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Abstract: Industry 4.0 (I4.0) is built upon the capabilities of Internet of Things technologies that
facilitate the recollection and processing of data. Originally conceived to improve the performance of
manufacturing facilities, the field of application for I4.0 has expanded to reach most industrial sectors.
To make the best use of the capabilities of I4.0, machine architectures and design paradigms have
had to evolve. This is particularly important as the development of certain advanced manufacturing
technologies has been passed from large companies to their subsidiaries and suppliers from around
the world. This work discusses how design methodologies, such as those based on functional analysis,
can incorporate new functions to enhance the architecture of machines. In particular, the article
discusses how connectivity facilitates the development of smart manufacturing capabilities through
the incorporation of I4.0 principles and resources that in turn improve the computing capacity
available to machine controls and edge devices. These concepts are applied to the development of
an in-line metrology station for automotive components. The impact on the design of the machine,
particularly on the conception of the control, is analyzed. The resulting machine architecture allows
for measurement of critical features of all parts as they are processed at the manufacturing floor, a
critical operation in smart factories. Finally, this article discusses how the I4.0 infrastructure can be
used to collect and process data to obtain useful information about the process.

Keywords: applications of industry 4.0; in-line metrology; precision machine design; control archi-
tecture; smart manufacturing

1. Introduction

Industry 4.0 (I4.0) is a term introduced by the German government to label the conver-
gence of technologies such as the Internet of Things Things (IoT), Cyberphysical Systems
(CPS), and Cloud Computing in the new generation of industrial systems [1]. In the man-
ufacturing environment envisioned by the concept of I4.0, the vast amount of data that
is collected from the shop floor can be transported and analyzed to provide information
that is then used to monitor and control operations. The ultimate goal is to develop Smart
Manufacturing (SM) capabilities to produce finished goods of optimal quality, on time,
with the minimum waste of energy and resources [2]. Initially intended as a strategy for
the manufacturing sector, it has been adopted by other industries such as energy and
transportation, where reliability and safety are of paramount importance [3].

Appl. Sci. 2021, 11, 1312. https://doi.org/10.3390/app11031312 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5461-0355
https://orcid.org/0000-0001-9499-5237
https://orcid.org/0000-0001-7563-783X
https://orcid.org/0000-0001-5793-7564
https://doi.org/10.3390/app11031312
https://doi.org/10.3390/app11031312
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11031312
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/1312?type=check_update&version=3


Appl. Sci. 2021, 11, 1312 2 of 29

The infrastructure that has been developed to support the (IoT) is the means to handle
and process the data. The new Information and Communication Technologies that will
provide a platform for the deployment of I4.0 have been an important topic of research [1].
Specifically, the network that allows manipulating and managing big data, from the telecom-
munication operators to the cloud administration and computing services, facilitates the
introduction of I4.0. Communication and data transfer protocols have been developed to
enable data transfer from sensors and machine controls to other equipment or the Cloud,
and eventually, back to the shop floor. Delays in the process of handling and analyzing the
data have an impact on the quality of the services that can be provided [4]. For this reason,
data commonly goes through filtering and preprocessing procedures before it is sent to
the Cloud [5]. During this procedure, data are also analyzed, and decisions are made by
controls of different hierarchies based on the information that is gained from the analysis.

Digital Twins (DT) and Cyberphysical Systems (CPS) are the core tools of I4.0. They
merge the physical world. i.e., intelligent machines and the data from sensors and part
measurements, with the virtual models designed to represent reality. The purpose of
CPS and DT is to monitor and forecast the behavior of a system, with the ultimate goal
of controlling their processes. In particular, computer simulation is a key element of
CPS for monitoring and forecasting. Simulation models can be used for contrasting a
system’s behavior with expected conditions, predicting future states, diagnosing sources
of problems, and preventing inefficient or hazardous conditions. The connection of the
field data with these models is an important research topic [6,7]. Lee et al. [8] stressed
the importance of acquiring accurate and reliable data from the shop floor to develop
CPS. Rosen [9] described how DT are critical components of CPS, and pointed out that
connectivity is a key element to achieve smart manufacturing capabilities. Chen [10] stated
that fast, reliable communications between machines and improved intelligence at the
machine level are also features of smart factories.

