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Abstract: Permeable porous implants must satisfy several physical and biological requirements in
order to be promising materials for orthopaedic application: they should have the proper levels
of stiffness, permeability, and fatigue resistance approximately matching the corresponding levels
in bone tissues. This can be achieved using designer materials, which exhibit exotic properties,
commonly known as metamaterials. In recent years, several experimental, numerical, and analytical
studies have been carried out on the influence of unit cell micro-architecture on the mechanical
and physical properties of metamaterials. Even though experimental and numerical approaches
can study and predict the behaviour of different micro-structures effectively, they lack the ease
and quickness provided by analytical relationships in predicting the answer. Although it is well
known that Timoshenko beam theory is much more accurate in predicting the deformation of a
beam (and as a result lattice structures), many of the already-existing relationships in the literature
have been derived based on Euler–Bernoulli beam theory. The question that arises here is whether
or not there exists a convenient way to convert the already-existing analytical relationships based
on Euler–Bernoulli theory to relationships based on Timoshenko beam theory without the need
to rewrite all the derivations from the start point. In this paper, this question is addressed and
answered, and a handy and easy-to-use approach is presented. This technique is applied to six unit
cell types (body-centred cubic (BCC), hexagonal packing, rhombicuboctahedron, diamond, truncated
cube, and truncated octahedron) for which Euler–Bernoulli analytical relationships already exist in
the literature while Timoshenko theory-based relationships could not be found. The results of this
study demonstrated that converting analytical relationships based on Euler–Bernoulli to equivalent
Timoshenko ones can decrease the difference between the analytical and numerical values for one
order of magnitude, which is a significant improvement in accuracy of the analytical formulas.
The methodology presented in this study is not only beneficial for improving the already-existing
analytical relationships, but it also facilitates derivation of accurate analytical relationships for other,
yet unexplored, unit cell types.

Keywords: mechanical properties; Euler–Bernoulli beam theory; Timoshenko beam theory; analytical
relationship; finite element method

1. Introduction

Recently, partially or fully porous load-bearing implants have been proposed to
replace the traditional solid implants for repairing large bony defects. While metallic foams
manufactured by conventional techniques such as powder metallurgy [1], investment
casting [2], and space-holder [3,4] have found their way in this field [5], they all lack a
good controllability over the microstructural geometry of the implants, and hence their
static mechanical properties [6], fatigue resistance [7], and biological response [8]. A recent
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explosion in the application of additive manufacturing (AM) in biomedical engineering
has opened the possibility of manufacturing porous meta-implants with arbitrary micro-
architecture. AM makes it possible to manufacture open-cell (i.e., permeable) porous
materials with precisely designed microstructure both in micro- and macro-scales [9].

Porous implants should satisfy several physical and biological requirements in order
to be in an optimal state for biomedical applications: they should have the right levels
of stiffness, permeability, and fatigue resistance, in proximity to how much they are in
bone tissues. This is especially crucial to avoid the undesired consequences of using highly
stiff solid metallic implants that can cause problems such as stress shielding [10]. This
can be achieved using designer materials, which can exhibit exotic properties, commonly
known as metamaterials. Permeable metamaterials have shown several advantages in
multi-functional applications such as biomedical engineering, acoustics, photonics, and
thermal management [11].

Metamaterials used to construct implants are made of repeating building blocks
known as unit cells. The mechanical, physical, and biological properties of implants are
determined by four main characteristics of the unit cell that they are made of: the shape of
the cells, their size, their permeability, and their relative density (which is defined as the
fraction of space occupied by the solid material).

In recent years, several experimental [12–19], numerical [20–25], and analytical [26–30]
studies have been dedicated to studying the influence of unit cell shape on the above-
mentioned properties. Even though experimental and numerical approaches can study and
predict the behaviour of different micro-structures effectively, they lack the ease and quick-
ness provided by analytical relationships in predicting the answer. Analytical relationships
for a regularly repeated lattice structure have several benefits: they can be used for valida-
tion of numerical or experimental results, they can be implemented in Machine Learning
or Artificial Intelligence algorithms to construct optimally designed patient-specific porous
implants, and they can give a clear and quick indication of what geometrical/material
properties have the most contribution in each of the mechanical properties.

Previously, analytical relationships for elastic properties (elastic modulus, Poisson’s
ratio, and yield stress) of different unit cells such as body-centred cubic (BCC) [31],
cube [32,33], diamond [26,34], hexagonal packing [35], iso-cube [5], octahedral [27], rhombic
dodecahedron [28,29], rhombicuboctahedron [30], truncated cube [32], truncated cuboctahe-
dron [36], and truncated octahedron [37] have been derived. In the literature, relationships
for octahedral [27], rhombic dodecahedron [29], and truncated cuboctahedron [36] have
been derived based on both Euler–Bernoulli and Timoshenko beam theories. However,
for the rest of the above-mentioned geometries, the relationships are derived based on
Euler–Bernoulli beam theory only. The question that arises here is whether or not there can
be a convenient way to convert the already-existing relationships based on Euler–Bernoulli
to relationships based on Timoshenko beam theory without the need to rewrite all the
derivations from the starting point.

In this study, we try to answer that question by presenting a technique to convert
the already-existing analytical relationships based on Euler–Bernoulli beam theory to
equivalent Timoshenko ones. This technique can be used to convert Euler–Bernoulli elastic
relationships including elastic modulus, Poisson’s ratio, and yield stress (E, σy, ν) of
any porous material. The efficiency of this technique is evaluated for six unit cell types:
BCC, hexagonal packing, rhombicuboctahedron, diamond, truncated cube, and truncated
octahedron. Numerical simulations are also carried out using finite element (FE) modelling
to evaluate whether or not the new technique enhances the accuracy of the analytical
results. Moreover, experimental data points from previous studies are used for validation
of the proposed technique.

2. Materials and Methods

The general deformation of any arbitrary strut of an open-cell lattice structure can be
decomposed into four basic deformations (Figure 1). Each strut in the unit cell could be
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considered as a clamped beam with four main deformations namely lateral displacement
(v), flexural rotation (θ), twist (ϕ), and elongation/contraction (u). By considering these
deformations as the basic deformation modes of the struts of a lattice structure, the total
deformation and behaviour of a unit cell in a lattice structure could be calculated and
obtained. In Sections 2.1 and 2.2, the basic formulation of deformation for a single strut
under various conditions are obtained based on two well-known beam theories namely
Euler–Bernoulli and Timoshenko (For detailed description please see Appendix A).
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2.1. Euler–Bernoulli Beam Theory

For a beam under no distributed load, the Euler–Bernoulli beam equation can be
written as

d4w
dx4 = 0 (1)

where w is the deflection. The solution to this differential equation can be expressed as:

w = c0 + c1x + c2x2 + c3x3 (2)

where constants, c0− c3, are determined by applying boundary conditions. For a cantilever
Euler–Bernoulli beam with a point load, P, at its end, we have

δ =
Fl3

3Es I
and θ =

Fl2

2Es I
(3)

On the other hand, for a cantilever beam with a concentrated moment, M, at its end,
the displacement and rotation are as follows:

δ =
Ml2

2Es I
and θ =

Fl
Es I

(4)

In beams where the angle of the free end does not change during the deformation
(e.g., the beams of the lattice structure considered in this study), the rotations produced by
the lateral load, F, and moment, M, must be equal and opposite, from which the value of
M can be identified:

Fl2

2Es I
=

Ml
Es I

→ M =
Fl
2

(5)

While force, F, tends to increase the deflection, moment, M, tends to reduce it. The
total deflection created by force, F, and moment, M, is then

δ =
Fl3

3Es I
−
(

Fl
2

)
l2

2EI
=

Fl3

12EI
(6)
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Rewriting Equation (6) as a function of F gives (see Figure 2a)

F =
12Es I

l3 δ (7)
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According to Equation (5), we will have M = 6Es I
l2 δ. Similarly, the axial force required

to displace the end of a rod for u is AEsu/l (see Figure 2c). The equations for a cantilever
beam with rotation but with no displacement in the end can be obtained in a similar manner
and the results are shown in Figure 2b.

