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Abstract: Cocrystals are of much interest in industrial application as well as academic research, and
screening of suitable coformers for active pharmaceutical ingredients is the most crucial and challeng-
ing step in cocrystal development. Recently, machine learning techniques are attracting researchers
in many fields including pharmaceutical research such as quantitative structure-activity/property
relationship. In this paper, we develop machine learning models to predict cocrystal formation. We
extract descriptor values from simplified molecular-input line-entry system (SMILES) of compounds
and compare the machine learning models by experiments with our collected data of 1476 instances.
As a result, we found that artificial neural network shows great potential as it has the best accuracy,
sensitivity, and F1 score. We also found that the model achieved comparable performance with about
half of the descriptors chosen by feature selection algorithms. We believe that this will contribute to
faster and more accurate cocrystal development.

Keywords: descriptor; machine learning; feature selection; cocrystal prediction

1. Introduction

Active pharmaceutical ingredients (APIs) are commonly formulated and delivered
to patients in the solid dosage forms (tablets, capsules, powders) for reasons of economy,
stability, and convenience of intake [1]. One of the major problems faced during the for-
mulation of drug is its low bioavailability which is mainly reliant on the solubility and
permeability of API [2,3], and one of the approaches to enhance the physicochemical and
pharmacological properties of API without modifying its intrinsic chemical structure is to
develop novel solid forms such as cocrystals [4–7]. There are extensive reports on cocrystals
for the purpose of improving the pharmaceutical properties including dissolution, perme-
ability, bioavailability, stability, photostability, hygroscopicity, and compressibility [8,9].

Cocrystals are much of interest in industrial application as well as academic research
because they offer various opportunities for intellectual property rights in respect of the
development of new solid forms [10]. Furthermore, the latest Food and Drug Admin-
istration (FDA) guidance on pharmaceutical cocrystals, which recognizes cocrystals as
drug substances, provides an excellent opportunity for the pharmaceutical industry to
develop commercial products of cocrystals [11,12]. According to FDA, cocrystals are “Crys-
talline materials composed of two or more molecules within the same crystal lattice” [13].
Pharmaceutical cocrystals, a subclass of cocrystals, are stoichiometric molecular com-
plexes composed of APIs and pharmaceutically acceptable coformers held together by
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non-covalent interactions such as hydrogen bonding within the same crystal lattice [14].
Coformers for pharmaceutical cocrystallization should be from the FDA’s list of Everything
Added to Food in the United States (EAFUS) or from the Generally Recognized as Safe
list (GRAS), as they should have no adverse or pharmacological toxic effects [1]. The list
of acceptable co-formers, in principle, is likely to at least extend into the hundreds, which
means that screening of suitable coformers for an API is the most crucial and challeng-
ing step in cocrystal development [15]. Since experimental determination of cocrystals
is time-consuming, costly, and labor-intensive, it is valuable to develop complementary
tools that can reduce the list of coformers by predicting which coformers are likely to form
cocrystals [16].

Various knowledge-based and computational approaches have been used in the
literature to predict cocrystal formation. Supramolecular synthesis introduced by Desiraju
is a well-known approach to rationalize the possibility of cocrystal formation [17–19].
A common strategy in this method is to first identify the crystal structure of the target
molecule and investigate coformers with a desired functional group which can form
intermolecular interactions (mainly hydrogen bonding) between the target molecule and
coformers [15]. Knowledge of synthons allows the selection of potential coformers and
predicts the interaction outcomes, but there is no guarantee that cocrystals with predicted
structures would form. Statistical analysis of cocrystal data from the Cambridge Structural
Database (CSD) where more than one million crystal structures of small molecules are
available, allows researchers to apply virtual screening techniques to find suitable cocrystal-
forming pairs [20]. Galek et al. introduced hydrogen-bond propensity as a predictive
tool and determined the likelihood of co-crystal formation [15,21]. Fábián analyzed the
possibility of cocrystal formation by correlating the different descriptors such as polarity
and molecular shape [22]. Cocrystal design can also be based on computational approaches,
including the use of the ∆pK value [23,24], lattice energy calculation [25–28], molecular
electrostatic potential surfaces (MEPS) calculation [29–32], Hansen solubility parameters
calculation [33,34] and Conductor like screening Model for Real solvents (COSMO-RS)
based enthalpy of mixing calculation [35–38].

