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Abstract: Water hammer wave is widely applied to test hydraulic components in various areas. A
new hydraulic high-pressure impulse generator is presented in this paper in order to provide the
standard water hammer wave for long-term usage. A combination of a sleeve and a rotary spool
was used to build the impulse generator, and a booster piston was applied to amplify the output
pressure. Mathematical models were established using commercial software, and a prototype and a
test rig were built based on the simulation results. The experimental results for both single wave
and repeated periods show the feasibility of the new design and indicate that the new hydraulic
high-pressure impulse generator can be used for long-time impulse tests.

Keywords: pressure impulse; water hammer wave; impulse generator; rotary valve

1. Introduction

The failure of hydraulic components can have serious consequences, especially when
advanced hydraulic systems applied in the aeronautics and astronautics areas involve a
complex system structure for meeting the strict standards of compactness [1]. Hydraulic
pressure impulses are known as a critical cause of damage to hydraulic components [2].
These impulses are generated by an instantaneous compression of the oil, for instance,
at the moment of pumping oil through a volumetric pump [3–5], opening/closing valve
orifices, or changing the flow direction of oil [6]. Since the hydraulic pressure impulse
is obviously undesirable but inevitable in any hydraulic component, it is reasonable,
particularly in industries, to perform impulse tests on randomly selected samples to
guarantee the reliability of an entire batch of products.

The American Society of Automotive Engineers (SAE) and ISO consider the water
hammer wave or the hydraulic shock as one main pressure impulse wave standard for
the impulse testing of hydraulic hoses, tubing, and fitting assemblies [7–9]. The standard
pressure/time curves of the wave are shown in Figure 1. Since the produced trace of the
dynamic pressure impulse should be mandatorily confined within the shaded area shown
in Figure 1 [8], the development of the pressure impulse generator is increasingly important
for achieving an acceptable hydraulic pressure impulse output.

Further, the build-up standard of the pressure impulse generator proposed by the
SAE [10] is widely used by researchers. Generally, pressure impulse generators can be
divided into two types based on their controllability and adjustability characteristics. The
first type focuses on realizing the produced pressure impulse as close as possible to the
hydraulic impulse occurring under actual working conditions. A proportional valve or
a servo valve driven by an electromechanical actuator can help establish a close-loop
feedback system to obtain the required output pressure impulse signals. Song et al. set
up hydraulic-impulse-testing equipment with an oil pump controlled by a solenoid servo
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valve and modeled the transfer function of the whole system [11]. Man et al. designed a
hydraulic-impulse-testing system with a second-stage servo valve and used the pressure
difference feedback signal to achieve accurate output control [12]. In another study, Man
et al. used accumulators for energy regeneration to reduce the energy consumption of
the testing system for long-term usage [13]. Recently, Filo et al. used a flow control valve
to establish a pressure pulse generator [14]; by employing a fuzzy logic controller, they
simultaneously obtained the required pressure square wave and a continuously square
flow rate.
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Figure 1. Standard water hammer wave. 

Adopting a different approach, other research groups focused on providing accepta-
ble pressure impulse waves with different frequencies for long-duration industrial tests 
such as reliability and performance tests. Unlike the approaches listed in the previous 
paragraph, these groups attempted to extend the lifetime of the pressure impulse genera-
tor and reduce the manufacturing cost. For instance, it is hard to guarantee that the 
sevro/proportional valve would have a longer life time than the tested hydraulic compo-
nent when a close-loop feedback system is applied for generating a million pressure im-
pulse waves in a reliability test; further, there exists the concern of the potential high ex-
penditure of the valve. Therefore, a simple and open-loop system is desirable. To simplify 
the structure, Chen used a profiled cam to drive a single-rod hydraulic cylinder to gener-
ate the pressure impulse wave; the rotational speed of the cam indicates the frequency of 
the output signal [15]. Drop-weight method too has been commonly applied to develop 
impulse pressure generators [16,17]; however, this method can hardly provide even a 
rough water hammer wave. Theimer and Kolle designed a hydraulic pulse valve with a 
rotary spool and improved the sleeve to achieve longer wear life and better performance; 
these features will can help establish an open-loop system that generates the required 
pressure impulse signals [18]. 

This paper proposes a new hydraulic impulse generator for long-time impulse tests 
under high pressure. The main part of the generator contains a rotary valve to produce 
the required pressure impulse wave by successively connecting different pressure sources 
and a pressure-boost cylinder to increase the output pressure to the aim level. A mathe-
matical model was developed based on the design and working principle, and subse-
quently, a simulation analysis was performed. Finally, a prototype was manufactured and 
assembled for testing its feasibility. 