2.2. Timoshenko Beam Theory

Now, we try to find out how the moments and forces shown in Figure 2a,b would
change due to change in the beam theory. The Timoshenko beam theory takes into account
shear deformation and rotational inertia effects, making it suitable for describing the be-
haviour of short beams. For a homogenous beam of constant cross-section, the Timoshenko
beam governing equations are as follows:

d2

dx2

(
Es I

dϕ

dx

)
= q(x, t)

dw
dx

= ϕ− 1
κAGs

d
dx

(
Es I

dϕ

dx

)
(8)

where ϕ is the angle of rotation of the normal to the mid-surface of the beam and κ is
the shear coefficient factor. The coefficient, κ, is a dimensionless quantity, dependent on
the shape of the cross-section, which is introduced to account for the fact that the shear
stress and strain are distributed not-uniformly over the cross-section [38]. In a linear elastic
Timoshenko beam, the bending moment, Mxx, and the shear force, Qx, are related to the
angle of rotation, ϕ, and the deflection, w, by

Mxx = −Es I
∂ϕ

∂x
Qx = κAGs

(
−ϕ +

∂w
∂x

)
(9)

(a) A cantilever beam with lateral displacement but with no rotation in the end
(Figure 3a): Since the distributed load (force per length), q(x), is zero, the solution to the
first differential equation of Equation (8) can be expressed as:

Es I
d3 ϕ

dx3 = q(x) = 0 → Es Iϕ =
C0

2
x2 + C1x + C2 (10)
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By applying the boundary condition of no rotation at the root of the cantilever beam,
Equation (10) gives C2 = 0. Similarly, applying the boundary condition of no rotation
(ϕ = 0) at the end of the beam (x = l) to Equation (10) gives C1 = −C0l

2 . Substituting C1
and C2 in the second line of Timoshenko beam theory (Equation (8)) gives the deflection
function of the beam as

w =
C0

2Es I

(
x3

3
− l

x2

2

)
− Es I

κAGs

C0

2Es I
(2x− l) + C3 (11)

The two other constants (C0, C3) can be found from the boundary conditions in x = 0
and x = l. At the root (x = 0), the deflection equals zero, hence:

C3 = − C0l
2κAGs

(12)

Moreover, the deflection at the end of the beam equals δ, which gives:

C0 =
−δ

l3

12Es I +
l

κAGs

(13)

By substituting C0, C1, C2, C3 in the first line of Equation (8) and in Equation (11),
the Timoshenko beam theory for a cantilever beam with lateral displacement but with no
rotation could be obtained as follows:

ϕ =
−δ

l3

6 + 2Es Il
κAGs

(
x2 − lx

)
w =

−δ
l3

12Es I +
l

κAGs

(
1

2Es I

(
x3

3
− l

x2

2

)
− 1

κAGs
x
)

(14)

Now, it is possible to find the moments and forces shown in Figure 3a. As mentioned
above, the bending moment, Mxx, and the shear force, Qx, are related to the angle of
rotation, ϕ, and the deflection, w, by Equation (9). Therefore, by substituting M = M0 and
Qx = F at x = l in respectively the first and second lines of Equation (9), we have:

M0 =
δ

l2

6Es I +
2

κAGs

F =
δ

l3

12Es I +
l

κAGs

(15)

(b) A cantilever beam with rotation but with no lateral displacement in the end
(Figure 3b): Since the distributed load, q(x), and the boundary condition of the beam at the
clamped side (x = 0) for this case is similar to the previous case (Case a), the relationship
for angle of rotation, ϕ, is the same as that given in Equation (10), and also C2 = 0. By
considering w = 0 at both x = 0 and x = l, the constants C1 and C3 can be found as:

C1 = C0

(
2Es I

κAGsl
− l

3

)
C3 =

C1

κAGs
(16)

The beam at the free side (x = l) has a rotation with the known value of ϕ = θ, which
after being substituted in Equation (10) gives:

C0 =
θ

l2

6Es I +
2

κAGs

(17)

Therefore, the Timoshenko beam theory governing equations for a cantilever beam
with rotation but with no lateral displacement at the end could be obtained as follows:

ϕ =
C0x2 + 2C1x

2Es I
w =

1
2Es I

(
C0x3

3
+ C1x2

)
− C0

κAGs
x (18)
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By considering Mxx = M0 and Qx = F at x = l in Equation (9), the relationship of
bending moment and force can be found as

M0 =

( 2Es I
κAGs l +

2l
3

l2

6Es I +
2

κAGs

)
θ (19)

F =
θ

l2

6Es I +
2

κAGs

(20)

2.3. From Euler–Bernoulli to Timoshenko

According to the relationships obtained for Euler–Bernoulli and Timoshenko beam the-
ories in Sections 2.1 and 2.2, the analytical relationships for elastic modulus and Poisson’s
ratio of any structure based on Euler–Bernoulli theory can be converted into relationships
based on Timoshenko beam theory by making the replacements suggested by Table 1 in
the stiffness matrix or in the derivation formulas. To evaluate the effectiveness of the
conversion approach presented in Table 1, six well known strut-based lattice structures
including BCC, hexagonal packing, rhombicuboctahedron, diamond, truncated cube, and
truncated octahedron (Figures 4 and 5) were considered. In the following, the procedure of
converting Euler–Bernoulli formulas [26,30–32,35,39] into equivalent Timoshenko ones is
described for each of the six unit cell types.

Table 1. Conversion table for converting mechanical properties relationships based on Euler–
Bernoulli beam theory to mechanical properties relationships based on Timoshenko beam theory.

Term Euler–Bernoulli Theory Timoshenko Theory

Axial Tension/Compression
(

AEs
l

)
u

(
AEs

l

)
u

Torsion
(

Gs J
l

)
ϕ

(
Gs J

l

)
ϕ

Lateral deformation Force
(

12Es I
l3

)
v

(
1

l3
12Es I +

l
κAGs

)
v

Lateral deformation Moment
(

6Es I
l2

)
v

(
1

l2
6Es I +

2
κAGs

)
v

Rotation Force
(

6Es I
l2

)
θ

(
1

l2
6Es I +

2
κAGs

)
θ

Rotation Moment
(

4Es I
l

)
θ

(
2Es I

κAGsl +
2l
3

l2
6Es I +

2
κAGs

)
θ
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The commonly known geometries for the six noted unit cell types are presented in
Figure 4, and the actual geometries used for both the analytical and numerical analyses
in this study are illustrated in Figure 5. The reason of altering the unit cell shape for the
BCC case is obvious as the molecular structure of BCC (Figure 4a) is composed of spheres
rather than struts (Figure 5a). In the case of diamond, the unit cell shown in Figure 4b
is rotated, and the unit cell in a specific direction (for which all the struts have similar
angles with respect to the horizontal plane) has been considered for analysis (Figure 5b).
In the other cases, the unit cell position has been shifted in order to avoid neighbouring
cells having adjacent struts. If the neighbour cells have adjacent side-by-side edges, the
analytical relationship obtained for the unit cell does not represent that of a lattice structure.
More explanations regarding this can be found in Section 2.1.2 of [32]. Although in this
paper, all the analytical relationships for the lattice structures and unit cells are presented in
a normalized manner and, hence, the dimensions of the unit cells do not affect the results,
an equal volume of 5 × 5 × 5 mm3 was considered for all the unit cell types. Moreover, in
each unit cell, the strut radius was increased from very small values (r ∼= 0) to high values
up to the point where relative density of the unit cell reached µ = 0.5.