In recent years, machine-learning (ML) has emerged as promising tool for data-driven
predictions in pharmaceutical research, such as quantitative structure-activity/property
relationships (QSAR/QSPR), drug-drug interactions, drug repurposing and pharmacoge-
nomics [39]. In the area of pharmaceutical cocrystal research, Rama Krishna et al. applied
artificial neural network to predict three solid-state properties of cocrystals, including
melting temperature, lattice energy, and crystal density [40]. Przybylek et al. developed
cocrystal screening models based on simple classification regression and Multivariate
Adaptive Regression Splines (MARSplines) algorithm using molecular descriptors for
phenolic acid coformers and dicarboxylic acid coformers, respectively [41]. Wicker et al.
created a predictive model, that can classify a pair of coformers as a possible cocrystal or
not, using a support vector machine (SVM) and simple descriptors of coformer molecules
to guide the selection of coformers in the discovery of new cocrystals [16]. Devogelaer
and co-workers introduced a comprehensive approach to study cocrystallization using
network science and linkage prediction algorithms and constructed a data-driven co-crystal
prediction tool with co-crystal data extracted from the CSD [42]. Wang et al. also used a data
set with co-crystal data available in the CSD and ultimately developed a machine learning
model using different model types and molecular fingerprints that can be used to select
appropriate coformers for a target molecule [43]. The above existing studies have shown
successful results, but they have a common limitation that they only compared model
performance (e.g., accuracy) without investigating features (i.e., descriptors) importance.

In this work, we develop a model to predict co-crystal formation of API molecules. We
use Mordred [44], one of widely-used descriptor calculators, to extract descriptor values
from simplified molecular-input line-entry system (SMILES) strings of API and coformers
compounds. There are several other tools or molecular descriptor-calculators used in
cheminformatics such as PaDEL [45], PyDPI [46], Rcpi [47], Dragon [48], BlueDesc (http:
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//www.ra.cs.uni-tuebingen.de/software/bluedesc) and cinfony [49]; PaDEL descriptor-
calculator is the most well-known tool and provides 1875 descriptors, and cinfony is a
collection or a wrapper of other libraries such as Open Babel [50], RDKit (http://www.
rdkit.org), and Chemistry Development Kit (CDK) [51]. We chose to use Mordred and used
the descriptor values as features and compared different machine learning models through
experimental results using our collected data. Our contributions can be summarized as
follows. First, we not only extract descriptor values of compound pairs, but also investigate
which descriptors are more important, and show that we can achieve good performance
even if we use only a small subset of the descriptors. Second, we compare machine learning
models through experiments and find that artificial neural networks (ANN) achieve the
best performance. Third, we make our dataset available for free through the online website
(http://ant.sch.ac.kr/) so that many other researchers can use the dataset as a benchmark.
We believe that this study will advance the field of cocrystal formation prediction, and our
dataset will help other researchers to easily develop better models.

2. Materials and Methods

In this paper, we essentially solve a binary classification problem; we develop a model
for predicting a label (e.g., ‘fail’ and ‘success’) for a given pair of compounds. The class label
‘success’ means that the corresponding pair of compounds would successfully cocrystallize,
while the label ‘fail’ means that it would not cocrystallize. As depicted in Figure 1, we first
obtain attributes (i.e., features) of the compounds. Then, we select some promising features
that are expected to contribute more to the final performance (e.g., accuracy). The selected
features are fed into machine learning models that learn patterns behind the compound
pairs, so that the models predict labels (e.g., ‘success’, ‘fail’) of the given pairs; in other
words, the model takes the selected features obtained from compound pairs as input and
generates labels as output.

Figure 1. Development process of machine learning models for cocrystal prediction.

2.1. Materials

Since we basically solve this problem using a data-driven approach, we first had to
prepare a data set. The compounds pairs of the data set were mainly obtained from the
work of Wicker et al. [16], Przybylek et al. [41,52] and Grecu et al. [32] and supplemented
with an extensive literature review on cocrystal screening of different APIs. Duplicate
records were removed from the data set, resulting in a total of 1476 molecular compound
pairs. Of these 1476 pairs, 753 were positive pairs (experimentally verified cocrystals) and
the remaining 723 were negative pairs (unsuccessful formation of cocrystals). Labels are
converted to a numerical form (e.g., ‘success’ = 1, and ‘fail’ = 0). The raw data is a D× 3
matrix and samples are shown in Figure 2. We primarily develop models that predict which
pair of API (i.e., ‘compound 1’) and coformer (i.e., ‘compound 2’) will successfully result
into a new cocrystal formation (i.e., ‘label’ = 1) and which will not result in a new solid
form (i.e., ‘label’ = 0), from the set of chemical experiments based on the two columns (e.g.,
‘compound 1’ and ‘compound 2’) as shown in Figure 2. Prediction models use a combination
of features known as molecular descriptors from each pair for the classification task.

http://www.ra.cs.uni-tuebingen.de/software/bluedesc
http://www.ra.cs.uni-tuebingen.de/software/bluedesc
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Figure 2. Sample of raw data.