  

Figure 1. Standard water hammer wave.

Adopting a different approach, other research groups focused on providing acceptable
pressure impulse waves with different frequencies for long-duration industrial tests such as
reliability and performance tests. Unlike the approaches listed in the previous paragraph,
these groups attempted to extend the lifetime of the pressure impulse generator and reduce
the manufacturing cost. For instance, it is hard to guarantee that the sevro/proportional
valve would have a longer life time than the tested hydraulic component when a close-
loop feedback system is applied for generating a million pressure impulse waves in a
reliability test; further, there exists the concern of the potential high expenditure of the
valve. Therefore, a simple and open-loop system is desirable. To simplify the structure,
Chen used a profiled cam to drive a single-rod hydraulic cylinder to generate the pressure
impulse wave; the rotational speed of the cam indicates the frequency of the output
signal [15]. Drop-weight method too has been commonly applied to develop impulse
pressure generators [16,17]; however, this method can hardly provide even a rough water
hammer wave. Theimer and Kolle designed a hydraulic pulse valve with a rotary spool
and improved the sleeve to achieve longer wear life and better performance; these features
will can help establish an open-loop system that generates the required pressure impulse
signals [18].

This paper proposes a new hydraulic impulse generator for long-time impulse tests
under high pressure. The main part of the generator contains a rotary valve to produce the
required pressure impulse wave by successively connecting different pressure sources and
a pressure-boost cylinder to increase the output pressure to the aim level. A mathematical
model was developed based on the design and working principle, and subsequently, a
simulation analysis was performed. Finally, a prototype was manufactured and assembled
for testing its feasibility.
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2. Structure and Working Principles

The main architecture of the new hydraulic impulse generator, as shown in Figure 2,
can be divided into two parts. The left part, which is considered as the booster part,
comprises a left block (3) with an asymmetric booster piston (4) and a connecter (2) that is
connected to the tested hydraulic component (1). The booster piston partitions the interior
into four chambers with different functions. The high-pressure chamber (A) forms the
inner space of the tested components and is filled with the hydraulic oil for transmitting
the pressure signals. The withdraw chamber (B) is connected to the rated pressure source
(pR) and contributes to increasing the declining slope of pressure signals. The air chamber
(C) is connected to the air, and the low-pressure chamber (D) filled with hydraulic oil is
directly connected to the output of the impulse generator part, a rotary spool (8), and
electro motor (10). The impulse generator part has a right block (6) with a sleeve (7) inside.
The rotary spool is supported by two deep groove ball bearings and a thrust bearing for
the axial force balance. The electro motor is solidly set on a motor base (9) to drive the
rotary spool rotating in the sleeve. The setup of the sleeve and rotary spool is shown in
Figure 3. Three pairs of windows are symmetrically set on the sleeve, and from left to
right, they are sequentially but independently connected to the back pressure (pT), peak
pressure source (pP), and rated pressure source (pR). Since a couple of rectangular slots
is also symmetrically located on the rotary spool and connected to the central drilling as
shown in Figure 2, each window is scanned by the slot when the spool is rotated using
the electro motor. Thus, the pressure signals from three different sources are obtained by
the slot and outputted into the low-pressure chamber through the throttle valve (5) twice
per revolution. Meanwhile, several small oblique holes on the right side of the drilling
connect the two sides of the rotary spool to reduce the axial hydraulic unbalancing force.
Thereafter, the pressure impulse signal is amplified by means of the booster piston and
transferred to the high-pressure chamber to produce the required pressure waves for the
tested hydraulic components.
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Figure 2. Structure of the new hydraulic impulse generator. Here, 1 indicates the tested hydraulic 
components; 2, the connecter; 3, the left block; 4, the booster piston; 5, the throttle valve; 6, the 
right block; 7, the sleeve; 8, the rotary spool; 9, the motor base; 10, the electro motor. Further, A 
indicates the high-pressure chamber; B, the withdraw chamber; C, the air chamber; D, the low-
pressure chamber; E, the inner space of the spool. 