The conversion procedure from Euler–Bernoulli beam theory into Timoshenko beam
theory for each unit cell is described in the following:

(a). BCC

The relationships for elastic modulus and Poisson’s ratio of BCC unit cell have been
presented in Equations (A18) and (A19) of Appendix B (extracted from [31]). In these
equations, the axial extension ( AEs

l ) and lateral bending ( 12Es I
l3 ) terms of the Euler–Bernoulli
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theory can be identified easily. By substituting the term 12Es I
l3 with

(
1

l3
12Es I +

l
κAGs

)
, the

relationships for elastic modulus and Poisson’s ratio can be converted.

(b). Diamond

For transforming relationships of elastic modulus and Poisson’s ratio from Euler–
Bernoulli into Timoshenko beam theory, the basic Equations (A20) and (A21) of Appendix B
(extracted from [26]) for elastic modulus and (A22) and (A23) of Appendix B (extracted
from [26]) for Poisson’s ratio were considered. Axial extension ( AEs

l ) and lateral bending
( 12Es I

l3 ) terms of Euler–Bernoulli theory can be identified easily. By substituting the term

12Es I
l3 with

(
1

l3
12Es I +

l
κAGs

)
, the relationships for elastic modulus and Poisson’s ratio based on

Timoshenko beam theory were obtained.

(c). Hexagonal packing

For this unit cell, since the analytical relationships for mechanical properties of struc-
ture have not been derived based on Euler–Bernoulli theory in the literature [35], the
analytical relationships for Euler–Bernoulli and Timoshenko beam theories have both been
derived in this study. The detailed derivations can be found in Appendix C.

(d). Rhombicuboctahedron

Since the final relationships for elastic modulus and Poisson’s ratio of this unit cell
have been presented in r

l terms, and the stiffness matrix of unit cell contains AEs
l , 12Es I

l3 ,
Gs J

l , and 6Es I
l2 , recognition of terms provided in Table 1 in the final Equations (A24) and

(A25) of Appendix B (extracted from [30]) is not possible. Therefore, by substituting the

term 12Es I
l3 with

(
1

l3
12Es I +

l
κAGs

)
and 6Es I

l2 with
(

1
l2

6Es I +
2

κAGs

)
in the stiffness matrix (Equation

(A26) in Appendix B (which is extracted from [30]) and solving the system of equations,
the relationships based on Timoshenko theory were obtained.

(e). Truncated cube

The procedure for truncated cube unit cell is very similar to what was described
above for the rhombicuboctahedron unit cell. The final stiffness matrix of the unit cell in
Equation (A27) of Appendix B (extracted from [32]) contains AEs

l and 12Es I
l3 terms. There-

fore, by substituting the term 12Es I
l3 with

(
1

l3
12Es I +

l
κAGs

)
, the stiffness matrix based on Timo-

shenko beam theory can be derived. Afterwards, by solving the system of equations, the
mechanical properties relationships based on Timoshenko beam theory were obtained.

(f). Truncated octahedron

The relationships for elastic modulus and Poisson’s ratio of truncated octahedron unit
cell have been presented in Equation (A28) and (A29) of Appendix B (extracted from [39]).
Since the deformation of this unit cell includes axial extension and lateral bending, the
terms AEs

l and 12Es I
l3 can be extracted from these equations. By substituting the term 12EI

l3

with
(

1
l3

12Es I +
l

κAGs

)
, the relationships presented for elastic modulus and Poisson’s ratio can

be transformed into corresponding Timoshenko ones.
It is worth noting that the relationships for normalized yield stress for five of the six

noted unit cells (BCC, hexagonal packing, rhombicuboctahedron, diamond, and truncated
octahedron) based on Euler–Bernoulli and Timoshenko beam theories have been obtained
separately in another study [40].

2.4. Numerical Analysis

The 3D representation of the unit cells used for numerical modelling and analysis
are demonstrated in Figure 5. The actual FE models of the unit cells along with the
boundary conditions are demonstrated in Appendix D. The struts of the unit cells were
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discretized using Timoshenko beam elements (element type BEAM189 in ANSYS), and
each strut was discretized using five beam elements. The beam elements were rigidly
connected to each other at their shared vertices, and they were not allowed to rotate in
any direction at the connecting point. The mechanical properties of the titanium alloy
Ti-6Al-4V-ELI were used for modelling the behaviour of the matrix material in the FE
models. A linear elastic material model with elastic modulus and Poisson’s ratio of
113.8 GPa and 0.342, respectively, was implemented. Since the BEAM189 element uses
linear interpolation and takes transverse shear deformation into account, it is expected
that the numerical results will be closer to the Timoshenko analytical solution. In the FE
models of BCC, diamond, truncated cube, and truncated octahedron, a single unit cell with
periodic boundary condition was analysed under compressive loading (Figure A2a,b,e,f
in Appendix D). For the hexagonal packing and rhombicuboctahedron topologies, lattice
structures consisting of 11 × 11 × 11 unit cells were used for numerical modelling. This
was due to the complexity of modelling the repetitive boundary conditions in these two
unit cell types. More specifically, in these two cases, each side of the unit cell is composed
of two strut types (rather than one strut type in the case of other unit cell types), which
have non-symmetrical displacements under compressive loading (demonstrated as strut
types A and B in Figure 5c,d).

In all the FE models, the lowermost nodes of the structure were fixed in the direction
parallel to the loading direction and were not allowed to rotate in any direction. For the
case of FE models made out of single unit cells (Figure A2a,b,e,f in Appendix D), the
side vertices of the unit cell were constrained rotationally as they were symmetrically
connected to the (imaginary) adjacent unit cells (repetitive boundary condition). In all
the FE models, a downward displacement was applied on the uppermost node(s) of the
structure to induce axial deformation. Moreover, the uppermost nodes were not allowed to
rotate in any directions.

Mechanical properties of the FE models have been calculated based on the basic
definition of elastic modulus, Poisson’s ratio, and yield stress:

• Elastic modulus: The formula EUC = FUC LUC
AUCδUC

was used for calculating numerical
elastic modulus, where LUC is the structure length in the direction parallel to loading
direction, AUC is the cross-sectional area of the structure in the direction perpendicular
to the loading direction, δUC is the downward displacement applied to the uppermost
nodes, and FUC is obtained by summing the reaction forces of the lowermost nodes.

• Poisson’s ratio: The formula υUC = − ε2
ε1

= − L1δ2
L2δ1

was used for obtaining Poisson’s
ratio. In this formula, δ1 and L1 are the downward displacement applied to the
uppermost nodes and unit cell’s length in the direction parallel to loading direction,
respectively. Parameters δ2 and L2 are respectively the lateral displacement of the side
nodes and the structure length in the direction perpendicular to loading direction.

• Yield stress: The formula σy
σys

= FUC
AUC σmax

was used to calculate normalized yield stress.
In this formula, σmax is the maximum von Mises stress experienced in the most critical
point of the structure. The critical points of each unit cell can be seen in Section 4.1.

In the cases where a lattice structure was implemented for numerical modelling
(rhombicuboctahedron and hexagonal packing), all the above-mentioned terms denoted
by UC should rather be denoted by Lattice, and the lattice structure dimensions should be
used for calculations.

3. Results

According to the initial results, by not considering the shear deformation effect in the
beam theory, the forces and moments required to create a particular deformation in a single
strut could be predicted by 15–20% higher for r/l as large as 0.15. The complete results are
presented in Appendix E.

The transformed elastic modulus, Poisson’s ratio, and yields stress relationships for
the six geometries are presented in Tables 2–4. For simplifying the equations, the terms
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S = AEs
l , T = 1

l3
12Es I +

l
κAGs

, U =
2Es I

κAGsl +
2l
3

l2
6Es I +

2
κAGs

, V = 1
l2

6Es I +
2

κAGs

, and W = Gs J
l and have been

used in the noted tables for the relationships based on the Timoshenko beam theory. For
four of the geometries (BCC [31], rhombicuboctahedron [30], truncated cube [32], and
truncated octahedron [39]), the original Euler–Bernoulli relationships have been presented
in Tables 2 and 3 as well. In the case of hexagonal packing, the original Euler–Bernoulli rela-
tionships [35] for elastic modulus and Poisson’s ratio have been improved and adjusted (the
description on how and why can be found in Appendix C), and the improved relationships
are presented in Tables 2 and 3. For the case of diamond unit cell, the original relation-
ships for elastic modulus and Poisson’s ratio have been conserved but stated as a function
of r/l rather than of relative density, µ. As for the yield stress (Table 4), the analytical
Euler–Bernoulli relationships presented in our other paper [40] have been presented.

