
applied
sciences

Article

Constructing More Complete Control Flow Graphs Utilizing
Directed Gray-Box Fuzzing

Kailong Zhu , Yuliang Lu *, Hui Huang, Lu Yu and Jiazhen Zhao

����������
�������

Citation: Zhu, K.; Lu, Y.; Huang, H.;

Yu, L.; Zhao, J. Constructing More

Complete Control Flow Graphs

Utilizing Directed Gray-Box Fuzzing.

Appl. Sci. 2021, 11, 1351.

https://doi.org/10.3390/app11031351

Academic Editor: Ricardo

Colomo-Palacios

Received: 12 January 2021

Accepted: 25 January 2021

Published: 2 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China;
zhukailong@nudt.edu.cn (K.Z.); hhui_123@163.com (H.H.); yulu@nudt.edu.cn (L.Y.);
jiazhenzhao@nudt.edu.cn (J.Z.)
* Correspondence: cee401_nudt@126.com

Abstract: Control Flow Graphs (CFGs) provide fundamental data for many program analyses, such
as malware analysis, vulnerability detection, code similarity analysis, etc. Existing techniques for
constructing control flow graphs include static, dynamic, and hybrid analysis, which each having
their own advantages and disadvantages. However, due to the difficulty of resolving indirect jump
relations, the existing techniques are limited in completeness. In this paper, we propose a practical
technique that applies static analysis and dynamic analysis to construct more complete control flow
graphs. The main innovation of our approach is to adopt directed gray-box fuzzing (DGF) instead of
coverage-based gray-box fuzzing (CGF) used in the existing approach to generate test cases that can
exercise indirect jumps. We first employ a static analysis to construct the static CFGs without indirect
jump relations. Then, we utilize directed gray-box fuzzing to generate test cases and resolve indirect
jump relations by monitoring the execution traces of these test cases. Finally, we combine the static
CFGs with indirect jump relations to construct more complete CFGs. In addition, we also propose
an iterative feedback mechanism to further improve the completeness of CFGs. We have implemented
our technique in a prototype and evaluated it through comparing with the existing approaches on
eight benchmarks. The results show that our prototype can resolve more indirect jump relations and
construct more complete CFGs than existing approaches.

Keywords: control flow graph; hybrid analysis; directed gray-box fuzzing; indirect jump relations

1. Introduction

A control flow graph (CFG) represents all paths of a program that might be traversed
during execution and is a fundamental data structure in program analysis. In a CFG,
nodes represent basic blocks of instructions and directed edges represent jumps in the
control flow. The CFG lays foundation for many other program analysis techniques, such
as data flow analysis [1,2], taint analysis [3,4], and symbolic execution [5–7]. The CFG
is also widely applied in program verification [8,9], malware detection [10–13], code
similarity analysis[14–16], and software vulnerability detection [17,18]. Therefore, utilizing
appropriate approaches to construct complete and precise CFG is necessary.

However, indirect jumps bring challenges to constructing complete CFGs [19]. In C/C++
programs, a program’s jump can be categorized as direct or indirect. A direct jump has
a statically specified target which points to a single location in the program, whereas an
indirect branch has a dynamically specified target which may point to any number of
locations in the program. Indirect jumps are commonly used to realize dynamic program
behaviors by implementing common programming constructs, such as virtual function
calls and calls through function pointers. Although indirect jumps are common and useful,
due to their dynamic nature, it is usually difficult to resolve the target of an indirect jump
through static analysis. This leads to inherent challenges in constructing complete CFGs.

Current solutions for CFG construction fall into three categories: static analysis,
dynamic analysis, and hybrid analysis. Static techniques [20–22] do not need to concrete

Appl. Sci. 2021, 11, 1351. https://doi.org/10.3390/app11031351 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5241-0157
https://doi.org/10.3390/app11031351
https://doi.org/10.3390/app11031351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11031351
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/1351?type=check_update&version=1

Appl. Sci. 2021, 11, 1351 2 of 21

execute of target programs, and only need to analyze the code to understand the program
structure. The approaches can traverse the whole program code and has the advantages
of high coverage and low time cost. Therefore, static analysis tools for constructing CFGs,
such as IDA Pro [20] for binary code and LLVM [22] for source code, are widely applied in
various program analyses. However, static techniques have poor completeness because it
is difficult to resolve indirect jump relations statically.

Dynamic techniques execute programs on a set of test cases and extract the control
flow information from the execution traces. The approaches can resolve a certain of indirect
jumps and discover precise control flow. However, the completeness of the CFG constructed
by the approaches depends on the capability of the test cases to cover indirect jumps.
In order to improve the coverage of test cases, Xu et al. [23] proposed to systematically
force a program’s execution to explore both branches of each conditional. However, because
forced execution is a heavyweight analysis technique, the approach still has poor coverage
in analysis of large-scale programs.

In recent years, hybrid techniques [24–27] have been proposed to resolve indirect
jumps that cannot be handled by pure static analyses, and to improve the completeness of
CFGs. Babic et al. [24] combined dynamic and static techniques to construct CFGs. They
computed an underapproximation of the transition relation by resolving indirect jumps
with a set of seed tests, and augmenting the computed relation with statically computed
direct jumps. In their approach, the completeness of CFGs still depends on the coverage
of the seed test cases. However, in their work, they only generated test cases randomly
and did not study how to generate effective test cases. Zhu et al. [26] proposed using
coverage-based gray-box fuzzing (CGF) to generate test cases to handle indirect jumps.

Gray-box fuzzing is a scalable and practical approach to software testing. It is widely
applied to vulnerability detection and test case generation. Existing gray-box fuzzers
usually use an evolutionary algorithm to generate test cases based on the feedback in-
formation from the execution. CGF is the most prevalent fuzzing scheme, which guides
test case generation with the coverage information and aims to generate test cases which
can achieve the maximum code coverage. CGF uses lightweight instrumentation to gain
coverage information during runtime. Test cases exercising new path are added to the seed
pool, and new test cases are generated by mutating the inputs in the seed pool. AFL is
the state-of-the-art coverage-based gray-box fuzzer. It and its extensions have shown high
practicability and scalability in vulnerability detection.

Zhu et al. [26] used CGF for the first time in CFG construction and resolved a certain
of indirect jumps. Nevertheless, the purpose of CGF is to improve the coverage of the
whole program, not the coverage of indirect jumps. The approach spends a lot of resources
to test the code unrelated to indirect jumps. Therefore, it cannot exercise indirect jumps
efficiently, which resulting in the constructed CFG is not enough completeness.

In summary, the hybrid analysis is a promising approach to construct more complete
and precise CFGs. How to generate test cases that exercise more indirect jumps is the key
of hybrid approaches. In the state-of-the-art approach to constructing CFGs, the test case
generation still faces the following problems.

• Undirected. In order to resolve indirect jumps, the existing approaches use CGF
to generate test cases. CGF seeks to increase the coverage of a seed tests for entire
analyzed program rather than indirect jumps. However, stressing code unrelated
to indirect jumps is a waste of resources in constructing CFGs. Therefore, CGF
is considered to be undirected and unable to resolve indirect jumps efficiently in
CFG construction.

• Unsustainable. The existing CGF uses coverage information obtained during runtime
to guide test case generation. Many previous work showed that CGF always reaches
a “stuck” state because it cannot obtain new information in the later stage. In the
state, testing is unable to generate test cases to cover new code and to exercise new
indirect jumps.

Appl. Sci. 2021, 11, 1351 3 of 21

In this paper, we propose a novel hybrid approach combining dynamic and static
analysis to resolve indirect jumps and construct more complete CFGs for C/C++ programs.
The approach is motivated by the observation that only a few jumps in programs are
indirect, and directed testing of indirect jumps code may resolve more indirect jumps than
CGF used in existing approaches. Instead of CGF, our key insight is to use directed gray-box
fuzzing (DGF) to efficiently generate test cases that exercise indirect jumps.

DGF is an improvement of traditional gray-box fuzzing proposed by Böhme et al. [28].
Its main idea is to focus on interesting parts of code, rather than to spend a lot of time
on undirected exploration of the whole program like coverage-based fuzzing. Previous
studies [28–34] have shown that DGF has good practicability in the vulnerability detection.
When testing large-scale programs, it can generate test cases to exercise the given targets
more effectively than the coverage-based fuzzing.