Molecular descriptors often used to develop quantitative structure-property relation-
ships (QSPR) models, and Mordred is one of the attractive tools to extract the molecular
descriptors [44]. We have chosen Mordred because of its advantages: (1) it provides a
comparable number of PaDEL descriptors while fixing some bugs within the PaDEL de-
scriptor calculator, and (2) it is easy to install and use since it is provided as Python 2 & 3
libraries. As shown on the left in Figure 1, the Mordred tool used to extract feature vectors
from the raw data. Canonical SMILES strings for each compound were retrieved from
PubChem (https://pubchem.ncbi.nlm.nih.gov/) as shown in Table 1 , and were used as
input to the Mordred tool to generate molecular descriptor values. We found that some
descriptor values are missing due to implementation issues of the tool; for example, a part
of autocorrelation descriptor of a small molecule is known to be missing even if there is
no bug [44]. Since the missing values did not occur at random, we simply filter them out
instead of using any imputation algorithms. We obtain a FALL dimensional real-numbered
feature vector from a single pair of compounds. After adding a label column, we have D
feature vectors of FALL + 1 dimension.

Table 1. Sample of canonical SMILES strings by PubChem for each compound in a sample of raw data.

Service Compound 1 Compound 2 Label

PubChem

C1=CC(=CN=C1)C(=O)N C1=CC=C(C(=C1)C(=O)O)[N+](=O)[O-] 1
C1=CC(=CN=C1)C(=O)N C1=CC(=CC(=C1)[N+](=O)[O-])C(=O)O 0
C1=CC(=CN=C1)C(=O)N C1=CC(=CC=C1C(=O)O)[N+](=O)[O-] 1
C1=CC(=CN=C1)C(=O)N C1=CC=C(C(=C1)C(=O)O)O 1
C1=CC(=CN=C1)C(=O)N C1=CC(=CC(=C1)O)C(=O)O 1
C1=CC(=CN=C1)C(=O)N C1=CC(=CC=C1C(=O)O)O 1
C1=CC(=CN=C1)C(=O)N C1=CC=C(C(=C1)C(=O)O)F 1
C1=CC(=CN=C1)C(=O)N C1=CC(=CC(=C1)F)C(=O)O 0
C1=CC(=CN=C1)C(=O)N C1=CC(=CC=C1C(=O)O)F 1
C1=CC(=CN=C1)C(=O)N C1=CC=C(C(=C1)C(=O)O)N 1
C1=CC(=CN=C1)C(=O)N C1=CC(=CC(=C1)N)C(=O)O 0
C1=CC(=CN=C1)C(=O)N C1=CC(=CC=C1C(=O)O)N 1
C1=CC(=CN=C1)C(=O)N COC1=CC=CC=C1C(=O)O 0

2.2. Methods

There have been studies that trained machine learning models using molecular de-
scriptors as features [16,53], however such studies only fed the models with the descriptors
without performing a crucial analysis of the molecular descriptors. In this work, we apply
feature selection algorithms to measure importance of descriptors and use a found set of
promising ones. The feature selection algorithms are supposed to select FS features among
the FALL features as depicted in the middle of Figure 1. We tried two feature selection

https://pubchem.ncbi.nlm.nih.gov/
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algorithms: Recursive Feature Elimination (RFE) algorithm and K-best algorithm. The RFE
algorithm is a wrapper-based algorithm that treats the feature selection as a search problem.
It repeatedly removes unpromising features until desired number of features remains. We
use an artificial neural network (ANN) as an estimator of the RFE algorithm. The K-best
algorithm is a filter-based algorithm that selects potential features according to a particular
function σ( f , c) where f and c are a feature and a label, respectively. We use a ANOVA
F-value as the function σ.