Machine tools are invaluable sources of information in smart factories, a perspective
that needs to be assimilated at the design stage. Several studies have tried to incorporate I4.0
principles and technologies at the machine tool level. For example, current machine design
trends such as sustainability, can benefit from I4.0 tools and cloud computing (Croccolo [11]),
(Gao [12]). Cheng et al. [13] argued that smart tools are a key element for machine tools
and smart processes within an I4.0 ecosystem. Xu et al. [1] stated that smart devices are key
elements for resilient smart factories, and both are important topics of research.

To make the best use of the capabilities of the habilitating technologies in sensors,
communications, and data analysis, machine architectures and design paradigms must
evolve. Multiple studies have been made about the architectures that can make the best
used of IoT at the system level. Schauerte et al. [14] analyzed the issues faced by legacy fac-
tories (brownfield) as they transition into I4.0 ecosystems, and proposed a general system
architecture that can help bridge the gaps. This architecture was designed around charac-
teristics such as flexibility, scalability, security, and real-time communication. Ackerman
et al. [15] presented a system architecture to interconnect equipment at the shop floor with
the Cloud. Their main concern was interoperability of the system, and work focused on
communication protocols and open-source software for implementation.

This work argues that intelligence is a characteristic that can benefit from I4.0. Com-
puter Numerical Control (CNC) allows for the automatic operation of many machine
functions. However, autonomous operation, which allows the machine to adapt to changes
in the environment, is a goal that lies beyond the reach of CNC. Monitoring and modeling
of the process have long been recognized as capacities that are needed for autonomous con-
trol and operation of machine tools (see Yang [16] and Sato [17]). More recently, Moriwaki
et al. [18] pointed out that Intelligent process monitoring and data from measurements of
finished products are two features that are needed to achieve autonomy. Mutilba et al. [19]
discussed the use of machine tools for in-line metrology to obtain part data right after
manufacture. However, machine tools are meant to produce parts. Measuring is not a func-
tion that adds value, and other options exist. Weckmann et al. ([20,21]) identified trends
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in metrology for manufacturing: Metrology at smaller scales (micro and nano), holistic
measurement in which multiple sensors are used to measure parts fully, and quick low-cost
measurement techniques for high volumes in the production line, or in-line measurement.
More specifically, Koren [22] proposed that in-line inspection stations are vital for part
quality monitoring in modern Reconfigurable Manufacturing Systems (RMS).

From the previous discussion, communication between machines, improved intel-
ligence, and data from the process and the product are necessary ingredients to achieve
the goal of Smart Manufacturing. New machine architectures must incorporate features
to achieve this goal. While world class, well-established machine tool builders routinely
include state of the art concepts in their designs, they tend to maintain control of the
information that is available to their customers. Furthermore, there is a growing trend in
which regional manufacturing subsidiaries of global companies as well Tier 1 suppliers
invest in the development of advanced manufacturing technologies (AMT), facilitating the
digitization of existing factories [23]. Local developers of AMT compete on the basis of cost
and development time for application-specific machines.

This work proposes that Connectivity, defined as the process of transferring data
from an edge device (sensor or control) to another device or the Cloud, is the machine
design feature that enables the implementation of I4.0, affecting the intelligence of the
machine and how hardware capabilities are utilized. Connectivity allows intelligence to be
decentralized and reconfigured to facilitate analysis and decision-making. Furthermore,
Connectivity is the means to facilitate the construction of the digital thread of a product [24].
Through a specific case, this research shows that speed and safety of data transfer, as
well as synchronization with the decision-making process, are factors that need to be
accounted for during design stage. Proper design results in significant improvements over
previous generations of machines, specifically, for the purposes of process monitoring and
forecasting of the quality of the part and the health of the machine. This article describes
how Connectivity can be incorporated into the design of machine tools and applies these
ideas for the design of an in-line measuring machine. This work proposes solutions to
specific challenges that designers encounter as they try to introduce I4.0 principles in the
manufacturing floor. In particular, the contributions of this work are:

− One of the most important technical challenges to the deployment of I4.0 capabilities
is the integration of IoT technologies in the design of a machine [1]. This works intro-
duces an approach based on functional decomposition concepts to help address this
issue, and includes a mapping of technologies and networks that show the possible
connections available to the designer that are needed to integrate and coordinate the
signals from the different sensors and devices.