More specifically, we first use static analysis to resolve direct jumps and construct
static inter-procedural CFGs. Then, taking indirect jump locations as targets, DGF is used
to generate test cases that can exercise as many indirect jumps as possible. We run the
analyzed program with the generated test cases and resolve the indirect jump targets.
Finally, the results of static and dynamic analysis are combined to construct the CFG with
indirect control-flow transitions.

Our other observation is that the combined CFGs contains new structure information
of the program, which can be used to further optimize the DGF-based test case generation.
Therefore, we propose an iterative feedback mechanism to continuously optimize the input
generation. The CFG constructed through multiple iterations is taken as the final output.

In summary, the ability of our approach to construct more complete CFG mainly de-
pends on the following improvements: (1) the DGF technique is used to generate test cases
that exercise indirect jumps instead of CGF, which can resolve more indirect jumps than
undirected test cases generation used in existing approaches, and (2) an iterative feedback
mechanism is proposed to continuously optimize the input generation, which alleviates
the unsustainability of the existing approaches and further resolve more indirect jumps.

On the basis of the techniques, we implement a prototype, dubbed by DGF-CFGConstructor,
for constructing CFGs of programs and evaluate it on eight benchmarks. In the exper-
iments, we investigate the effectiveness of our DGF-based test case generation and the
iterative feedback mechanism. The results demonstrate that our approach can resolve more
indirect jump relations and construct more complete CFGs than existing approaches. As a
preliminary step, we also evaluate the application of our techniques in real-world program
analysis. The results show that our techniques is useful in discovering vulnerabilities
deeply hidden in the code.

The main contributions of this paper are summarized as follows:

• We proposed a novel hybrid approach to construct more complete CFGs by utilizing
the DGF technique in test case generation.

• We designed an iterative feedback mechanism to make a virtuous cycle between
CFG combination and test case generation. The mechanism further improves the
completeness of constructed CFGs.

• We implemented a prototype for constructing CGFs and evaluated the effectiveness of
our techniques through comparing with the existing approaches on eight benchmarks.

The remainder of this paper is organized as follows. Section 2 presents that indirect
jumps is widely distributed in real-world programs, which brings challenges to the CFG
construction. The overview of the proposed approach is described in Section 3. Section 4
describes the details of the four key steps in our method. The implementation details of our
prototype are presented in Section 5. Section 6 evaluates our techniques. We summarize
the related work in Section 7 and provide our conclusions in Section 8.

2. Motivation

Resolving indirect jumps is the main challenges to construct complete CFGs. In this
section, we illustrate the wide distribution of indirect jumps by observing real-world

Appl. Sci. 2021, 11, 1351 4 of 21

programs. Then, a simple example is given to explain the impact of indirect jumps on the
completeness of CFGs and the harm to security analysis.

2.1. The Distribution of Indirect Jumps

In C/C++, an indirect jump occurs when a function pointer or a virtual function is
used to call function. We investigated the distribution of indirect jumps in eight popular
programs and show the results in Table 1. The first four columns denote the basic informa-
tion of programs, including project names, their versions, description, and lines of code.
The average size of these programs is 216k lines of code.

Columns # F and # C list the number of functions and the number of function calls in
the programs, respectively. Column # I and Ri present the number of indirect jumps and
the proportion of indirect jumps in all function calls. We can see that all eight programs
have indirect jumps. These programs have an average of 782 indirect jumps, accounting
for 2.92% of all function calls. The target addresses of this kind of jump are determined
at runtime, and it is difficult to precisely resolve it by pure static analysis. This brings
challenges to constructing complete CFGs.

Table 1. The distribution of indirect jumps in real programs.

Project Version Description LoC # F # C # I Ri

libxml2 2.9.10 Xml parser 496 k 4087 41,365 1904 6.56%
JasPer 2.0.16 Picture handler 33 k 756 8010 32 0.40%
libming 0.4.8 Swf parser 96 k 1612 23,912 523 2.14%
FreeType 2.10.0 Library to render fonts 219 k 1769 17,337 659 3.66%
libpng 1.6.37 Png handler 97 k 1053 11,301 75 0.66%
ImageMagick 7.0.8.6 Picture handler 553 k 6068 133,021 372 0.28%
libjpeg-turbo 1.5.1 image codec 91 k 620 16,080 1469 8.37%
libtiff 4.1.0 Tiff processor 138 k 1127 17,408 220 1.25%
Average - - 216 k 2136 33,554 782 2.92%

2.2. Motivating Example

Figure 1 shows a simple example to explain the impact of indirect jumps, in which
subfigures (a,b) give its source code and CFG, respectively. In function f unc, f oo is a
pointer to a function and may point to different targets when the input is different. If a > b,
f oo points to sub (line 11), otherwise it points to add (line 14). An indirect jump occurs
when f oo is used to call a function (line 16).

In Figure 1b, the dash lines, d → e and d → f , represent the indirect jump relations.
It is difficult to resolve the relations only by static analysis, which leads to incomplete
CFGs. If a security analysis is based on the incomplete CFGs, the analysis results may be
inaccurate. Assuming that there is a vulnerability in function add (line 5), we try to use
flow sensitive analysis on CFGs to discover this vulnerability. If the CFG does not contain
the indirect jump d→ e, the bug hidden in the function add cannot be found.

For this example, if we use the popular static analysis tool, such as IDA Pro, to con-
struct the CFG, we will be unable to resolve the indirect jump addresses. The existing
dynamic and hybrid approaches find it difficult to effectively generate test cases that
exercise indirect jumps. The state-of-art hybrid approach uses a CGF-based approach to
generate test cases. However, because this approach is undirected and unsustainable (in
Section 1) in test case generation, it still cannot resolve indirect jumps effectively.

Appl. Sci. 2021, 11, 1351 5 of 21

1 int sub(int a, int b){
2 return a - b;
3 }
4 int add(int a, int b){
5 BUG();
6 return a + b;
7 }
8 int func(int a, int b){
9 int (*foo)(int, int);
10 if(a > b){
11 foo = sub;
12 }
13 else{
14 foo = add;
15 }
16 return foo(a, b);
17 }

,

(a) Source code of the example

sub()add()

func()

foo = sub;

int (*foo)(int, int);

if(a > b)

foo = add;

return foo(a, b)

return a - b;BUG();

return a + b;

(b) CFG of the example

Figure 1. Example of indirect jumps. (a) is the source code of the example. (b) is the control flow
graph (CFG) of the example.

3. Overview

In order to solve the aforementioned limitations in existing approaches, we propose
a DGF-based hybrid approach to constructing CFGs. The approach aims to efficiently
generate test cases that exercise indirect jumps and to construct more complete CFGs.

Figure 2 shows the overview of our proposed approach. The input is a program to be
analyzed, which can be either source code or binary code. The output is the constructed
inter-procedural control flow graph (iCFG) with indirect jumps. Our approach consists of
three major components: static iCFG construction, DGF-based test case generation, and
indirect jump monitoring.

Static iCFG construction. First, we use a static analysis to obtain the call graph (CG)
of the program and CFGs of each function. There are some popular static tools that can be
used to construct CG and functions’ CFGs, such as LLVM [22] for source code and IDA
Pro [20] for binary code. Then, we combine the CG and CFGs to construct the iCFG. We
present more details in Section 4.1.

DGF-based test case generation. The main function of this component is to generate
test cases that can exercise indirect jumps. First, a static analysis is used to search all indirect
jump locations in the target program. Then, the indirect jump locations are taken as the
targets to implement a distance-based DGF. DGF casts the reachability of target locations as
optimization problem and minimizes the distance of the generated test cases to the targets.
We collect the test cases that execute unique paths during the DGF and add them to the
test case queue, which will be used in the following dynamic execution. The details of the
test case generation are given in Section 4.2.

Indirect jump monitoring. The purpose of this component is to execute the target
program using the generated test cases and to resolve the target addresses of indirect jumps
through runtime monitoring. First, we instrument the target program at each of indirect
jump locations. When an indirect jump is triggered, the instrumented program can record
its target address. Then, all test cases generated by DGF are provided to the target program
in turn. We can obtain all indirect jump relations triggered during the execution. More
details of the component are shown in Section 4.3.

By combining the results of static iCFG construction and indirect jump monitoring, an
iCFG with indirect jumps can be constructed.

Appl. Sci. 2021, 11, 1351 6 of 21

Target program

Indirect jump monitoring

DGF-based input generation

Indirect jumps

Static iCFG

iCFG with indirect jumps

Static CFG construction

iCFG

Iterative

feedback

iCFG

Test case

queue
Indirect jump

instrumentation

Instrumented

program

Indirect jump

locations

Indirect jump locations

search

Output

Figure 2. Overview of CFG construction based on directed gray-box fuzzing (DGF).