Figure 2. Structure of the new hydraulic impulse generator. Here, 1 indicates the tested hydraulic components; 2, the
connecter; 3, the left block; 4, the booster piston; 5, the throttle valve; 6, the right block; 7, the sleeve; 8, the rotary spool; 9,
the motor base; 10, the electro motor. Further, A indicates the high-pressure chamber; B, the withdraw chamber; C, the air
chamber; D, the low-pressure chamber; E, the inner space of the spool.
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Figure 3. Schematic assembling diagram of the sleeve and the spool. The blue rectangle represents
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3. Mathematical Models

Since the impulse generator part and the booster part are connected, the low-pressure
chamber plays a critical role in this device. Assuming that the booster piston is located at
the right end of the stroke for the initialization, the low-pressure chamber has the minimum
volume, and at the moment depicted in Figure 2, the rotary spool starts rotating. The
instantaneous pressure in the chamber is governed by the following pressure build-up
equation [19].

dpD
dt

= −βe

dVD
dt + Q

VD
, (1)

where pD is the instantaneous pressure in the low-pressure chamber; t, the time since
the rotation started; βe, the bulk modulus of the hydraulic oil; VD, the volume of the
low-pressure chamber; Q, is the flow rate passing through the throttle valve as shown in
Equation (4). Further, the volume of the low-pressure chamber and its time variation are
shown in Equations (2) and (3), respectively.

VD = VD0 +
π

4
DD

2·xB (2)

where VD0 is the minimum volume of the low-pressure chamber; DD is the diameter of the
right end of the booster piston as shown in Figure 2; xB is the stroke of the booster piston.

dVD
dt

=
π

4
DD

2·dxB
dt

(3)

Q = Cd Ao

√
2|pD − pin|

ρ
sign(pD − pin) (4)

where Cd is the orifice coefficient [19]; Ao, the cross-sectional area of the throttle valve; ρ,
the oil density; pin, the pressure of the inner space of spool and can be described as follows.

dpin
dt

= −βe
QP + QR + QT −Q

Vin
(5)

where QP, QR, and QT are three flow rates related to the peak pressure source, rated
pressure source, and back pressure, respectively, and Vin is the volume of the inner space
of the spool.

As seen in Figures 3 and 4b, the inner space of spool can only be connected to one
pressure source at any time, especially under the assumption of no leakage among the
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three pressure sources. Therefore, the three flow rates are directly determined by the
cross-sectional areas and are given as shown in Equation (6a–c).

QP = 2Cd AP

√
2|pin − pP|

ρ
sign(pin − pP) (6a)

QR = 2Cd AR

√
2|pin − pR|

ρ
sign(pin − pR) (6b)

QT = 2Cd AT

√
2|pin − pT |

ρ
sign(pin − pT), (6c)

where pP, pR, and pT are the pressure values of the peak pressure source and rated pressure
source and the back pressure, respectively. They are all considered as constants. AP, AR,
and AT (Figure 4b), are the cross-sectional areas related to the three pressure sources. These
areas are defined by the overlaps of the windows on the sleeve and the slots on the rotary
spool as shown in Equation (7a–c).

AP =


1
2 LPθd 0 ≤ θ ≤ 2HP

d
LPHP

2HP
d < θ ≤ 2HS

d
1
2 LP

(
2H1

d − θ
)

d 2HS
d < θ ≤ 2H1

d

(7a)

AR =


1
2 LR

(
θ − 2H1

d

)
d 2H1

d < θ ≤ 2H1
d + 2HS

d

LRHS
2(H1+HS)

d < θ ≤ 2H1
d + 2HR

d
1
2 LR

(
2H2

d − θ
)

d 2(H1+HR)
d < θ ≤ 2H2

d

(7b)

AT =


1
2 LT

(
θ − 2H2

d

)
d 2H2

d < θ ≤ 2H2
d + 2HS

d

LT HS
2(H2+HS)

d < θ ≤ 2H2
d + 2HT

d
1
2 LT(H3 − θ)d 2(H2+HT)

d < θ ≤ H3

(7c)

where θ is in radians. Further, d is the diameter of the spool; LP, LR, LT , HP, HR, HT ,
and HS are dimensions (see Figure 4); H1 = HP + HS, H2 = HP + HR + 2HS, and
H3 = HP + HR + HT + 3HS are used to simplify the description.
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Note that θ is considered as the product of time and the input rotational speed, n.
Therefore, the change in the cross-sectional areas can be expressed by substituting for θ
from Equation (7).

θ = 2πnt. (8)

Therefore, the instantaneous pressure in the low-pressure chamber, pD, can be calcu-
lated by substituting Equations (2)–(5) into Equation (1). Then, for the no-load condition,
the force-balance equation of the booster piston is established through Newton’s second
law and is shown in Equation (9).

pD AD − pA AA − pB AB − pC AC = m
d2xB

dt2 + B
dxB
dt

(9)

where AA, AB, AC, and AD are the axial shadow areas of the chambers indicated by the
subscripts. They are calculated using the corresponding diameters. Owing to the simplicity
of this calculation, it is not repeated here. Further, pA, pB, and pC are the pressures of the
chambers indicated by the subscripts; pB is the rated pressure and pC is the atmospheric
pressure; m is the mass of the booster piston; B is the viscosity damping coefficient.