− Connectivity, integration through data sharing, development of product memory, and
improved process intelligence are key concepts for the development of smart factories
under the I4.0 paradigm [25]. A function connectivity block was proposed to help
designers manage the application of these I4.0 principles during the development
of new machines. The proposed concepts are applied for the design of the in-line
metrology machine.

− A novel machine architecture for a highly relevant current application [22], in-line
metrology of automotive parts, is presented. Among other characteristics, the new
design uses connectivity to facilitate digitalization of the operation. Connectivity also
helps improve the intelligence of the measuring process by allowing timely montoring
of the status and performance of the machine.

The article is organized as follows. Section 2 discusses the concept of intelligence in
machine tools and analyzes the implications of technologies and protocols to implement
Connectivity and improve the control architecture of a machine. Section 3 presents how
Connectivity and safety can be accounted for during the design stage using functional anal-
ysis. Section 4 applies the previous concepts to the design of an in-line metrology machine.
Section 5 provides an assessment of the performance of the machines. Lessons learned are
presented in Section 6. Finally, conclusions and future work are presented in Section 7.
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2. Intelligence in Machine Tool Design

The design of manufacturing systems typically strives to achieve specific characteris-
tics. For example, for the case of RMS, desired features include scalabililty, convertibility,
diagnosability, customization, integrability, and modularity [22]. Molina et al. [26] pro-
posed intelligence as another feature of machines in RMS. Even though the concept of
RMS has been developed for over 20 years, there is a lack of structured approaches for the
design of RMS [27]. A similar argument can be made for the design of equipment for I4.0
environments. This work proposes that production machines, including in-line metrology
equipment, should have the following attributes to meet the performance demands of
modern applications:

• Accuracy and Repeatability. These attributes refer to the capacity of the machine
to perform its functions consistently within bounds of an acceptable size from the
intended target specification. The most common function associated with these
attributes is the positioning of a tool. Accuracy refers to the ability of the machine
to place a tool in the target location. Repeatability is associated with the size of the
deviation in achieving a target when the positioning action is repeated.

• Flexibility. Refers to the ability of the equipment to meet changing needs on the shop
floor. For example, the features to be measured may vary depending on the type of
analysis being conducted (for in-line metrology), or the machine may allow for parts
of different geometry to be produced.

• Robustness. This characteristic refers to the ability of the machine to perform its
function reliably and accurately. Factors that affect this characteristic are the ambient
conditions and the operator’s handling of the equipment.

• Speed. Refers to the capacity of the machine to perform all its functions in a given
time, and it is affected not only by the velocity with which mechanical functions are
performed but also by the processing speed of the controls of the machine.

• Safety. This attribute is associated with the capacity of the machine to care for the
physical integrity of the human operator, as well as the machine and its surroundings.

• Intelligence. This attribute refers to the capacity of the machine to perform its functions
in an autonomous manner. Automatic operation requires the machine to manage,
monitor, and control the functions it performs. Autonomous operation requires
the ability to adapt to changes in conditions, particularly those in the environment.
The ability to communicate with its surroundings and respond to commands from
recognized higher authorities are also features of intelligence.

The subject of Intelligence in production equipment has received significant attention
for some time. In their work, Moriwaki et al. [18] summarized the state of the art and
trends. In conventional machine tool controls, intelligence is for the most part a local feature,
constrained by the limitations of hardware, processing capacity, and more importantly, the
scope of the available data. Connectivity allows access to the computing resources of the
web, and to the infrastructure that supports I4.0. This work proposes that Connectivity
opens a wide range of possibilities to enhance the intelligence of new machines.

A basic principle of I4.0 that is of particular interest is that objects can be designed to
communicate with other objects. Karimi [28] argued that the contents of these communica-
tions determine how smart a process or machine is. Several studies have addressed the
type of data that needs to be collected and communicated. Stock and Seliger [29] pointed
out that variables and operational states of the machine need to be collected. Borgia [30]
established that information about the environment needs to be monitored, stressed the
importance of monitoring process conditions, and the potential benefits of integrating
wearable sensors and digital cameras to the stream of data. While these studies have aimed
to improve the efficiency of the manufacturing processes, it has been shown that infor-
mation can be integrated much earlier, even as far back as the design stage. Gorecky [31]
studied the integration of data associated with a product, the fabrication process, the
technical documentation, or the operative production process. There are still challenges
associated with the design of the digital thread that can allow the data to flow across the
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life cycle of a product, particularly those associated with the scope and format in which
this communication can actually occur [24].