We observe that a new iCFG is constructed with the test cases generated by DGF.
However, the distance calculation in DGF in turn depends on the iCFG. The new iCFG
contains the new structure information of the program, which can be used to further direct
the test case generation. Therefore, we propose an iterative feedback mechanism in CFG
construction. The mechanism makes full use of the new information and further improves
the completeness of CFGs. We present more details of the iterative feedback mechanism in
Section 4.4.

The workflow of our approach is shown in Algorithm 1. At the beginning of the
algorithm, a static analysis is used to analyze the target program p and to construct a static
iCFG. Then, we search the locations of all indirect jump instructions in p, and instrument
each of them to obtain the instrumented program p′. Next, the loop with iterative feedback
starts at line 5. At the beginning of feedback loop, iCFG is set as static iCFG. Taking the
locations of indirect jumps as the targets, DGF calculates the test case distance according to
iCFG and generates test cases which are added to the test cases queue. Then, all instances in
the test case queue are used to execute the instrumented program p′, and the indirect jump
relations are resolved through runtime monitoring. We update the iCFG by combining the
new indirect jump edges with the original iCFG. The new iCFG are used as feedback to the
DGF-based test case generation for next iteration, and lines 6–8 will be repeated. When
a timeout is reached or the testing is aborted, the algorithm ends and outputs the iCFG
updated in the last iteration.

Algorithm 1: The workflow of DGF-based CFG construction.
Input: target program p
Output: iCFG of p with indirect jumps

1 static_iCFG = construct_static_CFG(p);
2 iCFG = static_iCFG;
3 LOCs = search_indirect_jump(p);
4 p′ = instrument(p, LOCs);
5 while not (timeout or abort-signal) do
6 test_case_queue = DGF_generate_test_case(p, LOCs, iCFG);
7 indirect_jumps = execute_and_monitor(p′, test_case_queue);
8 iCFG = combine(iCFG, indirect_jumps);
9 end

10 output iCFG;

Appl. Sci. 2021, 11, 1351 7 of 21

4. Methodology

This section elaborates the three key components and the iterative feedback mecha-
nism in our approach.

4.1. Static CFG Construction

The main function of the component is to construct the iCFG for target program using
static analyses. First, we construct CG and the function’s CFGs. The CG of a program
consists of the nodes representing functions and edges representing function calls. For each
function, we construct a CFG in which nodes represent basic blocks and edges represent
jumps among basic blocks. Some static analysis tools can provide the function to obtain
CG and CFGs, such as LLVM’s built-in APIs for source code and IDA Pro for binary code.

Based on the CG and CFG, we can construct iCFG by connecting all call-sites with
the first basic block of the called functions. Figure 3 shows an example of the static iCFG
construction. The gray basic blocks represent the basic blocks ending with call instructions.
For call-site a, we can resolve the called function f3. Then, the edge from call-site to the first
basic block of called function, a→ b, is added to connect the CFGs of f1 and f2. Similarly,
we can connect the CFGs of all functions according to the call relations to get the iCFG.
It should be noted that the indirect jump edges are not included in the constructed iCFG
because static tools cannot resolve them. In the following steps, we adopt dynamic analysis
to resolve indirect jumps and augment the iCFG.

f1-CFG

a

b

f2-CFG

f3-CFG

Figure 3. Example of the static inter-procedural control flow graph (iCFG) construction.

4.2. DGF-Based Test Case Generation

The test case generation is the core part in our approach, and its main function is to
generate test cases that can exercise as many indirect jumps as possible. Aiming at the
undirectedness of CGF that is used in the test case generation of existing CFG construction
approach, we propose employing the distance-based DGF technique instead of CGF to
generate test cases.

We introduce the DGF technique into the test case generation of CFG construction to
resolve more indirect jumps. The main idea is to take the indirect jump locations as the
targets of DGF and calculate the distance of each seed to the target code. According the
distance, we evaluate the priority of seed in fuzzing evolution. Seeds closer to indirect
jump locations gain higher priority. Therefore, the seed set evolves closer to indirect jump
locations and may trigger more indirect jumps.

Figure 4 shows the workflow of the test case generation based on DGF. The test case
generation contains two phases: distance calculation and fuzzing loop.

Appl. Sci. 2021, 11, 1351 8 of 21

Distance

Calculator

Basic Block

Distance

Instrumentator

Instrumented

Program

Seed Pool

Energy

Assignment

Mutation

Test Cases

Execution&

Evaluation

Indirect Jump

Locations

Target Program

Update

Distance Calculation Fuzzing Loop

Test Case

Queue

Figure 4. Input generation based on DGF.

4.2.1. Distance Calculation

The seed distance calculation is introduced from AFLGo [28], and it can determine
the importance of the seed. The calculation is based on the constructed iCFG and consists
of the following three steps.

(1) Function-level distance on CG. If a function contains indirect jump instructions,
it is taken as target function. The set of all target functions is represented as Ft. We use
d f (fi, ft) to represent the distance between any two functions on CG, i.e., the number
of edges on the shortest path between the two functions. The function-level distance
determines the distance between an arbitrary function to all target functions. Supposing a
function f and target functions Ft are given, the function-level distance of f , represented
as d f (f , Ft), is defined as the harmonic mean of the distance between the function f to all
target functions as follows.

d f (f , Ft) =

{
+∞, R(f , Ft) = ∅

[∑ ft∈R(f ,Ft) d f (f , ft)
−1]
−1

, R(f , Ft) 6= ∅
(1)

where R(f , Ft) is the set of functions that are members of Ft and are reachable from f .
(2) Basic block-level distance on iCFG. The basic blocks containing indirect jump

instructions are called target basic blocks. The set of all target basic blocks is represents
as Bt. We use db(bi, bj) to represent distance between any two basic block. In a function,
the distance is the number of edges on the shortest path between the two basic blocks on
the CFG. The basic block-level distance determines the distance from an arbitrary basic
block to target basic blocks, which is represented as db(bi, Bt). Based on the function-level
distance, the basic block-level distance is calculated as follows.

db(bi, Bt) =

0, i f bi ∈ Bt

α ·minbi∈N(f)(d f (f , Ft)), i f bi ∈ T

[∑t∈T (db(bi, t) + db(t, Bt))
−1]
−1

, otherwise

(2)

where N(f) is the set of all basic blocks in function f . α is a constant that represents the
average length of functions in distance calculation. T represents a set of special basic
blocks that we call transfer basic blocks. A transfer basic block should satisfy the following
conditions: (a) the basic block ends with a call instruction and (b) the target function called
by the call instruction can reach the target functions on CG.

Appl. Sci. 2021, 11, 1351 9 of 21

(3) Seed distance. Based on the basic block-level distance, the distance from an
arbitrary seed s to the target basic blocks is calculated and represented as d(s, Bt). More
specifically, the seed distance is defined as the average distance of all basic blocks on the
seed execution trace, i.e.,

d(s, Bt) =
∑b∈λ(s) db(b, Bt)

|λ(s)| (3)

where λ(s) is the set of basic blocks on the execution trace of the seed s.
An example is taken to describe the basic block-level distance calculation in Figure 5. In

the example, a is the considered basic block and f is the target block. The gray basic blocks
b and d are transfer basic blocks. According to the iCFG, there is a reachable path from a
to f , i.e., a→ b→ c→ d→ e→ f . Therefore, the basic-block-level distance from a to the
target block f is calculated as follows.

db(a, Bt) = db(a, b) + db(b, Bt) = db(a, b) + α · d f (f1, f3) = 1 + α · 2.

The distances of function-level and basic-block-level (steps (1) and (2)) are calculated
by static analysis. Only the seed distance calculation (step (3)) needs to be performed at
runtime and instrumented into target programs.

ftf2

f1

Figure 5. Example of basic block-level distance calculation.

4.2.2. Fuzzing Loop

Our fuzzing loop (the right part of Figure 4) is modified based on the classical gray-box
fuzzing loop. The difference is that the purpose of the existing fuzzing is to find program
vulnerabilities, while the purpose of our fuzzing is to generate test cases that exercise more
indirect jumps. The workflow of our fuzzing loop is shown in Algorithm 2.