In order to compare the already-existing [26,30–32,35,39] or improved Euler–Bernoulli
analytical relationships with the newly transformed Timoshenko analytical relationships, the
results of the analytical relationships for both the Euler–Bernoulli and Timoshenko beam the-
ory have been compared with their numerical and experimental counterparts in Figures 6–8.
The relative density relationships for the six geometries are presented in Table 5.

For all the geometries, the newly transformed Timoshenko relationships have excep-
tionally good agreement with the numerical results for all the mechanical properties: elastic
modulus, Poisson’s ratio, and yield stress (Figures 6–8). As for the previously obtained
formulas obtained in the literature or newly adjusted Euler–Bernoulli formulas, the maxi-
mum difference between Euler–Bernoulli analytical elastic modulus and corresponding
numerical values for BCC, diamond, hexagonal packing, rhombicuboctahedron, truncated
cube, and truncated octahedron (at relative density of µ = 0.5) are, respectively, 21.34%,
57.71%, 20.21%, 14.52%, 14.98%, and 45.54%. However, the corresponding differences
between the Timoshenko analytical relationships and the numerical values for the noted
geometries are, respectively, 1.13%, 2.21%, 8.29%, 2.97%, 0.43%, and 3.15%.
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Table 2. Normalized elastic modulus relationships based on Euler–Bernoulli and Timoshenko beam theories for different unit cell types (S = AEs
l , T = 1

l3
12EsI +

l
κAGs

, V = 1
l2

6EsI +
2

κAGs

, and

W = GsJ
l ).

Unit Cell
Relative Elastic Modulus, E/Es

Euler–Bernoulli Theory Timoshenko Theory

BCC
4
√

3(
l2

πr2 +
l4

2πr4

)
[31]

4
√

3
E( 4l

3S +
8l
3T )

Diamond
3
√

3
8

3π (
l
r )

4
+ 4

π (
l
r )

2

[26]
3
√

3
E( 8l

T + 4l
S )

Hexagonal packing
π
√

3
4
( r

l
)2
(

1 + 1
5
9 +

4
27 (

l
r )

2

)
(see Appendix C)

√
3S
(

1+ 1
5
9 + 4S

9T

)
4El

Rhombicuboctahedron
4π( r

l )
2

3(1+
√

2)

[
4+108( r

l )
2
+207( r

l )
4
+81( r

l )
6
+ G

E

(
2
3 +19( r

l )
2
+45( r

l )
4
+18( r

l )
6
)

8+70( r
l )

2
+105( r

l )
4
+27( r

l )
6
+ G

E

(
4
3 +13( r

l )
2
+23( r

l )
4
+6( r

l )
6
)
]

[30]

4S(2WS3+19WS2T+15WST2+2WT3+4S3V+36S2TV+23ST2V+3T3V)LUC

E(12WS3+39WS2T+23WST2+2WT3+24S3V+70S2TV+35ST2V+3T3V)AUC

Truncated cube
2π√
2+1

( r
l
)2 1+9( r

l )
2

5+21( r
l )

2

[32]

8S(S+3T)LUC
E(5S+7T)AUC

Truncated octahedron
6
√

2I
l4
(

1+ 12I
Al2

)
[39]

1√
2El( 1

S +
1
T )
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Table 3. Poisson’s ratio relationships based on Euler–Bernoulli and Timoshenko beam theories for different unit cell types (S = AEs
l , T = 1

l3
12EsI +

l
κAGs

, V = 1
l2

6EsI +
2

κAGs

, and W = GsJ
l ).

Unit Cell
Poisson’s Ratio,

Euler–Bernoulli Theory Timoshenko Theory

BCC
− 1

πr2 +
l2

4πr4
1

πr2 +
l2

2πr4

[31]

− 1
S +

1
T

1
S +

2
T

Diamond
1−3( r

l )
2

2−3( r
l )

2

[26]

− 1
S +

1
T

1
S +

2
T

Hexagonal packing
− 1

9 +
1
27 (

l
r )

2

5
9 +

4
27 (

l
r )

2

(see Appendix C)

S
T−1

5+ 4S
T

Rhombicuboctahedron
1
3

[
8−12( r

l )
2−36( r

l )
4
+ G

E

(
4
3−(

r
l )

2−9( r
l )

4
)

8+70( r
l )

2
+105( r

l )
4
+27( r

l )
6
+ G

E

(
4
3 +13( r

l )
2
+23( r

l )
4
+6( r

l )
6
)
]

[30]

S(S−T)(4WS+3WT+8SV+4TV)
12WS3+39WS2T+23WST2+2WT3+24S3V+70S2TV+35ST2V+3T3V

Truncated cube
1−3( r

l )
2

5+21( r
l )

2

[32]

1
T−

1
S

5
T +

7
S

Truncated octahedron 0.5 Al2−12I
Al2+12I
[39]

1
2

S−T
S+T
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Table 4. Relative yield stress relationships based on Euler–Bernoulli and Timoshenko beam theories for different unit cell types (S = AEs
l , = 1

l3
12EsI +

l
κAGs

, U =
2EsI
κAGl +

2l
3

l2
6EsI +

2
κAGs

, V = 1
l2

6EsI +
2

κAGs

, and

W = GsJ
l ).

Unit Cell
Relative Yield Stress, σy

σys

Euler–Bernoulli Theory Timoshenko Theory

BCC
1

1
3π
√

3 (
l
r )

2
+ 4

π
√

6 (
l
r )

3

[40]
3
√

3
l2
(

1
A + cl√

2I

)

Diamond
1

4
3π
√

3 (
l
r )

2
+ 8
√

2
π
√

3 (
l
r )

3

[40]
3
√

3
4l2
(

1
A + cl√

2I

)

Hexagonal packing
π
√

3
4
( r

l
)2
(

1 + 1
5
9 +

4
27 (

l
r )

2

)
[40]

√
3S
(

1+ 1
5
9 + 4S

9T

)
4El

Rhombicuboctahedron 4A
AUC

(
1− 6

√
2(A2 l4−6AIl2−72I2)rAl

1728(4.5+ Gs
Es )I3+1080(4.6+ Gs

Es )AI2 l2+6(108+19 Gs
Es )A2Il4+(6+ Gs

Es )A3 l6+6
√

2(A2 l4−6AIl2−72I2)rAl

)
* (See the footnote of the table)

Truncated cube
π

(
√

2+1)
2

( r
l
)2

[4]
A

l2(
√

2+1)
2

Truncated octahedron
1√

2
2π (

l
r )

2
+
√

2
π ( l

r )
3

[40]

√
2

l2

(
Vc( 3

T + 1
S )

I +
S( 1

T + 3
S )

A

)

* The Timoshenko-based relationship for the yield stress of rhombicuboctahedron is: 16IA
AUC

(
2Ẃ(Ś3+T́3)+19ẂŚ2 T́+15ẂŚT́2+4Ś3V́+36Ś2 T́V́+23ŚT́2V+3T́3V́

2I(2ẂŚ3+2ẂT́3+19ẂŚ2 T́+15ẂŚT́2+4Ś3V́+36Ś2 T́V́+23ŚT́2V́+3T́3V́)+
√

2rA(8Ś2ÚV́−4ŚT́ÚV́−4T́2ÚV́−2Ś2V́2+ŚT́V́2+T́2V́2)

)
, where,

Ś = 2AEs
l , T́ = 1

l3
96EsI +

l
κAGs

, Ú =
4EsI

κAGsl +
l
3

l2
24EsI +

2
κAGs

, V́ = 1
l2

24EsI +
2

κAGs

, Ẃ = 2GsJ
l .
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Table 5. Relative density relationships for different unit cell types.