For the designer, an expanded universe from which intelligence can be constructed
presents new challenges. In particular, the choice of the hardware, the design of the distribu-
tion of the intelligence, and the coordination and synchronization of the different resources
are issues that need to be addressed. In particular, the integration of IoT technologies
for I4.0 is an important technical challenge because there are no universal platforms that
integrate communication technologies with the applications found in current networks,
that is, in legacy systems [1]. Figure 1 maps the technologies and communication protocols
that constitute the infrastructure for Connectivity and within which, the intelligence of
smart machines can operate.
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Connectivity allows access to resources that can significantly improve the capacity
to monitor and control a given process, and by coordinating this information with the
analysis of data about the environment, new capabilities can be developed. Forecasting
can be enhanced, not only about systems that are internal to the machine but also about
changes in the production environment and even market demands. The autonomous
operation, in the sense of the capacity to adapt to changes, is greatly enhanced, and routine
but necessary operations such as maintenance and tool change can be made more efficiently.
To achieve these new capacities, the intelligence is built by distributing data and managing
information across different layers of computing capabilities.

From the perspective of machine design, the technologies and protocols shown in
Figure 1 are selected according to the application, with the goal of integrating the intelli-
gence to the shop floor. The intelligence of the machine is the entity constructed by the
hardware that collects data and executes instructions, by the connections that transfer
data and signals, by the computers that store and analyze data, and by the programs and
applications that run within the computers, processors and devices that perform the actual
analysis and provide instructions. Different types of analysis and decisions are made at
different levels, and an understanding of the capacities and requirements at each layer is
critical for a coordinated operation that guarantees safety and reliability.
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As shown in Figure 1, the shop floor is at the lower layer. Data are generated from here
by machines and sensors, the edge devices. Real-time response is needed and therefore
decision making amounts mostly to predefined, automatic responses. Storage capacity is
relatively low. At the opposite end, the Cloud, large volumes of data are used to forecast
the behavior of a system. At this level, there is virtually infinite storage capacity, and the
analysis as well as the actions that are triggered cover longer times and larger spaces. The
tendency is for these technologies to become ubiquitous. Between these extremes, there is
a transition layer, where data are conditioned and transferred, and where the functions of
machines are coordinated. The use of Edge concepts drastically reduces the communication
volume between cloud and edge devices [32]. To avoid ambiguity, this work considers edge
computing devices that are not only data acquisition systems but implement computing
operations at the edge and provide connectivity to the Fog and Cloud. On the other
hand, Fog computing sends data to a computer that is closer to the Cloud. Important
enhancements are presented in computing paradigms with Fog computing due to the use
of small platforms located at the network edges closer to the IoT devices and networks [33].

Figure 2 provides a framework in which response time, physical location, and data
handling capacity are correlated with the types of intelligent functions that are provided by
the principles and capabilities of I4.0. In essence, the technologies and protocols depicted
in Figure 1 administer Intelligence within the frame illustrated in Figure 2.
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Connectivity is the means by which the devices at the different levels can communi-
cate, and is therefore at the core of the expanded intelligence that new machine architectures
incorporate. The introduction of Connectivity in new machine designs offers the potential
to bring significant improvements in the performance of the system. In the case of existing
equipment, the addition of Connectivity represents an upgrade, in the sense that the soft-
ware of industrial equipment evolves, as opposed to a retrofit, that is normally associated
with the insertion of new hardware [5]. The section that follows explains how functional
design can be used to integrate Connectivity.

3. Connectivity as a Design Function

Because of its effect on the fundamental architecture of a product, as well as its cost,
the process that spans the conception of a product through the detailed design is critical.
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For example, Wan et al. [34] estimated that 75% of the cost of an automobile is defined
during this stage. During this process, methodologies based on functional decomposition
or functional reasoning have proved to be powerful tools to help designers arrive at robust
product architectures. The main advantages of Functional-based design methodologies
are simplicity, and the fact that, by looking at functions to be performed, designers are not
constrained a priori to particular configurations [35]. Furthermore, functional analysis and
functional decomposition are powerful tools for the purpose of declaring the mission of
the system.