Algorithm 2: The fuzzing loop of test case generation.
Input: Initial seed set Sin
Output: The evolved seed set Sout

1 S = Sin;
2 while not (timeout or abort-signal) do
3 s = Choose(S);
4 p = AssignEnergy(s);
5 for i from 1 to p do
6 tcs = Mutate(s);
7 in f o = Execute&Evaluate(tcs);
8 Update(S, tcs, in f o);
9 end

10 end
11 Sout = S;
12 output Sout;

The fuzzing loop takes an initial seed set Sin as input. In each loop, one seed s is
chosen from S and assigned energy according to the seed distance. The energy represents
the priority of seeds in the fuzzing evolution. The seeds closer to the targets (indirect
jump locations) can obtain more energy and have more chances to generate test cases

Appl. Sci. 2021, 11, 1351 10 of 21

tcs by mutating. Therefore, the mutation may generate test cases closer to the indirect
jump locations in the next loop. Then, the program instrumented with seed distance
calculation executes with the test cases tcs and evaluates each of them. The seed pool S is
updated according to the results of the evaluation. By repeating the above steps, we can
continuously update the seed pool to make the inputs closer to indirect jump locations.
The fuzzing loop runs until a timeout or abort signal is received. Finally, all seeds in the
evolved seed pool are output to the test case queue, which will be used to resolve indirect
jump relations.

4.3. Indirect Jump Instrumentation and Monitoring

With the seed tests generated above, we execute the target program and monitor it
at runtime to discover indirect jumps relations. First, in order to record indirect jump
relations, the target program is instrumented at each indirect jump instruction and the
entry of each function. We define a global value Is_indirect_jump to represent whether a
function call is an indirect jump. At each indirect jump instruction, when the instruction is
executed, Is_indirect_jump is assigned to True and the basic block that the indirect jump
instruction belongs to is recorded as the source of the indirect jump, represented as bsrc.
At the entry of a function, we check the value of Is_indirect_jump. If it is True, the first
basic block of this function is recorded as the target of the indirect jump, represented as
bdst. A indirect jump relation is represented as a pair (bsrc, bdst). Then, we provide all seed
test cases generated in the previous stage (Section 4.2) to the instrumented program and
resolve as many indirect jump relations as possible.

It is worth mentioning that we perform two different instrumentations for the original
target program. One is to calculate the seed distance, while the other is to record the indirect
jump relations. Theoretically, both of them can be performed in the process of fuzzing.
However, inserting too many instructions in fuzzing may cause a lot of runtime overhead.
Therefore, our approach separates the two instrumentations to minimize the overhead.

4.4. Iterative Feedback Mechanism

A new and more complete iCFG can be constructed by adding the discovered indirect
jump edges (bsrc, bdst) to the old iCFG. We observed that the combined iCFG contains new
structure information of the target program and can be used to optimize the DGF-based test
case generation (Section 4.2). Therefore, we propose an iterative feedback mechanism to
achieve a virtuous cycle between CFG combination and input generation and continuously
improve the completeness of CFGs.

The key problem of iterative feedback mechanism is how to recalculate the seed
distance on the new iCFG. If we simply use the approach in Section 4.2.1 to recalculate the
distance, it will bring redundant time overhead. To minimize the overhead, we develop an
incremental calculation to update the distance.

Figure 6 shows an example of updating the distance adopting the incremental calcula-
tion. The node t is the target basic block. The solid lines represent the jump edges in the old
iCFG and the dash line b→ c represents the newly discovered indirect jump edge. Because
the new edge changes the structure of the iCFG, the basic block-level distance needs to
be updated.

t

ft
c

d

f2f1
a

b

Figure 6. Example of updating the distance incrementally.

Appl. Sci. 2021, 11, 1351 11 of 21

Through observation, it can be found that the new edge only affects the distance of
the basic blocks before the edge on iCFG, but not the distance of the basic blocks after the
edge. Therefore, we only need to calculate the distance of the precursors of the source basic
block of the edge. In the example, the distances of a and b need to be recalculated, while
the distances of c and d do not. The updated results of the example are shown in Table 2.

Table 2. Example of updating distance.

Basic Block Recalculate or Not Distance on Old iCFG Distance on New iCFG

a Yes +∞ 2 · α + 1
b Yes +∞ 2 · α
c No α + 1 α + 1
d No α α

4.5. Illustrating with Examples

In this section, let us discuss the motivating example in Figure 1 again. As we noted
above, the edges d → e and d → f are indirect jumps, and d → e determine whether the
vulnerability in function add can be discovered successfully. If we use LLVM’s APIs to
construct the CFG for this example, the constructed CFG will not contain the two indirect
jump edges, which leads to the failure to discover the vulnerability.

On the contrary, we can find the vulnerability by using our proposed approach. First,
we construct the static CFG which is the same as the CFG constructed by existing tools,
and still does not contain the indirect jumps. Then, with the indirect jump location (line
16) as the target, a DGF is conducted to attempt to generate test cases that exercise the
indirect jump instruction. Through using different test cases to execute and monitor the
target program, the indirect jump relations can be resolved. If a test case that satisfies the
constraint a > b in line 10 is generated, such as (a = 10, b = 5), the edge d → f will be
discovered. On the other hand, the edge d → e can be discovered when a test case that
violates the constraint is generated, such as (a = 5, b = 10). Thus, we can construct a CFG
that contains indirect jumps and discover the vulnerability based on the CFG.

For the simple example, it is easy to generate a test case that satisfies the constraint to
exercise the indirect jump. In such case, DGF-based and CGF-based test case generations
have similar performance. However, in real-world programs, constraints may be so com-
plex that it is difficult to generate test cases that satisfy the constraints through undirected
approach. Our DGF-based test case generation can show advantages in handling complex
programs, which will be presented in Section 6.

5. Implementation

Based on the proposed approaches, we develop a prototype, dubbed DGF-CFGCon-
structor. The implementation details of each component are as follows.

Static CFG Construction: We build up the CG and CFG based on LLVM’s IR. In the
CG, functions are taken as the nodes of the graph and identified by functions’ signa-
tures. We discover the CG’s edges through analyzing all call instructions. Specifically, if
the jump address of a call instruction can be determined by the LLVM’s API Call Inst ::
getCalledFunction, the jump relation should be added to the CG as an edge. Otherwise, the
call instruction is considered as an indirect jump location. In addition, we can obtain the
CFG of each function by another LLVM’s API llvm :: WriteGraph. Then, the static iCFG is
constructed by combining the CG and CFGs according to the method in Section 4.1.

DGF-based Test Case Generation: The DGF-based test case generation is established
on AFLGo. The indirect jump locations are considered as the target sites. We calculate the
basic block-level distance calculation in a Python script and instrument the seed distance
calculation in a LLVM’s pass. In order to balance the exploration and exploitation, we
retain the annealing-based power schedules in AFLGo.

Appl. Sci. 2021, 11, 1351 12 of 21

Indirect Jump Instrumentation and Monitoring: The DGF-Constructor records the
executed indirect jump relations by instrumenting at the indirect jump locations and the
entry of each function. The instrumentation is implemented in another LLVM’s pass. When
a indirect jump is triggered, the relevant jump relation is recorded to a file. After all test
cases are executed, we can obtain all indirect jump relations discovered at runtime in the
result file.

It should be noted that although the prototype is implemented to analyze the source
code at present, in principle, our techniques are also suitable for binary code. We will
extend it to binary analysis by replacing the corresponding tools in the further work.

6. Evaluation

In this section, we evaluate our approach on various real-world programs and compare
it with related approaches.

6.1. Evaluation Setup

We designed the experiments to answer the following four research questions:
RQ1: Does the DGF-based test cases generation work as expected to generate more

test cases that exercise indirect jumps than existing approaches?
RQ2: How effective is the iterative feedback mechanism in resolving indirect jumps?
RQ3: How complete is the CFG constructed by our approach?
RQ4: What are the benefits of applying our approach to program analysis?
Evaluation Benchmarks. We evaluated DGF-CFGConstructor with 8 real-world pro-

grams; the relevant information is shown in Table 3. These benchmarks are selected
according to the evaluations in the related works [28,29,35,36].

Table 3. The information about the benchmarks.

Project Version Description LoC Program parameter

libxml2 2.9.10 Xml parser 496 k xmllint –valid –recover file
JasPer 2.0.16 Picture handler 33 k imgcmp -f sample -F result
libming 0.4.8 Swf parser 96 k swftophp swf_file
FreeType 2.10.0 Library to render fonts 219 k testsuite file
libpng 1.6.37 Png handler 97 k pngtest -m file
ImageMagick 7.0.8.6 Picture handler 553 k magick covert file result
libjpeg-turbo 1.5.1 Image codec 91 k djpeg switches file
libtiff 4.1.0 Tiff processor 138 k tiffsplit file -o /dev/null

Experimental Infrastructure. All experiments were conducted on a machine equipped
with Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz with 8 cores and 64 GB RAM, running
64-bit Ubuntu LTS 16.04.