Unit Cell µ, Relative Density

BCC 3
√

3π
( r

l
)2 − 4

√
6π
( r

l
)3

[40]

Diamond 3
√

3π
4
( r

l
)2 − 9

√
2

4
( r

l
)3

Hexagonal packing 5π
2
√

3

( r
l
)2

Rhombicuboctahedron
36π

7+
√

5

( r
l
)2 − 12(12.0404)

7+
√

5

( r
l
)3

[30]

Truncated cube
15π

(1+
√

3)
3

( r
l
)2

[32]

Truncated octahedron
3π

2
√

2

( r
l
)2

[39]

Similarly, the maximum differences between Euler–Bernoulli analytical Poisson’s ratio
and corresponding numerical values for BCC, diamond, hexagonal packing, rhombicuboc-
tahedron, truncated cube, and truncated octahedron are, respectively, 3.07%, 27.69%,
28.00%, 21.54%, 73.58%, and 40.51%. The corresponding differences between the Timo-
shenko analytical relationships and the numerical values for the noted geometries are,
respectively, 0.133%, 0.826%, 0.899%, 6.24%, 1.36%, and 0.498%, which shows a significant
improvement in the accuracy of the analytical relationships. As can be seen in Figures 6–8,
the numerical/analytical discrepancy for the case of Timoshenko beam theory is signifi-
cantly less (around 1/10) than that of Euler–Bernoulli beam theory.

As for the yield stress (Figure 8), the analytical Euler–Bernoulli and Timoshenko
relationships are identical for BCC, diamond, and truncated cube unit cells. The reason is
explained in Section 4.3. However, for three other geometries, namely hexagonal packing,
rhombicuboctahedron, and truncated octahedron, the analytical relationships based on
Euler–Bernoulli differ from the relationships obtained based on Timoshenko beam theory.
Nevertheless, for all the cases, the Timoshenko analytical yield stress curve has exception-
ally good agreement with numerical results (Figure 8). For BCC, diamond, and truncated
cube unit cells (the geometries that have the same yield stress analytical relationships
for Euler–Bernoulli and Timoshenko beam theories), the maximum difference between
analytical and numerical values is less than 0.25%. As for the three other geometries, the
maximum difference between Euler–Bernoulli analytical normalized yield stress and corre-
sponding numerical values for hexagonal packing, rhombicuboctahedron and truncated
octahedron are, respectively, 21.25%, 3.02%, and 7.52%. However, such differences for
the analytical relationships based on Timoshenko beam theory and numerical values are,
respectively, 9.49%, 0.09%, and 0.162%, which shows a significant improvement in the
accuracy of the analytical relationships.

As for the proximity of the analytical/numerical elastic modulus and yield stress
values to the experimental data, the experimental data points have been presented in
Figures 6 and 8 for rhombicuboctahedron, truncated cube, and diamond unit cells only, as
in the literature, there are experimental measurements for such unit cells only [41]. As for
the elastic modulus, converting the analytical relationships from Euler–Bernoulli to Timo-
shenko has led to closer proximity of analytical and experimental values (Figure 6b,d,e).
As for the yield stress, for the three geometries for which experimental data points are
available (diamond, rhombicuboctahedron, and truncated cube), the analytical relation-
ships based on Euler–Bernoulli and Timoshenko are identical or almost overlapping, and
both are in good agreement with experimental data points (Figure 8b,d,e).
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4. Discussions
4.1. Unit Cell’s Behaviour

The main mechanism of deformation in the struts of lattice structures and porous
materials is flexure, stretching/contraction, or a combination of them. In the unit cells with
a high fraction of vertical struts (struts aligned with the loading condition), the main reason
for collapse is the axial normal stresses generated in their struts. Therefore, the deformation
in these structures is stretching-dominated and the lattice structure collapses due to the
generation of unbearable axial stress in the struts. As can be seen in Figure 9, the hexag-
onal packing and truncated cube unit cells could be considered as stretching-dominated
structures due to the high presence of vertical struts in their architecture, while the other
structures namely BCC, diamond, truncated octahedron as well as rhombicuboctahedron
could be considered as bending-dominated structure, as they are mostly made up of oblique
struts. The main mode of deformation in a unit cell (stretching-dominated or bending-
dominated) determines the general deformation of the unit cell and, therefore, its stiffness
and yield strength. According to Figure 9, the critical points of the hexagonal packing and
truncated cube unit cells are located in the vertical struts due to their stretching-dominated
behaviour. On the other hand, the critical points of BCC, diamond, truncated octahedron,
and rhombicuboctahedron unit cells are located at the end of oblique struts due to their
bending-dominated behaviour. In addition, it can be seen in Figures 6 and 8 that among all
the unit cell types, the hexagonal packing and truncated cube structures have the highest
stiffness and yield strength, especially in lower values of relative density due to their
stretching-dominated behaviour. It is worth noting that since the rhombicuboctahedron
has vertical struts, it has an in-between behaviour and gives higher stiffness and strength
in comparison with other bending-dominated unit cells. More figures that illustrate the
axial and bending stresses in the struts of the unit cells can be found in Appendix D.
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4.2. Why the New Relationships Give Much Better Accuracy?

In this paper, new relationships based on Timoshenko beam theory have been derived
for elastic modulus, Poisson’s ratio, and yield strength of several topologies. In addition
to implementing Timoshenko beam theory, some adjustments in deriving analytical rela-
tionships based on Euler–Bernoulli beam theory have been implemented for hexagonal
packing unit cell (see Appendix C). Timoshenko beam theory takes into account shear
deformation and rotational bending effects, making it suitable for describing the behaviour
of thick beams. As a result, the new relationships based on Timoshenko beam theory give
much better accuracy even at high relative densities. This improvement is significant for
analytical/experimental agreement and exceptional for analytical/numerical agreement.
To give a more physically tangible understanding, it must be noted that taking into account
the shear deformation effect increases the flexibility of the beam, which effectively leads to
larger deflections of the struts (and therefore the whole lattice structure) under an imposed
load. This leads to respectively lower and higher elastic modulus and Poisson’s ratio of the
structure for Timoshenko theory as compared to Euler–Bernoulli theory. It is worth noting
that in the bending-dominated unit cells, the discrepancy between the Euler–Bernoulli and
Timoshenko results is much greater as compared to that for stretch-dominated unit cells
(Figure 6). In other words, the inability of the Euler–Bernoulli beam theory to predict the
effective elastic moduli of open-cell structures based on BCC, diamond, and truncated octa-
hedron unit cells can be attributed to their main mode of deformation (bending-domination)
and the importance of considering the shear deformation effect.

4.3. Yield Strength

As mentioned in the Results section, the normalized yield stress relationships based
on Timoshenko and Euler–Bernoulli theories are identical for BCC, diamond, and trun-
cated cube structures and both theories have good agreement with the numerical results.
However, for the hexagonal packing, truncated octahedron, and rhombicuboctahedron
structures, the Euler–Bernoulli and Timoshenko yield strength results are quite different
(particularly for the hexagonal packing case), and the Timoshenko analytical results show
much better overlapping with numerical results as compared to that for the Euler–Bernoulli
analytical curve. The reason why the Timoshenko and Euler–Bernoulli yield strengths
are identical for some geometries and different for some other is described extensively
in [40], but it is explained here briefly. As introduced above, T = 12Es I

l3 and V = 6Es I
l2 for

Euler–Bernoulli beam theory, and T = 1
l3

12Es I +
l

κAGs

and V = 1
l2

6Es I +
2

κAGs

for Timoshenko beam

theory. For both the theories, V
T = l

2 . Therefore, as the analytical yield strength relationship
for both the diamond and BCC in the final stage of derivation is a mere function of V

T , both
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the theories give identical relationships in these two unit cells. As for the truncated cube
case, the normalized yield stress in the critical strut could be obtained from the equilibrium
of forces and moments, and the failure is caused merely due to axial stress. Therefore, the
Euler–Bernoulli and Timoshenko theories give the same results again. Nevertheless, for
the three other unit cells, first, the displacement caused by bending needs to be taken into
account in the calculations, and second, the formulas in the final stages of derivation are
not a mere function of V

T , and the V and T terms are present independently and not in a
fraction form in such a way that one is a factor of the other. Therefore, the results differ for
Euler–Bernoulli and Timoshenko theories for the three other unit cells.