One of the most basic tools for functional analysis was introduced for the process of
Value Analysis, a technique that seeks to characterize and manage the costs incurred in
performing functions [36]. The basic idea is to identify functions, which are expressed in
terms of a verb and a subject, and then categorize them in a structured manner in a diagram.
Basic functions are those needed for a specific system or component to fulfill its mission.
Support functions add value to the product, or perform critical complementary functions.
There is no extra credit for performing basic functions, and typical support functions
include “provide safety” or reliability. This type of diagram was originally intended for the
analysis of a product, and not for design. Functional decomposition evolves from this type
of analysis and has been used as a reliable method to generate alternate designs that are
later evaluated automatically in terms of the sustainability of the different proposals [37].
There are inherent advantages of applying it early on during the design process. Depending
on the detail of the diagram, certain functions can be correlated to physical components.
The diagram also alerts the designer to the need to include functions that may not be
essential to the mission of the product but crucial for a successful introduction.

While the normal functional analysis tree provides insights into the way functions
can be delivered, it has limitations. For example, functional trees are not easily integrated
with more sophisticated tools such as CAD systems, to support synthetic design [38]. This
type of diagram was not originally designed to represent the features such as the flow
of energy and materials or human intervention in the system’s performance. In their
work designing CPS systems for automobile applications, Wan et al. [34] addressed these
limitations by conceptualizing functions in terms of energy, materials, and signal flows. Of
particular interest is the work of Jensen et al. [39], who proposed a model to incorporate
safety as a function during the design process of CPS. In this work, they used systems
modeling to represent the process of decomposing system function structures acting on
flows. From these, components were identified to implement those functions and their
architecture. They argue that this approach is useful for implementing safety, particularly
for components that perform multiple functions, and for the design of controls.

Based on the previous discussion, this work looked at introducing a function to include
Connectivity from the early stages of design. The proposed block diagram of the function
“provide connectivity” is shown in Figure 3. There are actions associated with this function:
Collect data, preprocessing the data, and deliver data. Preprocessing the data may include
further actions such as classification and cleaning.

In the model of Figure 3, the function of providing Connectivity considers an input
from an edge device (sensor or control), and includes actions such as preprocessing of
the data as they are transferred to the Cloud or another device. Data can flow in either
direction, and security protocols must be followed. The actual action of preprocessing and
conditioning of the data is done according to specific protocols. Energy is required in this
process. The implementation of Connectivity using this idea is discussed in the sections
that follow.
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4. Application of the Concepts: Design of an In-Line Measuring Machine

The development of manufacturing metrology is a highly competitive field that con-
tinuously incorporates technology to improve the accuracy and resolution of measurement
equipment [16,17]. Recently, the need for metrology techniques that are efficient at getting
data from parts at the production facilities has been recognized [20,22]. Kiraci et al. [40]
proposed the use of intelligent systems to promote a paradigm shift from dedicated off-line
metrology to in-line metrology. They also pointed out that the most important challenge
for the introduction of in-line techniques is the validation of the system´s capabilities in
terms of accuracy, repeatability, and measurement time. Imkamp et al. [41] discussed how
I4.0 could impact the design of metrology equipment in terms of speed, flexibility, and
reliability, and stated that protocols for safe and efficient connection are needed. A further
argument of this work was that technologies associated with Industry 4.0 could be used to
improve the value of in-line measurement systems. Bauza et al. [42] proposed the use of
computer tomography to inspect parts quickly in an I4.0 environment. They mentioned
the need to inspect parts completely, at speed to match production rates. Their system
measured parts in batches with an accuracy comparable to that of a CMM, at a fraction of
the time.

This work proposes that in-line metrology systems should have specific characteristics
suitable for the production environment: Flexibility, Accuracy, Robustness, Speed, and
Functional Intelligence and Connectivity. All the components of an in-line machine interact
to achieve these characteristics. Nevertheless, the first four characteristics are mostly asso-
ciated with the hardware of the machine, while Functional Intelligence and Connectivity
are exclusively addressed by the design of the machine control. As will be shown, these
principles were applied to the design of an in-line measuring machine for the inspection of
die castings.

4.1. Analysis of Current Gauging Process and Target Specifications

To prevent defective products from reaching the customer, manufacturers strive for
zero-defect-production. This is particularly true for the automobile industry [43], in which
part traceability [44] has become an essential tool to analyze and predict part failure. In
practice, manufacturers are moving towards verifying all critical specifications in every
single part produced. Conventional inspection methods, which combine in-line gauging
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procedures with off-line metrology systems to verify part compliance with specifications
and identify sources of error [23] are not designed for this new approach, as only samples
of parts are fully verified before they are released. In response to these changing needs, a
new paradigm for in-line inspection system design, in which all critical specs of all parts
are measured, is emerging.