The pressure build-up equation used for the instantaneous pressure in the high-
pressure chamber, pA, can be seen as Equation (10) since this chamber is connected to the
inner chamber of the tested hydraulic components without any flow.

dpA
dt

= −βe

dVA
dt

VA
= βe

π
4 DA

2· dxB
dt

VA
(10)

where VA0 is the maximum volume of the high-pressure chamber:

VA = VA0 −
π

4
DA

2·xB.

As the output frequency of the impulse generator is twice per rotation, the relationship
between the output frequency of the pressure wave, f , and the input rotational speed, n, is
as shown in Equation (11).

f = 2n (11)

4. Simulation Analysis

To investigate the feasibility of the design and to optimize same critical parameters, a
mathematic model was established using commercial software. The Runge–Kutta method
was employed to solve the partial differential equations. To obtain a water hammer output
wave with 25 MPa rated pressure, a series simulation was performed by applying the
parameters listed in Table 1 as the initial values.

For a water hammer wave, the rate of pressure rise is an important but hidden
parameter among the parameters shown in Figure 1. According to the ISO standard [8],
a water hammer wave should be at the range of 0.42–2.1 Mpa/ms. Since the proposed
design uses a rotary valve to form the wave, the pressure is built-up rapidly as the window
is opened. Therefore, the rate of increase in pressure may exceed the range that can be
controlled by a throttle valve, as shown in Figure 2. The effects of changing the diameter of
the throttle valve, DT , are shown in Figure 5. It is easy to conclude that diameters higher
than the default value lead to unacceptable slopes. Both 1 and 0.7 mm diameters of the
throttle valve result in smaller slopes, but the slopes become lower than the minimum rate
at the end of the rises.



Appl. Sci. 2021, 11, 901 7 of 13

Table 1. Critical parameters.

Name Value Name Value

Input rated pressure pR 6.7 Mpa Height of window P HP 1.5 mm
Input peak pressure pP 9.8 Mpa Length of window P LP 8 mm
Input back pressure pT 0.1 Mpa Height of window R HR 7.4 mm

Diameter of booster piston DA 25 mm Length of window R LR 4 mm
Diameter of booster piston DB 28 mm Height of window T HT 15.6 mm
Diameter of booster piston DD 50 mm Length of window T LT 3.6 mm
Diameter of throttle valve DT 1 mm Height of slot HS 1.5 mm

Diameter of rotary spool d 22 mm Stroke of booster piston xB 10 mm

Mass of booster piston m 0.62 kg Minimum volume of the
low-pressure chamber VD0

21.7 cm3

Orifice coefficient Cd 0.62 Maximum volume of the
high-pressure chamber VA0

9.8 cm3

Viscosity damping coefficient
B 0.1 N/(m/s) Volume of the inner space of

spool Vin
3.4 cm3

Oil density ρ 850 kg/m3 Bulk modulus of hydraulic oil
βe

1400 Mpa

Rotational speed range n 20–40 rpm
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Figure 5 Figure 5. Effect of different diameters of the throttle valve. (a) The complete, dimensionless figure.

(b) Magnified view of a part of the figure shown in (a).
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A notable difference between the default curve shown in Figure 5a and the standard
curve shown in Figure 1 is in the form of the peak. The height of window P, HP, and the
height of the slot, HS, are so large that the peak of the pressure curve is flattened. Figure 6
shows the results when both parameters are reduced simultaneously. Apparently, a smaller
height corresponds to a sharper peak. However, reduction of either of the two parameters
can cause a reduction of the wave’s duty cycle and the curve may exceed the tolerance
range. This result implies that the height of window R, HR, should be increased.

After a comprehensive consideration, a new table with the updated parameters was
proposed in Table 2 listed in the next section, and the corresponding simulation result is
shown in Figure 7.
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Table 2. Updated parameters.

Name Value Name Value

Input peak pressure
pP

10.3 Mpa Height of window P
HP

0.8 mm

Diameter of throttle
valve DT

0.8 mm Height of window R
HR

9.4 mm

Height of slot HS 0.8 mm
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Besides, before practical application, it is necessary to evaluate the influence of some
unpredictable factors that can deform the ideal curve. For instance, because the hydraulic
system can hardly be isolated from air, the hydraulic oil inevitably has dissolved air or even
entrained air; the presence of air results in a drastic decrease in the bulk modulus [20,21].
The volume of the high-pressure chamber, VA0, is related to the inner space of the tested
hydraulic components. This inner space too should be studied well considering the lack
of knowledge regarding inner spaces. The effects of different values of the bulk modulus
and volume of the high-pressure chamber are shown in Figure 8a,b, respectively. An
increase in either the bulk modulus or the volume of the high-pressure chamber leads to
a decrease in the peak pressure and in the slopes of pressure rise. Therefore, considering
the effects of different values of the bulk modulus, a strict exhaust procedure should
be implemented after filling the hydraulic oil in to the system. Further, with regard to
the unpredictable volume of the high-pressure chamber, it is highly recommended that
the diameter of the throttle valve and the input peak pressure for each tested hydraulic
component be customized.
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Figure 8. Evaluation of the unpredictable factors. (a) Effect of different values of the bulk modulus.
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5. Experimental Results