4.4. Some Points Regarding Experimental Data Points

Both analytical and numerical techniques over-predict the experimental elastic modu-
lus of the diamond and truncated cube structures, while they under-predict their experi-
mental yield stress. The random irregularities and imperfections created during the AM
process diminish the elastic modulus of the lattice structures. These defects create weak
links in the structure that lower the mechanical properties of structures. However, in the
case of yield stress, when the initial regions of the lattice structures in the critical points
(which experience the highest stress levels in the whole lattice structure) are yielded, their
local yield stress increases due to strain-hardening phenomenon, and the structure is still
able to remain almost intact as the strain-hardening strengthens the structure at the initial
damage points. However, when the external load is increased to higher values, the second
(and possibly the third) set of critical points are damaged. After the plasticity of the second
type (and possibly third type) of failure points following the failure of initial points, the
structure is unable to keep its integrity as it was before, as now damage and softening
has propagated throughout the whole structure. That is why, in practice, the yielding in
the structure usually occurs under external load levels, which are between the external
load levels that theoretically cause the first and second set of critical points become locally
yielded. This was shown in [36].

4.5. Application to Biomedical Implants

There are several applications for cellular materials including heat exchangers, filters,
load bearing components, and biomedical implants. Lattice structures can improve the
implants’ performance significantly, from both mechanical and biological points of view.
Obtaining the accurate characteristics and mechanical properties of the lattice structures is
necessary to facilitate their use in orthopaedic implants. The mechanical properties of lattice
structures depend mainly on the following three parameters: the material they are made of,
the cell topology, and the relative density. Obtaining accurate analytical relationships for
different cell topologies is a crucial factor in developing computational tools for designing
patient-specific implants with non-uniform mechanical property distribution. In this paper,
we presented a new and convenient method to transform the analytical relationships
of a lattice structure from Euler–Bernoulli theory into Timoshenko theory. Furthermore,
using the transformation relationships presented in this paper (Table 1), developing new
analytical relationships based on Timoshenko beam theory becomes easier than how it has
been before.

For implant design, it is preferable to have a high yield strength and yet access to
a wide range of stiffness. Moreover, having similar mechanical properties in three main
directions is another factor that should be considered when choosing a unit cell for an
implant. This will avoid unwanted deformations generated in the implant when the
implant is placed inside the complex geometrical void it is designed for. The results of
this study (Figures 6 and 8) show that among the six unit cells considered, truncated cube
followed by diamond and rhombicuboctahedron can best satisfy the above-mentioned
characteristics.
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4.6. Limitations of the Present Approach

Although the conversion methodology and the analytical solutions based on Timo-
shenko beam theory presented in this study could give very accurate results for elastic
mechanical properties of open-cell unit cells and lattice structure, they are still based on lin-
ear elastic deformation of structures. Therefore, the analytical relationships are valid only
for small deformations (i.e. in the elastic range). The analytical relationships presented in
this study could be beneficial for several applications where the deformations remain in the
elastic regime, such as in biomedical implants. In some applications of lattice structures and
porous materials such as energy absorption and actuation, the matrix material undergoes
plastic or hyperelastic deformation, and hence the lattice structures behave non-linearly.
Therefore, the range of strains and whether or not the lattice structure’s behaviour is linear
is one of the most important factors that should be considered before utilization of the
analytical relationships presented in this study.

5. Conclusions

In this paper, a new methodology to conveniently convert analytical relationships
based on Euler–Bernoulli to equivalent Timoshenko ones was presented. Six unit cells
for which Euler–Bernoulli analytical relationships could be found in the literature, but
Timoshenko theories could not be found were considered: BCC, hexagonal packing, rhom-
bicuboctahedron, diamond, truncated cube, and truncated octahedron [26,30–32,35,39].
The results of this study demonstrated that converting analytical relationships based on
Euler–Bernoulli to equivalent Timoshenko ones can decrease the discrepancy between
the analytical and numerical values by one order of magnitude, which is a significant
improvement in the accuracy of the analytical formulas. The highest improvement in the
analytical relationships was observed in the bending-dominated structures such as BCC,
diamond, and truncated octahedron topologies and especially at higher relative densities,
where the shear deformation effect becomes significant. While the conversion methodology
introduced in this study had a significant effect on improvement of elastic modulus and
Poisson’s ratio relationships, its effect on yield stress relationships was much less, and in
some cases (such as BCC, diamond, and truncated cube), it was negligible. The method-
ology presented in this study is not only beneficial for improving the already-existing
analytical relationships, but it also facilitates the derivation of analytical relationships for
other, yet unexplored, unit cell types.
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Appendix A. Derivation of Forces and Moments for a Single Strut

Appendix A.1. Cantilever Beam with Displacement without Rotation in the End

The governing equations of Timoshenko beam theory are:{
EI d3 ϕ

dx3 = q(x)
dw
dx = ϕ− EI

κAG
d2 ϕ

dx2

(A1)

Sequential integration from the first line of Equation (A1) gives:

EI d3 ϕ

dx3 = q(x) = 0

EI d2 ϕ

dx2 = C0

EI dϕ
dx = C0x + C1

EIϕ = C0
2 x2 + C1x + C2

(A2)

And integration from the second line of Equation (A1) gives:

w =

x∫
0

ϕ(x)dx− EI
κAG

dϕ

dx
+ C3 (A3)

There are four boundary conditions at the root and at the end of the beam:

(A) @ x = 0 → ϕ = 0

ϕ =
C0
2 x2 + C1x + C2

EI
→ ϕ =

C2

EI
= 0 → C2 = 0 → ϕ =

C0x2 + 2C1x
2EI

(A4)

(B) @ x = l → ϕ = 0

ϕ =
C0x2 + 2C1x

2EI
→ ϕ =

C0l2 + 2C1l
2EI

= 0 → C1 = −C0l
2
→ ϕ =

C0

2EI

(
x2 − lx

)
(A5)

(C) @ x = 0 → w = 0

w =
∫ x

0 ϕ(x)dx− EI
κAG

dϕ
dx + C3 → w = C0

2EI

(
x3

3 − l x2

2

)
− EI

κAG
C0
2EI (2x− l) + C3

→ w = C0l
2κAG + C3 = 0 → C3 = − C0l

2κAG → w = C0
2EI

(
x3

3 − l x2

2

)
− C0

κAG x
(A6)

(D) @ x = l → w = δ

w =
C0

2EI

(
x3

3
− l

x2

2

)
− C0

κAG
x → w =

C0

2EI

(
l3

3
− l

l2

2

)
− C0

κAG
l = δ → C0 =

−δ
l3

12EI +
l

κAG

(A7)

which gives

ϕ =
−δ

l3

6 + 2EIl
κAG

(
x2 − lx

)
(A8)

which in turn gives

w =
−δ

l3

12EI +
l

κAG

(
1

2EI

(
x3

3
− l

x2

2

)
− 1

κAG
x
)

(A9)
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By differentiation from Equation (A9), the point load and at the end of the cantilever beam
can be obtained:

(A) @ x = l → M = M0

M(x) = −EI
dϕ

dx
→ M = − −EIδ

l3

6 + 2EIl
κAG

(2l − l) = M0 → M0 =
δ

l2

6EI +
2

κAG

(A10)

(B) @ x = l → Qx = F

Qx = κAG
(
−ϕ + dw

dx

)
→ Qx = κAG

(
− EI

κAG
d2 ϕ

dx2

)
→ Qx = κAG

(
− EI

κAG
−2δ

l3
6 + 2EIl

κAG

)
= F→ F = δ

l3
12EI +

l
κAG

(A11)

A.2. Cantilever Beam with Rotation without Displacement in the End

The beam governing equations are the same (Equation (A1–A3)). Applying the
relevant boundary condition for this beam:

(A) @ x = 0 → ϕ = 0

ϕ =
C0
2 x2 + C1x + C2

EI
→ ϕ =

C2

EI
= 0 → C2 = 0 → ϕ =

C0x2 + 2C1x
2EI

(A12)

(B) @ x = 0 → w = 0

w =
∫ x

0 ϕ(x)dx− EI
κAG

dϕ
dx + C3 → w = 1

2EI

(
C0x3

3 + C1x2
)
− EI

κAG
1

2EI (2C0x + 2C1) + C3

→ w = − C1
κAG + C3 = 0→ C3 = C1

κAG → w = 1
2EI

(
C0x3

3 + C1x2
)
− C0

κAG x
(A13)

(C) @ x = l → w = 0

w = 1
2EI

(
C0x3

3 + C1x2
)
− C0

κAG x → w = 1
2EI

(
C0l3

3 + C1l2
)
− C0

κAG l = 0
C0l3

6EI + C1l2

2EI −
C0

κAG l = 0 → C1 = C0

(
2EI

κAGl −
l
3

) (A14)

(D) @ x = l → ϕ = θ

ϕ = C0x2+2C1x
2EI → ϕ = C0l2+2C1l

2EI = θ → C0
2EI

(
l2 + 2l

(
2EI

κAGl −
l
3

))
= θ

→ C0

(
l2

2EI +
2l

κAGl −
l2

3EI

)
= θ → C0 = θ

l2
6EI +

2
κAG

(A15)

(E) @ x = l → M = M0

M(x) = −EI dϕ
dx → M = −EI

(
1

2EI (2C0l + 2C1)
)
= M0 → C0l + C1 = M0(

θ
l2

6EI +
2

κAG

)
l +
(

2EI
κAGl −

l
3

)(
θ

l2
6EI +

2
κAG

)
= M0 → M0 =

(
2EI

κAGl +
2l
3

l2
6EI +

2
κAG

)
θ

(A16)

(F) @ x = l → Qx = F

Qx = κAG
(
−ϕ + dw

dx

)
→ Qx = κAG

(
− EI

κAG
d2 ϕ
dx2

)
→ Qx = κAG

(
− EI

κAG
C0
EI

)
= F

→ F = −C0 → F = θ
l2

6EI +
2

κAG

(A17)
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Appendix B. Analytical Equations Extracted from the Literature

Table A1. The list of equations extracted from the literature and used in this study.

Eq. Number Relationship Equation Number in the Reference Reference

(A18) E = Ex = Ey = Ez = 4
√

3Eo[
l2

πr2 + l4
2πr4

] (17)
[31]

(A19)
v = vxy = vxz = vyx = vyz = vzx = vzy =

− 1
πr2 + l2

4πr4
1

πr2 + l2
2πr4

(18)

(A20) δ22,b = FL3cos2θ
12Es I

(7)

[26]
(A21) δ22,a = FsinθL

Es A × sinθ = FLsin2θ
Es A

(8)

(A22) δ21,b = FcosθL3
12Es I × sinθ × sin π

4 =

√
2FL3sin2θ

48Es I
(29)

(A23) δ21,a = FsinθL
Es A × cosθ × sin π

4 =

√
2FLsin2θ
4Es A

(30)

(A24) E
Es

=
4π
(

r
T

)2

3
(

1+
√

2
)
 4+108

(
r
l

)2
+207

(
r
l

)4
+81

(
r
l

)6
+ G

E

(
2
3 +19

(
r
l

)2
+45

(
r
l

)4
+18

(
r
l

)6
)

8+70
(

r
l

)2
+105

(
r
l

)4
+27

(
r
l

)6
+ G

E

(
4
3 +13

(
r
l

)2
+23

(
r
l

)4
+6
(

r
l

)6
)
 (29)

[30]

(A25)
ν = 1

3

8−12
(

r
l

)2
−36

(
r
l

)4
+ G

E

(
4
3 −

(
r
l

)2
−9
(

r
l

)4
)

8+70
(

r
l

)2
+105

(
r
l

)4
+27

(
r
l

)6
+ G

E

(
4
3 +13

(
r
l

)2
+23

(
r
l

)4
+6
(

r
l

)6
) (33)

(A26)


0
0

2F
0
0
0
0


=



96Es I
l3

+ 8AEs
l

(
1 + 1

α

)
− 8AEs

αl 0 0 0 − 4
√

2AEs
l + 48

√
2Es I

l3
0

8AEs
αl + 192Es I

l3
+ 16AEs

l + 96
√

2Es I
αl3

0 8AEs
αl + 192Es I

l3
+ 16AEs

l − 8AEs
l

(
2 + 1

α

)
− 192Es I

l3
− 96

√
2Es I

αl3
− 8AEs

αl
48
√

2Es I
l3

0

− 8AEs
αl

8AEs
αl 0 0 0 0 0

− 8AEs
αl 0 − 8AEs

αl
8AEs

αl
8AEs

αl 0 −1

− 4
√

2AEs
l − 48

√
2Es I

l3
− 96Es I

αl3
0 − 96

√
2Es I

l3
96
√

2Es I
l3

+ 96Es I
αl3

− 4
√

2AEs
αl

144Es I
l3

+ 4AEs
l + 4AEs

αl 0

0 0 0 0 8AEs
αl − 4

√
2AEs
αl 1

16Gs J
αl2

+ 128Es I
αl2

+ 32Es I
α2 l2

+ 48
√

2Es I
l2

0 − 48
√

2Es I
l3

− 48
√

2Es I
l2

−
(

16Gs J
αl2

+ 128Es I
αl2

+ 32Es I
α2 l2

)
0 − 48

√
2Es I

l3
0





q1
q3
q4
q5
q6
q7
Q6



(27)

(A27)


0
0
0
F
0
0


=



24Es I
l3

+ 2AEs
l + AEs

αl − 24Es I
l3

− 2AEs
l 0 0 − 24EI

l3
+ 2AEs

l 0

− 24Es I
l3

− 2AEs
l

48Es I
l3

+ 4AEs
l − 24Es I

l3
− 2AEs

l 0 0 0

0 − 24Es I
l3

− 2AEs
l

24Es I
l3

+ 2AEs
l + AEs

αl − AEs
αl

24EI
l3
− 2AE

l 0

0 0 − AEs
αl

AEs
αl 0 0

− 24Es I
l3

+ 2AEs
l 0 24EI

l3
− 2AE

l 0 48Es I
l3

+ 4AEs
αl + 12AEs

l − 4AEs
αl

0 0 0 0 − 8AEs
αl

8AEs
αl





q1
q2
q3
q4
q5
q6



(36) [32]

(A28) E100 = σzz
εz = 6

√
2EI

L4
(

1+12I/AL2
) (15)

[39]

(A29) v12 = − εY
εZ

= 0.5
(

AL2−12I
AL2+12I

)
(17)
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Appendix C. New Analytical Relationships for Hexagonal Packing Geometry

In this appendix, the derivation of new analytical relationships for the hexagonal
packing geometry is presented.
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Figure A1. (a) Spherical hexagonal packing structure; (b) Simplified arrangement of spherical hexagonal packing; (c) A
hexagonal packing unit cell in a lattice structure; (d) Dimensions and forces on a hexagonal packing unit cell.