This particular case deals with the design of a machine in a casting operation. Figure 4
presents a schematic of the process that is followed to produce and inspect an aluminum
die-cast part. After the casting process, a robotic arm takes the workpiece from the die
casting die to a cooling water system and then to a punch press where excess material is
removed. The part is then delivered to a gauging station, where a flatness test is performed.
The test consists of measuring the height of approximately 20 points with linear variable
displacement transducers (LVDT). Measurements are reported on a monitor screen. No
provisions are made to store or transfer the data from the measurements.
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Figure 4. Workpiece process. The robot takes the part from the die casting machine (1) and submerges
it in a water tank (2). The robot then inserts the part in a trim die, where excess material is removed. The
workpiece is then delivered to a measuring station to check the flatness of the surface of the casting.

The environment around the measuring station is typical of die casting operations:
ambient temperatures can vary between 18 ◦C and 38 ◦C depending on the time of the day
and season of the year. Steam released during the casting and quenching processes produce
ambient humidity, and the punching operation produces noise, shock, and vibrations. The
plant has several similar cells, which contribute to the overall conditions.

In general, in-line gauging systems in the automobile industry are built for robustness
and speed. In this case, the pace of the part measuring process is given by the casting
operation, which takes about one minute. Measurements need to be made in about 20
to 25 s to allow the operator to try to make corrections to the part if needed. As seen in
Figure 5, the position of each LVDT is fixed, and therefore the gauging system can only be
used for the specific part for which it was designed. The probes are covered and therefore
they are well isolated from accidental impacts.
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Figure 5. Current gaging inspection system: (a) View from operator’s perspective showing linear variable displacement
transducers (LVDTs) and reference pins, and (b) view from the opposite side showing a workpiece mounted and ready for
measurement operation.

The main advantages of the current measuring station are reliability, robustness, and
simplicity of operation. On the other hand, the gaging inspection system’s main weaknesses
are its lack of flexibility, the tendency of the LVDT to catch debris from the part or the
environment, and the lack of system information for the integration to I4.0.

The intention of the new design was to maintain the advantages of the current system,
while adding flexibility and Connectivity to the Cloud. The use of permanently fixed
sensors posed the main obstacle to achieve flexibility. The use of a moving probe allows
the possibility to reconfigure the measuring plan. However, given that the measuring
cycle needs to be completed in less than 25 s, speed becomes an important issue. As
stated by [45], the use of contact probes limits the speed with which measurements can be
made. Therefore, a laser probe was proposed for the application. Another consideration is
that the inspection area of the measurement system must cover the overall dimensions of
the workpiece (450 mm × 450mm). The tolerance range for the features from the casting
operation is 0.8 mm and the target reliability using a gauge repeatability and reproducibility
(R&R) study is 10% or less in each measurement point [46]. Therefore, as a starting point to
select components, the overall target precision of the measuring system was specified as
0.040 mm. The new system has to perform measurements for the same part, and under the
same environmental conditions as the current system. Among the expected upgrades are
the capacity to analyze, store and transport data, and factors such as added flexibility to
handle other parts were considered a desirable goal.

4.2. Architecture of In-Line Measuring Station

An in-Line measurement system was designed based on the specifications described
in the previous section. A non-contact measurement device laser probe was proposed from
the start to reduce the risk of collision between the machine and part. To compensate for the
fact that the laser probe can make only one measurement at a time, a high speed positioning
system was needed. A cartesian positioner, Gantry type, actuated by linear motors was
selected because of the high speeds that can be achieved. The total work volume of the
position system is 600 × 600 × 270 mm.