Before passing the D× FS + 1 real-numbered matrix to machine learning models, we
standardize the feature values. This process is, of course, performed using only training
data; the mean µ and standard deviation σ are computed only with the training data.
We used scikit-learn (https://scikit-learn.org/stable/) to implement the standardization,
and found that it is better than normalization (i.e., 0–1 scaling) for our data. Given the
standardized matrix X ∈ RD×FS , the machine learning models are supposed to give labels
y ∈ {0, 1}D. We have used several machine learning models such as artificial neural
network (ANN), support vector machine (SVM) [54], random forest (RF) [55], and extreme
gradient boost (XGB) [56]. The ANN is known to be effective in many research fields
such as image analysis, natural language processing, and speech recognition; It is a deep
learning model if it has a deep structure (i.e., multiple hidden layers). The SVM finds a
decision boundary based on boundary instances (i.e., support vectors) and is known to be
successful in many classification tasks. The RF and XGB are common ensemble approaches,
but RF uses the bagging strategy while the XGB employs boosting strategy. We compared
these widely-used models with experimental results.

The total, the dataset Dtotal contains 1476 instances, of which 723 were unsuccessful,
and 753 were successful, as shown in Table 2. Since the dataset is balanced, we performed
10-fold cross validation while maintaining the balanced ratio; for each cross validation, we
have about 1,329 instances for training and 147 instances for testing. After preprocessing
the raw data, we obtained that FALL = 2207. Throughout all experimental results, we use
averaged accuracy, precision, recall, and F1 scores.

Table 2. Data statistics.

All Labels Label ‘Success’ Label ‘Fail’

# of data 1476 753 723

3. Results
3.1. Feature Selection Algorithms

We compared the two feature selection algorithms (e.g., RFE algorithm and K-best
algorithm) by averaged accuracy with varying number of features FS. Figure 3 shows the
results with FS ranging from 298 to 1103, where the classifier used here is artificial neural
network (ANN); note that we use only ANN model because we focus on experimental
results of feature selection algorithms, but not the models. With greater FS, the K-best
algorithm gave generally better accuracies than the RFE algorithm. Therefore, we might say
that if we want efficiency (e.g., less parameters), then the RFE algorithm will be preferable;
on the other hand, the K-best algorithm is preferable if we want effectiveness (e.g., accuracy).
As a compromise, using the K-best algorithm with FS = 900 might be a reasonable choice
because its dimension is only a half of the total (e.g., 2207) and its accuracy is comparable.

https://scikit-learn.org/stable/
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Figure 3. Averaged accuracy using feature selection algorithms, where the vertical axis is the accuracy
and the horizontal axis means the number of selected features.

3.2. Model Comparison

We prepared three independent datasets D1
total , D2

total , and D3
total by shuffling the

instances of the dataset Dtotal ; so |Dtotal | = |D1
total | = |D

2
total | = |D

3
total | = 1476. We conducted

10-fold cross validation for each of these independent datasets, and computed averaged
accuracy, precision, recall, and F1 scores. The optimal parameter settings of the machine
learning models are found by a grid searching using a small portion (e.g., 10%) of the
training set as a validation set. The parameter settings are summarized in Table 3; the
parameter settings are obtained during the experiments. The ANN has a shallow structure
(i.e., one hidden layer of 25 nodes) because we found that it gives better performance than
other complex structure; the reason might be the small size of dataset that high model
complexity will cause overfitting problem.

Table 3. Parameter settings of machine learning models.

Model Setting

Random forest Number of estimators = 100
(RF) No limitation of depth

Minimum samples for splitting = 2

Support vector machine Kernel = Linear
(SVM) C = 1.0

Extreme gradient boosting Number of estimators = 100
(XGB) Learning rate = 0.3

# of hidden layers = 2
Artificial neural network Hidden layer sizes (# of nodes of each layer) = 25

(ANN) Activation function = Relu function [57]
Optimizer = Adam [58]
# of epochs = 50 with early stopping

Table 4 summarizes the accuracy of machine learning models; note that we focus
on the experimental comparison between the models here, but not the feature selection
algorithms. The accuracy values are computed by averaging results with three independent
datasets (e.g., D1

total , D2
total , and D3

total). The ANN gives the best accuracy (e.g., 0.833) among
the models. The XGB is comparable to the ANN, and it is the best when FS = 300. As a
model works faster when the feature dimension is small, the XGB might be preferable if
we want better efficiency (i.e., fast prediction) without losing much accuracy.
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Table 4. Averaged accuracy of different machine learning models, where FALL is the number of all
features, and FS means the number of features selected using the K-best algorithm.