6.2. Evaluation of DGF in CFG Construction (RQ1)

In order to evaluate the effectiveness of DGF in discovering indirect jumps, we imple-
ment and compare two CFG constructors.

DGF-CFGConstructor (ours). It is our prototype that is implemented based on our
proposed approaches, i.e., the DGF-based test case generation and iterative feedback
mechanism. In the DGF-based test case generation, we adopt the annealing-based power
schedules and set time-to-exploitation to one hour.

CGF-CFGConstructor. It is identical to our prototype except for the test case genera-
tion approach. The CFG constructor employs the CFG-based approach proposed in [26].

We use the two CFG constructors to analyze the eight benchmarks for 20 h. Figure 7
shows the trend of the number of indirect jumps discovered by the two approaches in
the experiment. Figure 8 shows the statistical results after 20 h. Based on the results, we
observe the following cases.

Appl. Sci. 2021, 11, 1351 13 of 21

• In the early phase of the analysis (about the first 2 h), the number of indirect jump rela-
tions discovered by DGF-CFGConstructor (the red line) is similar to that discovered by
CGF-CFGConstructor (the blue line). The reason is that DGF-CFGConstructor adopts
the annealing-based power schedules. The weight of the seed distance in energy
assignment is zero at the beginning and increases with the testing time. Therefore, the
two implementations have similar performance in the early phase.

• After the early phase, the number of indirect jump relations discovered by DGF-
CFGConstructor on 7 out of 8 benchmarks (except libpng) shows a better increase
than that discovered by CFG-CFGConstructor.

• The statistical results in Figure 8 shows that DGF-Constructor (the red bar) discovers
more indirect jump relations than CFG-Constructor (the blue bar). For example, in
the analysis of libxml2, CGF-CFGConstructor discovers 821 indirect jump relations.
DGF-CFGConstructor is able to discover 1480 indirect jump relations, 80.3% more
than CGF-CFGConstructor. On average, DGF-CFGConstructor discovers 61.9% more
indirect jump relations than CGF-CFGConstructor on the eight benchmarks.

• In the analysis of libpng, DGF-CFGConstructor and CGF-CFGConstructor discover
similar number of indirect jump relations, which is not as expected. The reason may
be that there are too few indirect jumps in libpng. The newly discovered indirect
jumps cannot provide more feedback to DGF-based test case generation. Therefore,
the two approaches show similar performance on this benchmark.

0 5 10 15 20
0

4

8

12

16

 CGF DGF

Time (hours)

In
d

ir
e
c
t

ju
m

p
s

(a) JasPer

0 5 10 15 20
0

300

600

900

1200

1500

In
d

ir
e
c
t

ju
m

p
s

Time (hours)

 CGF DGF

(b) libxml2

0 5 10 15 20
0

100

200

300

400

In
d

ir
e
c
t

ju
m

p
s

Time (hours)

 CGF DGF

(c) libming

0 5 10 15 20
0

200

400

600

In
d

ir
e
c
t

ju
m

p
s

Time (hours)

 CGF DGF

(d) FreeType

0 5 10 15 20
0

10

20

30

In
d

ir
e
c
t

ju
m

p
s

Time (hours)

 CGF DGF

(e) libpng

0 5 10 15 20
0

50

100

150

200

250

 CGF DGF

Time (hours)

In
d

ir
e
c
t

ju
m

p
s

(f) ImageMagick

0 5 10 15 20
0

50

100

150

200

250

300

In
d

ir
e
c
t

ju
m

p
s

Time (hours)

 CGF DGF

(g) libjpeg

0 5 10 15 20
0

20

40

60

80

100

In
d

ir
e
c
t

ju
m

p
s

Time (hours)

 CGF DGF

(h) libtiff

Figure 7. The number of indirect jumps resolved by two approaches on 8 benchmarks. The red line represents our
DGF-based approach (DGF-CFGConstructor), and the blue line represents the CGF-based approach (CGF-CFGConstructor).

The main reason for the poor performance of CGF-CFGConstructor in discovering
indirect jumps is that CGF aims to generate test cases covering the whole program. The
approach assumes that all paths have the same priority and performs a undirected path
exploration. This wastes a lot of time to test the code unrelated to indirect jumps. We
introduce DGF-based test cases generation to mitigate this problem. The result shows
that our approach discovers more indirect jump relations than the existing approach on
most benchmarks.

Overall, the analysis indicates that the answer to RQ1 is definite: the DGF-based
approach is able to resolve more indirect jump relations than the existing approach.

Appl. Sci. 2021, 11, 1351 14 of 21

Lib
xm

l2

Ja
sp

er

Lib
m

in
g

Fre
et
yp

e

Lib
pn

g

Im
ag

eM
ag

ic
k

Lib
jp

eg
-tu

rb
o

Lib
tif

f

0

200

400

600

800

1000

1200

1400

1600

92

71

30
9

21
323

5

13
0

3131

68
2

42
1

43
8

32
9

1712

14
80

In
d

ir
e
c
t

ju
m

p
s

 CGF

 DGF

82
1

Figure 8. The total number of indirect jumps resolved by two approaches on 8 benchmarks after 20 h.
The red bar represents our DGF-based approach (DGF-CFGConstructor), and the blue bar represents
the CGF-based approach (CGF-CFGConstructor).

6.3. Evaluation of the Iterative Feedback Mechanism (RQ2)

In this section, we make an investigation about the effectiveness of our proposed
iterative feedback mechanism. Another CFG constructor is implemented as a comparison.

NFB-CFGConstructor. It is identical to our prototype DGF-CFGConstructor, except
that the iterative feedback mechanism is removed.

In the experiment, two appraisal indexes are used to evaluate the iterative feedback
mechanism. The number of indirect jumps discovered is still one of them. In order to
quantify the sustainable performance of the approaches, we present stuck time as another
appraisal index. “Stuck” indicates a state in the process of program testing, in which it is
difficult to discover new paths. This concept is mentioned in previous works [7,37], but
not defined accurately. We attempt to give a quantitative definition about “stuck” state in
discovering indirect jumps.

I(t0, t1) is used to represent the number of indirect jump relations discovered from
time t0 to t1. If there is a time ts, for any time t (t ≥ ts), the condition

I(t, t + ∆t)/I(0, t) < p (4)

is always satisfied, then the testing is considered to get “stuck” at ts. In the condition, ∆t
and p are given constants, representing the time interval and the threshold, respectively.
Stuck time is defined as the minimum of the time satisfying the above condition and denoted
as Ts. Intuitively, stuck time represents the start time after which the test can hardly discover
indirect jump relations.

Figure 9 shows the analysis results of CGF-CFGConstructor and NFB-CFGConstructor
on the eight benchmarks. In the experiment, ∆t is set five hours and the threshold p is
set 5%.

In the early phase of the test, DGF-CFGConstructor (the red line) and NFB-CFGConstructor
(the green line) have the similar performance. After the early phase, DGF-CFGConstructor
has a more obvious increase than NFB-CFGConstructor. On the all benchmarks, NFB-
CFGConstructor gets stuck earlier than CGF-CFGConstructor. When the approach without
iterative feedback mechanism gets stuck, our approach can still resolve new indirect jumps
continuously. This is because that the iterative feedback updates the seed distance with
new structure information and allows our approach to continuously generate test cases
that exercise indirect jumps.

