.90 8.95 11.37

ID
Context-based similarityDeveloper Metrics 

(community approach)
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Table A3. All developer metrics all scores to evaluate with the experience approach (context-free).

top1 top3 top5 top10 top20 mean
1 binary_code_contributions 73.00 74.67 72.60 70.70 70.00 72.19
2 binary_comments 77.00 70.33 68.60 70.10 69.30 71.07
3 binary_commit_related 72.00 65.33 64.60 60.40 57.20 63.91
4 binary_issue_related 86.00 80.00 77.40 74.40 71.95 77.95
5 binary_pr_related 70.00 69.00 67.00 66.50 64.85 67.47
6 code_2_comment 52.00 62.00 61.00 61.20 60.90 59.42
7 code_contributions 75.00 69.00 67.00 64.90 65.20 68.22
8 comment_2_code 59.00 61.67 61.40 62.30 61.15 61.10
9 comments 67.00 62.67 63.40 63.70 63.30 64.01

10 commit_2_comment 13.00 28.67 32.00 28.50 39.15 28.26
11 commit_authored 23.00 31.00 35.60 36.30 33.95 31.97
12 commit_commented 74.00 62.67 57.60 51.90 52.95 59.82
13 commit_committed 23.00 32.67 35.60 35.30 33.55 32.02
14 commit_related 69.00 63.67 61.80 60.10 57.45 62.40
15 issue_2_comment 65.00 66.67 64.60 64.50 63.05 64.76
16 issue_assigned 64.00 54.67 52.20 53.80 48.20 54.57
17 issue_closed 68.00 54.33 59.60 55.40 49.05 57.28
18 issue_hasPR 72.00 64.67 62.60 61.10 58.80 63.83
19 issue_commented 66.00 68.00 66.80 65.60 65.80 66.44
20 issue_opened 68.00 67.67 67.60 66.40 64.15 66.76
21 issue_related 74.00 71.33 71.80 67.30 65.40 69.97
22 O_commit_authored 23.00 31.67 36.00 37.10 34.05 32.36
23 O_commit_commented 73.00 60.33 55.80 51.20 53.15 58.70
24 O_commit_committed 22.00 32.00 35.20 34.80 33.05 31.41
25 O_issue_assigned 64.00 54.67 52.20 53.80 48.20 54.57
26 O_issue_closed 68.00 54.33 59.60 55.40 49.05 57.28
27 O_issue_closedPR 63.00 65.33 63.20 61.30 60.35 62.64
28 O_issue_commented 68.00 64.00 62.40 63.00 62.65 64.01
29 O_issue_opened 73.00 67.33 64.60 64.30 63.55 66.56
30 O_pr_assigned 44.00 29.33 26.60 20.50 21.30 28.35
31 O_pr_commented 48.00 45.67 47.80 48.00 50.15 47.92
32 O_pr_merged 74.00 55.67 50.40 45.00 47.40 54.49
33 O_pr_opened 70.00 63.33 61.80 61.10 62.00 63.65
34 pr_2_comment 58.00 53.33 54.80 56.60 52.95 55.14
35 pr_assigned 44.00 29.33 26.60 20.50 21.30 28.35
36 pr_commented 49.00 45.33 45.80 48.50 49.80 47.69
37 pr_merged 72.00 54.00 49.40 44.50 47.45 53.47
38 pr_opened 67.00 64.00 61.20 60.40 60.95 62.71
39 pr_related 63.00 62.33 62.80 64.00 63.70 63.17
40 Sun_metric 73.00 74.33 74.00 70.70 66.95 71.80

ID Developer Metrics 
(experience approach)

Context-free similarity
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Table A4. All developer metrics all scores to evaluate with the experience approach (context-based).

top1 top3 top5 top10 top20 mean
1 binary_code_contributions 76.00 73.33 73.40 74.30 72.15 73.84
2 binary_comments 75.00 72.00 74.40 75.20 73.20 73.96
3 binary_commit_related 70.00 67.67 69.20 65.90 64.45 67.44
4 binary_issue_related 75.00 71.67 72.60 75.00 73.50 73.55
5 binary_pr_related 78.00 78.67 77.40 74.40 72.25 76.14
6 code_2_comment 65.00 66.67 70.20 68.90 67.00 67.55
7 code_contributions 70.00 71.33 70.40 70.80 69.20 70.35
8 comment_2_code 60.00 68.33 67.60 67.40 66.95 66.06
9 comments 76.00 73.00 72.00 70.60 68.50 72.02

10 commit_2_comment 55.00 49.00 48.80 47.40 44.80 49.00
11 commit_authored 65.00 57.67 58.80 57.00 53.55 58.40
12 commit_commented 72.00 66.67 66.60 63.90 60.90 66.01
13 commit_committed 65.00 57.67 57.60 55.70 52.50 57.69
14 commit_related 72.00 67.67 67.60 64.50 63.55 67.06
15 issue_2_comment 66.00 68.67 70.80 70.50 68.75 68.94
16 issue_assigned 59.00 58.67 57.80 53.30 51.95 56.14
17 issue_closed 50.00 50.00 49.40 46.40 43.75 47.91
18 issue_hasPR 73.00 71.67 70.80 69.00 65.95 70.08
19 issue_commented 75.00 71.00 70.60 70.20 68.95 71.15
20 issue_opened 75.00 71.67 71.80 70.70 68.05 71.44
21 issue_related 76.00 73.00 71.40 69.60 68.70 71.74
22 O_commit_authored 61.00 57.00 57.40 53.10 51.15 55.93
23 O_commit_commented 65.00 69.00 67.60 65.20 61.45 65.65
24 O_commit_committed 60.00 56.00 54.80 51.30 50.05 54.43
25 O_issue_assigned 55.00 54.67 51.60 50.10 47.65 51.80
26 O_issue_closed 50.00 44.00 43.00 41.30 40.70 43.80
27 O_issue_closedPR 60.00 56.33 56.60 57.20 55.80 57.19
28 O_issue_commented 58.00 58.67 59.20 59.10 58.60 58.71
29 O_issue_opened 55.00 59.00 58.40 61.20 60.25 58.77
30 O_pr_assigned 36.00 31.33 30.60 30.00 28.90 31.37
31 O_pr_commented 62.00 65.33 64.20 61.80 59.00 62.47
32 O_pr_merged 60.00 57.67 57.80 57.90 55.50 57.77
33 O_pr_opened 55.00 54.67 53.00 54.60 55.75 54.60
34 pr_2_comment 58.00 58.00 56.40 54.60 53.20 56.04
35 pr_assigned 36.00 30.67 30.00 29.80 29.50 31.19
36 pr_commented 60.00 62.67 61.40 60.10 58.00 60.43
37 pr_merged 65.00 64.33 62.20 60.30 57.55 61.88
38 pr_opened 70.00 71.33 69.20 68.30 65.85 68.94
39 pr_related 69.00 71.00 71.20 67.60 67.15 69.19
40 Sun_metric 68.00 71.33 71.40 72.00 69.75 70.50

ID
Developer Metrics 

(experience approach)
Context-based similarity
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