Model All Features (FALL = 2207) FS = 1103 FS = 900

RF 0.829 0.822 0.823
SVM 0.746 0.757 0.758
XGB 0.832 0.823 0.826
ANN 0.833 0.829 0.823

One might argue that the model is not useful if its sensitivity is not high enough.
Tables 5 and 6 are per-label precision and recall. The ANN gives the best recall of ‘success’
label (e.g., 0.800) without losing much precision (e.g., 0.838). In terms of the precision, the
XGB seems the best as its precision of ‘success’ label is 0.841, but we might say that the
ANN would be chosen if we need to find as many promising candidates of compound
pairs as possible. Table 7 shows per-label F1 scores, and the ANN is turned out to be the
best amongst the models. This result is reasonable as the ANN is known to be effective
in finding underlying patterns and gives significant performance improvement in many
other classification tasks (e.g., malware detection [59], chatbot intent prediction [60]). We
believe that the performance will be further improved if we collect more qualified data.

Table 5. Per-label averaged precision of different machine learning models, where FALL is the number
of all features, FS means the number of features selected using the K-best algorithm, and ‘Success’
and ‘Fail’ mean label 1 and 0, respectively.

Model
All Features (FALL = 2207) FS = 1103 FS = 900

Fail Success Fail Success Fail Success

RF 0.781 0.834 0.839 0.888 0.810 0.854
SVM 0.699 0.781 0.789 0.789 0.740 0.786
XGB 0.782 0.841 0.865 0.890 0.816 0.859
ANN 0.802 0.838 0.803 0.819 0.804 0.831

Table 6. Per-label averaged recall of different machine learning models, where FALL is the number of
all features, FS means the number of features selected using the K-best algorithm, and ‘Success’ and
‘Fail’ mean label 1 and 0, respectively.

Model
All Features (FALL = 2207) FS = 1103 FS = 900

Fail Success Fail Success Fail Success

RF 0.840 0.773 0.890 0.836 0.856 0.807
SVM 0.806 0.667 0.778 0.800 0.792 0.733
XGB 0.847 0.773 0.889 0.867 0.861 0.813
ANN 0.835 0.800 0.808 0.808 0.827 0.806

Table 7. Per-label averaged F1 score of different machine learning models, where FALL is the number
of all features, FS means the number of features selected using the K-best algorithm, and ‘Success’
and ‘Fail’ mean label 1 and 0, respectively.

Model
All Features (FALL = 2207) FS = 1103 FS = 900

Fail Success Fail Success Fail Success

RF 0.809 0.803 0.864 0.861 0.832 0.830
SVM 0.748 0.719 0.783 0.795 0.765 0.759
XGB 0.813 0.806 0.877 0.878 0.838 0.836
ANN 0.817 0.817 0.804 0.812 0.814 0.817
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4. Discussion

Although the models performed best when we use all features, the feature selection
algorithms showed their potential using only half of the features (e.g., FS = 1103 or
900) gave comparable results. One might want to see what features were valuable than
others. Table 8 shows lists of best and worst features obtained by K-best algorithm with
FS = 900, where the scores are ANOVA F-values; the features with larger scores turn out
to be more vital than others. Note that the features are grouped in terms of Module; for
example, the best feature ‘Mp’ came from ‘Constitutional’ module of Mordred. Interestingly,
many of the best and worst features commonly came together from the ‘Autocorrelation’
module, which computes the Moreau-Broto autocorrelation of the topological structure.
Most of the best features of the ‘Autocorrelation’ module are Geary coefficients (e.g.,
‘GATS’ series), implying that the spatial correlation is particularly essential in predict
cocrystal formation. Especially, Geary coefficients weighted by intrinsic state (e.g., GATS4s,
GATS6s), valence electrons (e.g., GATS6dv), or atomic number (e.g., GATS3Z, GATS6Z,
GATS7Z, GATS8Z) turned out to be extremely important. On the other hand, most of
the worst features of the ‘Autocorrelation’ module, are the Moran coefficient (e.g., MATS
series). The Moran coefficient focuses on deviations from the mean whereas, the Geary
coefficient focuses on the deviations of individual observation area [61], so we might say
that the deviations of each observation area are more meaningful information for cocrystal
prediction. It is consistent with a recent study by Shiquan Sun et al. [62] that revealed that
the Moran coefficient is not very competent in detecting spatial patterns other than simple
autocorrelation due to its asymptotic normality for p-value computation.

Table 8. Best & worst features selected by K-best algorithm with FS = 900.