Appl. Sci. 2021, 11, 1351 15 of 21

0 5 10 15 20
0

4

8

12

16

Time (hours)

In
d

ir
e
c
t

ju
m

p
s

 DGF-NFB DGF

8.5

11.0

(a) JasPer

0 5 10 15 20
0

300

600

900

1200

1500

In
d

ir
e
c
t

ju
m

p
s

Time (hours)

 DGF-NFB DGF

5.5

4.5

(b) libxml2

0 5 10 15 20
0

100

200

300

400

In
d

ir
e
c
t

ju
m

p
s

Time (hours)

 DGF-NFB DGF

9.0

12.0

(c) libming

0 5 10 15 20
0

200

400

600

In
d

ir
e
c
t

ju
m

p
s

Time (hours)

 DGF-NFB DGF

8.5

9.0

(d) FreeType

0 5 10 15 20
0

10

20

30

 DGF-NFB DGF

Time (hours)

In
d

ir
e
c
t

ju
m

p
s

4.0

5.5

(e) libpng

0 5 10 15 20
0

50

100

150

200

250

 DGF-NFB DGF

Time (hours)

In
d

ir
e
c
t

ju
m

p
s 11.0

14.5

(f) ImageMagick

0 5 10 15 20
0

50

100

150

200

250

300

In

d
ir

e
c
t

ju
m

p
s

Time (hours)

 DGF-NFB DGF

8.5

10.5

(g) libjpeg

0 5 10 15 20
0

20

40

60

80

100

9.5

9.5

In
d

ir
e
c
t

ju
m

p
s

Time (hours)

 DGF-NFB DGF

(h) libtiff

Figure 9. The number of indirect jumps resolved by two approaches on 8 benchmarks. The red bar (DGF) represents our
approach with iterative feedback, and the green bar (DGF-NFB) is the opposite. The vertical line represents the stuck time of
the corresponding approach.

Figure 10 shows the statistical results of the two approaches after 20 h. On the all
eight benchmarks, DGF-CFGConstructor (the red bar) can resolve more indirect jumps
than NFB-CFGConstructor (the green bar). More specifically, our approach discovers 37.1%
more indirect jump relations than the approach without the iterative feedback mechanism.

Overall, the analysis indicates that the answer to RQ2 is definite; our iterative feedback
mechanism can improve the sustainability of test case generation and the ability of resolving
indirect jumps.

Lib
xm

l2

Ja
sp

er

Lib
m

in
g

Fre
et
yp

e

Lib
pn

g

Im
ag

eM
ag

ic
k

Lib
jp

eg
-tu

rb
o

Lib
tif

f

0

200

400

600

800

1000

1200

1400

1600

In
d

ir
e
c
t

ju
m

p
s

A

 DGF-NFB

 DGF

14
80

10
50

12 17

35
9

43
8 50

3
68

2

30 31

15
3

23
5

21
0

30
9

79
92

Figure 10. The total number of indirect jumps resolved by two approaches on 8 benchmarks after 20 h.
The red bar (DGF) represents our approach with iterative feedback, and the green bar (DGF-NFB) is
the opposite.

Appl. Sci. 2021, 11, 1351 16 of 21

6.4. Completeness of the CFGs (RQ3)

In the above experiments, we evaluate the effectiveness of two key techniques in our
approach. In this section, we further evaluate our prototype against existing approaches
and attempt to answer the research question: how complete is the CFG constructed by
our approach?

We compare DGF-Constructor with the following tools:
Static-CFGConstructor. It is a pure static tool implemented according to LLVM’s

builtin APIs.
CGF-CFGConstructor. It is a hybrid tool based on the approach proposed in [26]. The

tool has been used in evaluating the test case generation in Section 6.2.
There is not appraisal index to evaluate the completeness of CFGs in the previous

work. In many practical program analyses, such as taint analysis and symbolic execution,
analysts usually pay more attention to the code that is reachable from the entry of program
on the CFG. Therefore, we adopt reachable code scale as an important factor to measure the
completeness of CFGs.

More specifically, we present two appraisal indexes (R f , Rb) to quantify the scale of the
reachable code. The first index R f is the number of functions that can be reachable from the
program entry on the iCFG. The second index Rb is the number of reachable basic blocks.
On the same eight benchmarks, we use three approaches to conduct the experiment: the
static analysis (Static-CFGConstructor), the CGF-based approach (CGF-CFGConstructor),
and our DGF-based approach (DGF-CFGConstructor). The experiment lasted for 20 h.

Figure 11 shows the reachable code scale of the CFGs constructed by the three ap-
proaches. On most benchmarks, DGF-CFGConstructor can discover more reachable func-
tions and basic blocks than the other two tools. Precisely, our approach discovers 62.9%
more reachable functions and 94% more reachable basic blocks than Static-CFGConstructor.
Compared with CGF-CFGConstructor, our approach discovers 23.9% more reachable
functions and 34.9% more reachable basic blocks.

Lib
xm

l2

Ja
sp

er

Lib
m

in
g

Fr
ee

ty
pe

Lib
pn

g

Im
ag

eM
ag

ic
k

Lib
jp

eg
-tu

rb
o

Lib
tif

f

0

500

1000

1500

2000

2500

3000

3500

 static

 CGF

 DGF

R
f

(a) The number of reachable functions.

Lib
xm

l2

Ja
sp

er

Lib
m

in
g

Fr
ee

ty
pe

Lib
pn

g

Im
ag

eM
ag

ic
k

Lib
jp

eg
-tu

rb
o

Lib
tif

f

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

R
b

 static

 CGF

 DGF

(b) The number of reachable basic blocks.

Figure 11. The reachable code scale of CFGs constructed by static-based, CFG-based, and DGF-
based approaches.

Overall, the analysis indicates that the answer to RQ3 is definite. Our approach is able
to construct more complete CFGs than other approaches.

6.5. Application: Security Analysis (RQ4)

In this paper, we focus on how to construct more complete CFGs, which is a prerequi-
site for many program analyses. There are many applications that may benefit from our
work, such as program verification, vulnerability detection, and code similarity analysis.
At present, except vulnerability detection, we have not sufficiently evaluated our approach
in specific applications, as it will take a lot of effort and knowledge to evaluate various

Appl. Sci. 2021, 11, 1351 17 of 21

applications. Therefore, in this section, we take the vulnerability detection as an example
to illustrate the practical significance of our work.

Figure 12 shows a real vulnerability (CVE-2015-5221) [38] hidden in the image pro-
cessing library JasPer. The vulnerability is located deep in the program and may be trig-
gered only when the specific call sequence is executed, i.e., main→ jas_image_decode→
mi f _decode→ mi f _hdr_get→ mi f _process_cmpt.

...

(*obj.decode)();

...

jas_image_decode(obj)

mif_decode()

...

mif_hdr_get()

...

mif_process_cmpt()

main()

...

if condition

 obj.decode = mif_decode;

...

jas_image_decode(obj);

...

Figure 12. Example of updating the distance incrementally.

Unfortunately, in the call sequence jas_image_decode → mi f _decode is an indirect
jumps. If analysts conduct the security analysis based on the CFGs constructed by the
traditional static tool, they may not be able to resolve these indirect jumps and miss the
vulnerability. On the contrary, our approach can construct more complete CFGs containing
this indirect jump relation and help analysts discover this vulnerability.

Although DGF-CFGConstructor is still a prototype, it has been able to analyze the
real-world programs and been applied to vulnerability detection. In the future, we will
improve the prototype and make it suitable for more usage scenarios.

6.6. Discussion

In this section, we will discuss the limitations of DGF-CFGConstructor and future
directions of research to further improve the completeness of CFGs.

Although our DGF-based approach resolves more indirect jumps than traditional
approaches, it still cannot guarantee that all indirect jumps can be exercised. Many factors
affect the coverage of DGF, such as the initial seeds and the complexity of the target
programs. In future work, we can try to improve the coverage of indirect jumps by
improving the seed selection and further analyzing the structure of the target programs.
In addition, our approach might benefit from other improvements of DGF.

The scalability of our approach depends on the two techniques, i.e., static CFG con-
struction and dynamic directed gray-box fuzzing (DGF). The two techniques have been
proved to be scalable in analyzing large-scale programs in previous researches. Therefore,
our approach is also scalable. Specifically, in the static part, LLVM can construct the static
CFG for any real-world program in the benchmark in a few minutes, which is trivial
compared to dynamic part. On the dynamic part, directed gray-box fuzzing continues to
generate test cases until it is aborted manually. Like existing fuzzing works, we cannot give
an exact end time. However, intuitively, our algorithm can be aborted when the DGF-based
test case generation gets stuck, i.e., the stuck time is reached. In our evaluation on eight
real-world programs, the average stuck time’ is about 9.7 h.

At present, DGF-CFGConstructor is still a prototype. It is implemented to ana-
lyze source code. However, our proposed DGF-based test cases generation and itera-
tive feedback mechanism can also be applied for binary code. We are extending DGF-
CFGConstructor to the binaries.

In addition, the CFG is applied in many practical analyses. However, in this paper,
we only preliminarily evaluate the application of our approach in vulnerability detection.
In the future, we will extend the approach to other applications, such as malware analysis,
code similarity analysis, and so on.

Appl. Sci. 2021, 11, 1351 18 of 21

7. Related Works

We summarizes the related works from two aspects: CFG construction and gray-
box fuzzing.