As shown in Figure 9a, the hydraulic system for the new hydraulic high-pressure
impulse generator consists of an impulse generator designed considering all the parameters
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listed in Tables 1 and 2, a gear pump and a relief valve to provide the input peak pressure, a
flow-control valve to obtain a pressure drop, another relief valve to maintain the rated input
pressure, and a pressurized tank to provide the back pressure. Two input pressure values
are monitored by pressure gages, whereas the output pressure is observed and recorded
by the pressure sensor which is set on the connecter part as in Figure 9b. The sampling
frequency of the output pressure is 100 Hz as considered the long-duration application.
The details of critical hydraulic components are listed in Table 3.

Table 3. Details of the hydraulic components.

Name Description

Gear pump 20 Mpa rated pressure, 3 mL displacement,
2500 r/min rated rotational speed

Relief valve Controllable pressure 0–20 Mpa
Motor 1.5 kw, 1430 r/min

Pressure sensor Range 0–400 bar, accuracy ± 0.3%
Hydraulic oil 45# anti-wear hydraulic oilAppl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 12 
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rig. (b) An overview of the test rig.

Before the start of the test, an exhaust procedure was performed, and the oil temper-
ature was set at around 25 ◦C under constant room temperature and monitored by the
temperature transducer on the tank. The motor was controlled to rotate at 30 rpm to obtain
1-Hz water hammer waves.

Figure 10 illustrates the simulation results and the experimental data for one period. It
is obvious to notice the good consistency between calculations and experiments except the
rate of pressure rise. The experimental results indicate a higher rate, which is most likely
caused by the unpredictable volume of the high-pressure chamber as shown in Figure 8b.
Besides, although the whole experimental curve is within the limited area, the pressure
peak is flat at the 150% rated pressure for a short time (around 10 ms). The most likely
reason for this phenomenon is the 100 Hz sampling frequency is insufficient to obtain
the real peak point of pressure. The results for randomly selected 10 continuous periods
are shown in Figure 11. In this figure, it can be seen that the peak pressure points of all
10 waves is below 155% of rated pressure (25 Mpa), but there are two of them larger than
150% of rated pressure (25 Mpa). This also certifies the analysis result for the above flat
pressure peak. However, the results in Figure 11 prove that this impulse generator can
provide well-repeated water hammer waves until any component of the test rig fails.
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Figure 11. Repeatability results for 10 periods.

6. Conclusions

In this paper, a new hydraulic high-pressure impulse generator is proposed for pro-
viding the standard water hammer wave for long-term usage. The proposed generator
has a simple and open-looped structure. The architecture and the working principle are
introduced together with the established mathematical models.

In the study, the simulation results based on a commercial software guided the op-
timization of critical parameters and also provided potential factors that influence the
formation of the standard water hammer wave. Subsequently, a test rig was manufactured.
The experimental results show the feasibility of the new impulse generator. The specific
advantages and limitations of the novel setup are as follows:

1. By simply combining a sleeve with three pairs of windows connected to different
pressure sources and a rotary spool with two symmetric slots, the standard water
hammer wave can be generated easily. The booster piston here can drastically reduce
the input pressure. Thus, the system comprises hydraulic components that are easily
available and durable for long-duration tests.
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2. To obtain the standard water hammer wave accurately, a throttle valve inside the
rotary valve is used to control the rate of pressure rise. A withdraw chamber on
the booster piston is designed to ensure that the wave decays as soon as possible.
The pressure gradients and heights of the three windows are carefully designed and
optimized to maintain the main body of the wave.

3. The primary limitation of the new impulse generator is that the parameters are gener-
ally designed for one tested hydraulic component at a time. The simulation results
indicate that capacity for modification for different tested hydraulic components is
not good. The rotary valve part requires redesigning when the working condition
is changed.

In conclusion, this new impulse generator has a simple structure and is built using
easily available hydraulic components. Hence, the manufacturing cost is low, and the
generator is suitable for repeatability tests or durability tests on hydraulic components.
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