30 Best Features 30 Worst Features

Module Name Score Module Name Score

Autocorrelation

GATS3c 79.718 Aromatic nAromAtom 0.136

GATS6c 85.965

Autocorrelation

AATS7m 0.628
GATS8c 136.802 ATSC7p 0.007

GATS6dv 161.104 AATSC8s 0.016
GATS4s 172.971 AATSC5are 0.017
GATS6s 175.205 MATS7dv 0.521
GATS3Z 80.696 MATS5s 0.027
GATS6Z 81.969 MATS7s 0.039
GATS7Z 84.171 MATS8Z 0.195
GATS8Z 84.774 MATS3v 0.357
ATS2m 86.768 MATS3se 0.001

MATS5are 90.363 MATS5pe 0.390

AdjacencyMatrix
SpDiam_A 85.488 MATS6p 0.477

VE3_A 78.929 GATS1c 0.322
VE1_A 77.862 GATS6d 0.117

Chi AXp-7dv 82.701 GATS3s 0.469

Constitutional
SZ 79.156 GATS1i 0.004

Mare 82.745 GATS5i 0.264
Mp 79.163 GATS7i 0.166

DetourMatrix DetourIndex 80.610 GATS8i 0.004

EState

NsssP 81.691

BCUT

BCUTd-1h 0.474
NdsssP 78.913 BCUTd-1l 0.361

NsBr 81.782 BCUTv-1l 0.584
SssNH 81.836 BCUTpe-1h 0.019
SaaNH 79.010 BCUTi-1l 0.004

SssssGe 82.422 BaryszMatrix SpAD_DzZ 0.213

SsAsH2 79.068
InformationContent

SIC3 0.201
MINssPH 91.111 CIC0 0.169
NssSnH2 78.956 MIC3 0.240

ExtendedTopochemicalAtom ETA_epsilon_5 78.193 MoRSE Mor06p 0.303
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Many of the best features came from the ‘EState’ module, which generates atom type
e-state descriptor values [63]. This implies that the electrostatic interaction of atoms and
their topological environment (connections) within a molecule has a significant impact on
cocrystallization. It is in line with the fact that the electrostatic interaction between atoms
has been treated importantly in pharmaceutics [64,65]. Meanwhile, many worst features
came from the ‘BCUT’ module that generates burden matrix weighted by ionization
potential (e.g., BCUTi-1l), pauling EN (e.g., BCUTpe-1h), or sigma electrons (e.g., BCUTd-
1h, BCUTd-1l). Note that this does not mean that these worst descriptor values are harmful
to the outcome, but they only have a smaller contribution than the others to the performance
(e.g., accuracy).

Table 9 describes a comparison our work with recent studies. The best accuracy of this
study is definitely highest among them; although the three studies used different datasets,
we might say that we proved the potential of the ANN model to predict cocrystal formation
by experimental results. It should be noted that the feature sources are different between
these studies. That is, Jerome G. P. Wicker et al. [16] used the molecular descriptors (i.e.,
features) as the model inputs and Jan-Joris Devogelaer et al. [66] used fingerprint vectors
and molecular graphs whereas our work uses the molecular descriptors (i.e., features). We
employed feature selection algorithms to find some valuable features and explained how
they are related to results of previous studies.

Table 9. Summary of comparison with recent studies.

Jerome G. P. Wicker et al. [16] Jan-Joris Devogelaer et al. [66] Our Work

Total # of features 391 78 2207
Feature generation tool RDKit DeepChem [67] Mordred

Feature selection - - RFE, Kbest
Best model SVM ANN ANN

Best accuracy (%) 64.0 80.0 82.9

5. Conclusions

To address the co-crystal prediction problem, we extracted molecular descriptor
values using the Mordred tool and performed preprocessing. We performed experiments
on molecular descriptor values extracted from our collected data, and found that the ANN
model was the best among the various known machine learning models. In particular,
ANN gave the best recall 0.800 of the ‘success’ label and the best F1 score of 0.817. This
implies that the ANN finds about 80% of co-crystal formation without losing too much
precision. We also found that the model achieved comparable performance with only half
of the descriptor values (i.e., selected molecular descriptor values), and explained that
these selected molecular descriptors are related to the results of some previous studies; for
example, the module‘EState’ refers to the electrostatic interaction between atoms, which is
known to be important in pharmaceutics. We believe that this study will be helpful in the
process of co-crystals development. In the future, we will examine to collect more data as
the size of adequate data is crucial to develop better machine learning models.
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