7.1. CFG Construction

Static analysis is the most popular approach to construct CFGs in practice. There are
many tools based on static analysis, such as IDA pro [20] for binary code and LLVM [22]
for source code. They construct CFGs by statically dividing the code into basic blocks and
connecting the basic blocks with jump relations. The limitation of this technique is that
it is difficult to resolve indirect jump targets by pure static analysis. To handle indirect
jumps, Chen et al. [29] proposed to apply the inclusion-based pointer analysis against the
function pointers. The point-to set is calculated by focusing on four rules: address-of, copy,
assign, and dereference. Due to the inherent difficulty of static analysis to resolve indirect
jumps, these approaches cannot produce precise control flow information. In contrast,
our approach resolves indirect jumps by dynamic execution and does not suffer from
this limitation.

Dynamic analysis is proposed to construct precise CFGs. Traditional dynamic analysis
techniques only cover a small portion of program execution paths. Fex [23] uses forced
execution to improve the coverage of conditional branches. It dynamically tracks conditional
branches and save the program state. Then, restore the saved program state and force
the execution the other path by manipulating the CPU instruction pointer. Although, this
approach effectively improves the branch coverage, the state saving and restoring cause
a lot of overhead. Therefore, this approach cannot be applied in large-scale real-world
programs efficiently. In contrast, our approach depends on the static analysis and DGF
techniques, which are proved to be scalable in real-world programs.

In recent years, hybrid techniques have been proposed to construct CFGs. Babic et al. [24]
dynamically compute the indirect jump relations with a set of seed tests and augment the
computed relations with statically computed direct jumps. However, they do not pay enough
attention to how to generate test cases, which determines the completeness of CFGs. The
test cases in their work are generated randomly. Zhu et al. [26] proposed using coverage-
based gray-box fuzzing (CGF) to generate test cases to handle indirect jumps. However,
the approach still cannot construct complete CFGs, because it adopts a undirected path
exploration and spends a lot of resources to test the code unrelated to indirect jumps.
In contrast, our approach uses DGF instead of CGF to generate test cases and spends most
of the time budget on exercising indirect jumps. Therefore, our approach can resolve more
indirect jumps and improve the completeness of CFGs.

7.2. Gray-Box Fuzzing

According to the purposes, gray-box fuzzing is divided into coverage-based gray-box
fuzzing (CGF) and directed gray-box fuzzing (DGF).

Coverage-based gray-box fuzzing seeks to generate test cases that can achieve the maxi-
mum code coverage. AFL [39] is the most popular coverage-based gray-box fuzzer. It adopts a
undirected path exploration to cover the code. Many improved techniques [35,36,40,41] are
proposed based on AFL. Vuzzer [35] assigns different weights to the execution paths and
gives priority to the long paths. AFLFast [40] pays more attention to the low-frequency
paths in the fuzzing campaign. CGF is widely applied in vulnerability detection. How-
ever, due to the undirected path exploration, this technique wastes a lot of resources on
unrelated code.

Directed gray-box fuzzing, proposed by Böhme et al. [28], seeks to spend most of
its time on reaching specific target locations without wasting resources on unrelated
code. This technique performs a directed path exploration by giving priority to the paths
close to the targets. At present, DGF is also mainly applied in vulnerability detection.
Existing works [28–34] usually take the changed statements or dangerous locations as
target locations. Their purposes are to generate test cases that can trigger vulnerabilities.

Appl. Sci. 2021, 11, 1351 19 of 21

However, in this paper, DGF is applied to construct CFGs. We take indirect jump locations
as the target locations of DGF and apply this technique to improve the completeness
of CFGs.

8. Conclusions

Control flow graph (CFG) is the basic of program analysis, such as malware analysis,
vulnerability detection, code similarity analysis, etc. How to resolve indirect jumps is the
main challenge of constructing complete CFGs. In this paper, we propose an approach that
applies static analysis and dynamic analysis to construct more complete CFGs. We first
employ a static analysis to construct the static CFGs without indirect jump relations. Then,
in order to resolve indirect jump relations, we propose adopting directed gray-box fuzzing
(DGF) instead of coverage-based gray-box fuzzing to generate test cases that exercise
indirect jumps. Finally, we combine the static CFGs and indirect jump relations to construct
more complete CFGs. In addition, we also propose an iterative feedback mechanism to
further improve the completeness of CFGs.

We implement a prototype, named DGF-CFGConstructor, for constructing CFGs
and evaluate it on real-world programs. The experimental results have shown that DGF-
CFGConstructor can resolve more indirect jumps and construct more complete CFGs than
the state-of-the-art CFG constructors. We believe that it provides a promising foundation
for precise analysis of programs.

Author Contributions: Conceptualization, Y.L. and K.Z.; methodology, K.Z., H.H., and L.Y.; soft-
ware, L.Y. and J.Z.; validation, K.Z. and H.H.; investigation, K.Z.; resources, Y.L.; writing—original
draft preparation, K.Z.; writing—review and editing, Y.L., J.Z., and K.Z.; supervision, Y.L.; project
administration, Y.L. All authors read and agreed to the published version of the manuscript.

Funding: This research was supported by National Key Research and Development Project of China
(No. 2017YFB0802900).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We would like to sincerely thank the reviewers for your insightful comments
that help us improve this work.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Allen, F.E.; Cocke, J. A program data flow analysis procedure. Commun. ACM 1976, 19, 137. [CrossRef]
2. Späth, J.; Ali, K.; Bodden, E. Context-, flow-, and field-sensitive data-flow analysis using synchronized Pushdown systems.

Proc. ACM Program. Lang. 2019, 48, 29. [CrossRef]
3. Grech, N.; Smaragdakis, Y. P/Taint: Unified points-to and taint analysis. Proc. ACM Program. Lang. 2017, 102, 28. [CrossRef]
4. Wang, T.; Wei, T.; Gu, G.; Zou, W. TaintScope: A checksum-aware directed fuzzing tool for automatic software vulnerability

detection. In Proceedings of the 2010 IEEE Symposium on Security and Privacy (SP), Oakland, CA, USA, 16–19 May 2010;
pp. 497–512.

5. King, J.C. Symbolic execution and program testing. Commun. ACM 1976, 19, 385–394. [CrossRef]
6. Baldoni, R.; Coppa, E.; D’elia, D.C.; Demetrescu, D.; Finocchi, I. A survey of symbolic execution techniques. ACM Comput. Surv.

2018, 50, 39. [CrossRef]
7. Stephens, N.; Grosen, J.; Salls, C.; Dutcher, A.; Wang, R.; Corbetta, J.; Shoshitaishvili, Y.; Kruegel, C.; Vigna, G. Driller: Augmenting

fuzzing through selective symbolic execution. In Proceedings of the NDSS, San Diego, CA, USA, 21–24 February 2016.
8. Fetzer, J.H. Program verification: The very idea. Commun. ACM 1988, 31, 1048–1063. [CrossRef]
9. Si, X.; Dai, H.; Raghothaman, M.; Song, L. Learning loop invariants for program verification. Adv. Neural. Inf. Process. Syst. 2018,

31, 7751–7762.
10. Bruschi, D.; Martignoni, L.; Monga, M. Detecting self-mutating malware using control-flow graph matching. In Proceedings of

the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA), Berlin, Germany,
13–14 July 2006; pp. 129–143. [CrossRef]

11. Alam, S.; Traore, I.; Sogukpinar, I. Annotated control flow graph for metamorphic malware detection. Comput. J. 2015,
10, 2608–2621. [CrossRef]

http://doi.org/10.1145/360018.360025
http://dx.doi.org/10.1145/3290361
http://dx.doi.org/10.1145/3133926
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1145/48529.48530
http://dx.doi.org/10.1007/11790754_8
http://dx.doi.org/10.1093/comjnl/bxu148

Appl. Sci. 2021, 11, 1351 20 of 21

12. Ma, Z.; Ge, H.; Liu, Y.; Zhao, M.; Ma, J. A combination method for android malware detection based on control flow graphs and
machine learning algorithms. IEEE Access 2019, 7, 21235–21245. [CrossRef]

13. Iadarola, G.; Martinelli, F.; Mercaldo, F.; Santone, A. Call graph and model checking for fine-grained android malicious behaviour
detection. Appl. Sci. 2020, 10, 7975. [CrossRef]

14. Sun, X.; Zhongyang, Y.; Xin, Z.; Mao, B.; Xie, L. Detecting code reuse in android applications using component-based control flow
graph. In Proceedings of the International Conference on Information Security and Privacy Protection, Marrakech, Morocco,
25–27 May 2014; pp. 142–155. [CrossRef]

15. Xu, X.; Liu, C.; Feng, Q.; Yin, H.; Song, L.; Song, D. Neural network-based graph embedding for cross-platform binary code
similarity detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS ’17),
Dallas, TX, USA, 30 October–3 November 2017; pp. 363–376. [CrossRef]

16. Novak, M.; Joy, M.; Kermek, D. Source-code similarity detection and detection tools used in academia: A systematic review.
ACM Trans. Comput. Educ. 2019, 27, 1–37. [CrossRef]

17. Jana, S.; Kang, Y.; Roth, S.; Ray, B. Automatically detecting error handling bugs using error specifications. In Proceedings of the
25th USENIX Security Symposium, Austin, TX, USA, 10–12 August 2016; pp. 345–362.