Hexagonal closed-packing (HCP) is known as the mostly efficient way a space can be
filled by an arrangement of spheres (Figure A1a). Sphere constructing an HCP structure fill
up 74% of space. For an open-cell lattice structure from the concept of HCP, the spheres
can be visualized to inflate from all direction until they create a second lattice structure
made of polyhedrons (demonstrated by black solid lines in Figure A1a). To find the unit
cell of the new polyhedral, first we select two rows of spheres on top of each other and the
corresponding polyhedral lattice structure surrounding them (Figure A1b). After removal
of the spheres we are left with six polyhedral cells, in which we can find a unit cell which
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after tessellation in space can create the HCP-based polyhedral lattice structure (the red
unit cell highlighted in Figure A1c). Dimensions and loads acting on a hexagonal packing
unit cell are shown in Figure A1d. The initial spheres demonstrated in Figure A1a create
an angle θ for which we have cos θ = 1

3 and sin θ = 2
√

2
3 . The cross-sectional area of the

hexagonal packing unit cell is therefore AUC = 3
√

3
2 l2 sin2 θ.

This structure is composed of two types of vertical struts OA (type A) and BC (type C)
and one type of inclined strut OB (type B). In each unit cell, there are two type A struts and
6 × 1/3 = 2 type B struts. The term 1/3 is due to the fact that each type B strut is shared by
three adjacent unit cells. Displacement of each of the three types of struts are as follows:

(i) Type-A strut: Under external load P, the change in the length of strut OA is (Equation
(2) in [35])

δA,z = −
Pl

2AE
(1 + cos θ) (A30)

(ii) Type-C strut: Under external load P′, the change in the length of strut BC is (Equation
(3) in [35])

δC,z = −
P′l

2AE
(1− cos θ) (A31)

(iii) Type-B strut OB: Displacements of B with respect to O in directions respectively
parallel and perpendicular to strut OB are (see Figure 2a,c in the main paper)

δB =
P′l

3AE
cos θδ′B =

Ml2

6EI
=

P′ sin θl3

36EI
(A32)

Total displacement of C with respect to O in the z and x directions are respectively:
∆C,z = δC,z + δB,z + δ′B,z = − P′ l

2AE (1− cos θ)− P′ l
3AE cos2 θ − P′ l

36EI sin2 θ

∆C,x = δB,x + δ′B,x = − P′ l
3AE sin θ cos θ + P′ l3

36EI sin θ cos θ
(A33)

Therefore, the strains in the z and x directions are:

εz =
2δA,z

l(1 + cos θ)
= − P

AE
εx =

∆C,x

l sin θ
=
− P′ l

3AE sin θ cos θ + P′ l3

36EI sin θ cos θ

l sin θ
= − P′

3AE
cos θ +

P′l2

36EI
cos θ (A34)

On the other hand, we know that due to continuity of the material and symmetry of
each unit cell with respect to the neighbouring cell: δA,z = ∆C,z. This means that

− P′l
2AE

(1− cos θ)− P′l
3AE

cos2 θ − P′l3

36EI
sin2 θ = − Pl

2AE
(1 + cos θ) → P′

P
=

1
5
9 + Al2

27I

(A35)

Poisson’s ratio can be simply found by

υ = − εx

εz
=
− P′

3AE cos θ + P′ l2

36EI cos θ
P

AE
=
− 1

9 + Al2

108I
5
9 + Al2

27I

circular cross−section→ υ =
− 1

9 + 1
27

(
l
r

)2

5
9 + 4

27

(
l
r

)2 (A36)

And normalized elastic modulus can be found by

EUC
Es

= σz
Esεz

=
P+P′
AUC
P

AEs Es
=
(

1 + P′
P

)
A

AUC
=
(

1 + P′
P

)
A

3
√

3
2 l2 sin2 θ

=

(
1 + 1

5
9+

Al2
27I

)(
3A

4
√

3l2

)
circular cross−section−−−−−−−−−−−−→ EUC

Es
= π

√
3

4
( r

l
)2
(

1 + 1
5
9+

4
27 (

l
r )

2

) (A37)

By defining S = AEs
l and T = 12Es I

l3 , the elastic modulus and Poisson’s ratio relation-
ships based on Euler-Bernoulli beam theory for hexagonal packing unit cell are simplified
as follows:

υ =
S
T−1

5+ 4S
T

E
Es

=

√
3S

(
1+ 1

5
9 +

4S
9T

)
4El

(A38)
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By substituting T for
(

1
l3

12EI +
l

κAG

)
, Poisson’s ratio and normalized elastic based on

Timoshenko beam theory can be obtained (see Table 1 in the main paper).

Appendix D. Stress and Strain Contours in the Lattice Structures
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Figure A2. FE models and boundary conditions of unit cells: (a) BCC; (b) diamond; (c) hexagonal packing; (d) rhombicub-
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Figure A3. Axial stress of unit cells: (a) BCC; (b) diamond; (c) hexagonal packing; (d) rhombicuboctahedron; (e) truncated 
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Figure A3. Axial stress of unit cells: (a) BCC; (b) diamond; (c) hexagonal packing; (d) rhombicuboctahedron; (e) truncated
cube; and (f) truncated octahedron in ANSYS.
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Figure A4. Bending stress of unit cells: (a) BCC; (b) diamond; (c) hexagonal packing; (d) rhombicuboctahedron; (e) truncated
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cated cube, and (f) truncated octahedron in ANSYS. 
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Figure A5. Combined stress of unit cells: (a) BCC; (b) diamond; (c) hexagonal packing; (d) rhombicuboctahedron; (e)
truncated cube, and (f) truncated octahedron in ANSYS.

Appendix E. Effect of Considering Shear Deformation on the Forces/Moments of a
Single Strut

To show the shear deformation effect on the final results of analytical relationships of
a single strut, we defined different αi ratios each being defined as the ratio of the resultant
forces and moments (required to create a displacement without rotation or rotation without
displacement) in the free end of a cantilever beam based on Euler-Bernoulli to the resultant
forces and moments required based on Timoshenko beam theory. The ratios α1, α2 and
α3 respectively represent the ratio of the following parameters calculated based on the
Euler-Bernoulli and Timoshenko beam theories: the force required for lateral displacement
without rotation, T, the moment required for lateral displacement without rotation (and
the force required to create rotation without displacement), V, and the moment required to
create rotation without displacement, U. The relationships for αi ratios are derived below:

α1 =
TEuler−Bernoulli

TTimoshenko
=

(
12Es I

l3

)
(

1
l3

12Es I +
l

κAGs

) =
12Es I

l3

1
l3

12Es I +
l

κAGs

=
12Es I

(
l3

12Es I +
l

κAGs

)
l3 =

l3 + 12Es Il
κAGs

l3 = 1 +
12Es I

κAGsl2 (A39)
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α2 =
VEuler−Bernoulli

VTimoshenko
=

(
6Es I

l2

)
(

1
l2

6Es I +
2

κAGs

) =
6Es I

l2
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The variation of ratios α1, α2 and α3 versus the parameter r/l is presented in the
Figure A6. The first important result revealed from the figure is that α1 and α2 are equal for
all values of r/l. Therefore, considering the shear deformation effect has the same effect on
the force required to create lateral displacement without rotation, T, on the one hand and
moment required to create lateral displacement without rotation (and the force required to
create rotation without displacement), V, on the other hand. On the other hand, the shear
deformation has smaller effect on α3 in comparison with α1 and α2. Although the r/l is not
the ultimate parameter for evaluating the effect of shear deformation in lattice structures
for different relative densities, but it is a good measure to predict the difference between
the resultant force and moments obtained based on Timoshenko and Euler-Bernoulli beam
theories. According to Figure A6, without considering the shear deformation effect in the
beam theory, the forces and moments required to create a particular deformation could be
predicted by 15–20% higher for r/l as large as 0.15.
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