18. Yun, I.; Lee, S.; Xu, M.; Jang, Y.; Kim, T. QSYM: A practical concolic execution engine tailored for hybrid fuzzing. In Proceedings
of the 27th USENIX Security Symposium, Baltimore, MD, USA, 15–17 August 2018; pp. 745–761.

19. Chang, P.; Hao, E.; Patt, Y.N. Target prediction for indirect jumps. In Proceedings of the 24th Annual International Symposium on
Computer Architecture (ISCA ’97), Denver, CO, USA, 1 June 1997; pp. 274–283.

20. Hex-Rays. IDAPro Disassembler. Available online: https://www.hex-rays.com/ (accessed on 20 December 2020).
21. Bardin, S.; Herrmann, P.; Leroux, J.; Ly, O.; Tabary, R.; Vincent, A. The BINCOA framework for binary code analysis. In Proceedings

of the 23rd International Conference (CAV 2011), Snowbird, UT, USA, 14–20 July 2011.
22. The LLVM Compiler Infrastructure. Available online: https://llvm.org/ (accessed on 20 December 2020).
23. Xu, L.; Sun, F.; Su, Z. Constructing Precise Control Flow Graphs from Binaries; Technical Report; Technical Report CSE-2009-27;

University of California: Davis, CA, USA, 2009.
24. Babić, D.; Martignoni, L.; McCamant, S.; Song, D. Statically-directed dynamic automated test generation. In Proceedings of the

2011 International Symposium on Software Testing and Analysis, Toronto, ON, Canada, 17–21 July 2011; pp. 12–22. [CrossRef]
25. Nguyen, M.H.; Nguyen, T.B.; Quan, T.T.; Ogawa, M. A hybrid approach for control flow graph construction from binary code.

In Proceedings of the 20th Asia-Pacific Software Engineering Conference, Bangkok, Thailand, 2–5 December 2013; pp. 159–164.
26. Zhu, K.; Lu, Y.; Huang, H.; Deng, Z.; Deng, Y. Construction approach for control flow graph from binaries using hybrid analysis.

J. Zhejiang Univ. 2019, 53, 829–836.
27. Ye, Z.; Jiang, X.; Shi, D. Combined method of constructing binary-oriented control flow graphs. Appl. Res. Comput. 2018,

35, 2168–2171.
28. Böhme, M.; Pham, V.; Nguyen, M.; Roychoudhury, A. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security (CCS ’17), Dallas, TX, USA, 30 October–3 November 2017; pp. 2329–2344.
[CrossRef]

29. Chen, H.; Xue, Y.; Li, Y.; Chen, B.; Xie, X.; Wu, X.; Liu, Y. Hawkeye: Towards a desired directed grey-box fuzzer. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS ’18), Toronto, ON, Canada, 15–19 October
2018; pp. 2095–2108. [CrossRef]

30. Wang, H.; Xie, X.; Li, Y.; Wen, C.; Li, Y.; Liu, Y.; Qin, S.; Chen, H.; Sui, Y. Typestate-guided fuzzer for discovering use-after-free
vulnerabilities. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (ICSE ’20), Seoul,
Korea, 24 June–16 July 2020; pp. 999–1010. [CrossRef]

31. Wen, C.; Wang, H.; Li, Y.; Qin, S.; Liu, Y.; Xu, Z.; Chen, H.; Xie, X.; Pu, G.; Liu, T. MemLock: Memory usage guided fuzzing.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (ICSE ’20), Seoul, Korea, 24 June–16
July 2020; pp. 765–777. [CrossRef]

32. Nguyen, M.D.; Bardin, S.; Bonichon, R.; Groz, R.; Lemerre, M. Binary-level directed fuzzing for use-after-free vulnerabilities.
In Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID ’20), San Sebastian,
Spain, 14–16 October 2020.

33. Ye, J.; Li, R.; Zhang, B. RDFuzz: Accelerating directed fuzzing with intertwined schedule and optimized mutation. Math. Probl.
Eng. 2020, 2020, 7698916. [CrossRef]

34. Aschermann, C.; Schumilo, S.; Abbasi, A.; Holz, T. Ijon: Exploring deep state spaces via fuzzing. In Proceedings of the 2020 IEEE
Symposium on Security and Privacy (SP), San Francisco, CA, USA, 18–20 May 2020; pp. 1597–1612.

35. Rawat, S.; Jain, V.; Kumar, A.; Cojocar, L.; Giuffrida, C.; Bos, H. VUzzer: Application-aware evolutionary fuzzing. In Proceedings
of the 2017 NDSS Symposium, San Diego, CA, USA, 26 February–1 March 2017.

36. Chen, P.; Chen, H. Angora: Efficient fuzzing by principled search. In Proceedings of the IEEE Symposium on Security and
Privacy(SP), San Francisco, CA, USA, 20–24 May 2018.

37. Zhao, L.; Duan, Y.; Yin, H.; Xuan, J. Send hardest problems my Way: Probabilistic path prioritization for hybrid fuzzing.
In Proceedings of the NDSS, San Diego, CA, USA, 24–27 February 2019.

38. CVE-2015-5221: An Use-after-Free Vulnerability in the JasPer JPEG-2000 Library before 1.900.2. Available online: https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5221 (accessed on 20 December 2020).

http://dx.doi.org/10.1109/ACCESS.2019.2896003
http://dx.doi.org/10.3390/app10227975
http://dx.doi.org/10.1007/978-3-642-55415-5_12
http://dx.doi.org/10.1145/3133956.3134018
http://dx.doi.org/10.1145/3313290
https://www.hex-rays.com/
https://llvm.org/
http://dx.doi.org/10.1145/2001420.2001423
http://dx.doi.org/10.1145/3133956.3134020
http://dx.doi.org/10.1145/3243734.3243849
http://dx.doi.org/10.1145/3377811.3380386
http://dx.doi.org/10.1145/3377811.3380396
http://dx.doi.org/10.1155/2020/7698916
 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5221
 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-5221

Appl. Sci. 2021, 11, 1351 21 of 21

39. Michal, Z. American Fuzzy Lop (AFL). Available online: http://lcamtuf.coredump.cx/afl/ (accessed on 20 December 2020).
40. Böhme, M.; Pham, V.; Roychoudhury, A. Coverage-based greybox fuzzing as markov chain. IEEE Trans. Softw. Eng. 2017,

45, 489–506. [CrossRef]
41. Wang, M.; Liang, J.; Chen, Y.; Jiang, Y.; Jiao, X.; Liu, H.; Zhao, X.; Sun, J. SAFL: Increasing and accelerating testing coverage

with symbolic execution and guided fuzzing. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings (ICSE ’18), Gothenburg, Sweden, 27 May–3 June 2018; pp. 61–64. [CrossRef]

 http://lcamtuf.coredump.cx/afl/
http://dx.doi.org/10.1109/TSE.2017.2785841
http://dx.doi.org/10.1145/3183440.3183494

	Introduction
	Motivation
	The Distribution of Indirect Jumps
	Motivating Example

	Overview
	Methodology
	Static CFG Construction
	DGF-Based Test Case Generation
	Distance Calculation
	Fuzzing Loop

	Indirect Jump Instrumentation and Monitoring
	Iterative Feedback Mechanism
	Illustrating with Examples

	Implementation
	Evaluation
	Evaluation Setup
	Evaluation of DGF in CFG Construction (RQ1)
	Evaluation of the Iterative Feedback Mechanism (RQ2)
	Completeness of the CFGs (RQ3)
	Application: Security Analysis (RQ4)
	Discussion

	Related Works
	CFG Construction
	Gray-Box Fuzzing

	Conclusions
	References