Figure 6 shows the structure of the full measurement system. There are two different
sections in the system: The loading area and the measuring area. The measuring station is
enclosed for the purpose of protecting the laser sensor as well as the linear motors from the
environment. Parts are loaded (and retrieved) in the loading station, and then transported
into the measuring area by a pneumatic positioner. This configuration requires a workpiece
fixturing system (Figure 6c), which uses a novel locating system for accurate positioning of
the casting in the measuring area [47].
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The measuring process starts when the operator mounts the part on the transportation
plate. Two button boxes are used to start the measurement cycle and require both hands to be
occupied when an action is started by the operator. The part is fixed by pneumatic clamps
and then transported into the working area, where the measurement process is conducted. If
the part is within specifications, the system automatically unclamps the part, which allows
the operator to remove it. If the part is not within specs, the operator has to push buttons
to release the part, which then goes through a reprocessing step. The measurement cycle is
repeated until the part is accepted or rejected if it could not be fixed. Results of a measurement
are displayed on a computer screen and the data are sent to the Cloud.

The control and processing system coordinate all the functions of the equipment and
manage the data from the process. Figure 6 shows the elements of this system: A Galil
Controller (GC), a driver for the laser, an XDK Bosch multisensory, an accelerometer, and a
minicomputer that coordinates the interaction of all and provides Connectivity.

The manner in which the hardware design meets the characteristics of flexibility,
accuracy, robustness, and speed that are needed for in-line measurement are now discussed.

4.2.1. Flexibility

The proposed design includes a fast positioning system that uses linear motors and a
laser sensor to perform the measuring actions. The use of the positioner allows the in-line
machine to operate in a manner similar to a CMM, which can be adapted to variations in
part size and geometry. In terms of the measurement functions that need to be performed,
CMM are very flexible equipment. However, their flexibility comes at the expense of speed
of measuring and cost of fixturing. Laser sensors are not as accurate and may be susceptible
to variations in environmental conditions. On the other hand they are not hindered by
the limitations of contact measurement sensors, which are inherently slow ([20,45]). The
machine also includes a fixturing plate that holds the workpiece, and allows for quick
part change. Parts of similar design may be measured on the same plate, and for parts of
different designs, a new plate can be built.

4.2.2. Accuracy

In the proposed design, this characteristic is achieved by the performance capacities
of the fixturing plate, the positioning system, and the laser probe. A positioner with a
gantry design provides motion of the laser sensor in a plane. The use of linear guides and
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encoders allows a positioning accuracy of about 0.003 mm and a resolution of 0.001 mm.
The laser sensor has a repeatability of 0.012 mm, with a ±40 mm measuring range from its
focus length of 800 mm. That is, features within 40 to 120 mm distance from the sensor can
be measured. The fixturing plate has three pins that define the reference plane (which fixes
z and two angular positions), while two pins are used to locate the part in the remaining
3 degrees of freedom (in x, y, and the third angular position).

The part is made out of aluminum. The surface is generally smooth and reflecting. The
measurement tries to identify sections of the part that may be thicker. As seen in Figure 7,
flashing or the die’s heat checking (surface fatigue) marks may be present, depending
on the tooling conditions. These are conditions that affect the quality of the part and the
measurement process.
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4.2.3. Robustness and Safety

In the proposed design, the laser and the linear motors need to be protected to allow for
reliable operation. For this reason, the operations of part load unload and measurement were
separated from each other. The operator handles the part in front of the machine. A pneumatic
actuator inserts the part into the measurement volume. This volume is kept relatively isolated
from the environment by an enclosure, which prevents debris and dust from affecting the
linear guides or the laser. This enclosure also prevents the operator from being exposed to
potentially harmful laser light and from reaching the machine’s moving elements.

4.2.4. Speed

A measuring cycle includes part setup and fixturing, data collection (measurement)
time, and data processing time, which in this case includes calculations related to the
measurements, display of the measurements, and data transfer to the Cloud. The mounting
plate was designed to quickly mount and lock the casting in preparation for the measuring
cycle. The part is fixed to the plate by pneumatic clamps. The total time to mount, fix,
locate, extract, and dismount the part is not negligible, taking a little more than the time
for the actual measurement cycle. As will be explained, the total time is competitive with
the current gauging time (between 25 and 30 s in the lab), and both are much faster than
any procedure used in a measuring room (with a CMM).

4.3. Control System Architecture and Connectivity

The design of the control architecture plays an important role in data collection and
processing time. Figure 8 shows a functional analysis tree of the current measuring station.
The system was conceived to measure the flatness of the casting and display the data. No
provision was made to do any processing or storage of the measurement data.
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In comparison, Figure 9 shows a section of the function tree of the new design. The
main function, Monitor Casting, has several steps such as fix, position, and measure the
part, display quality control results, provide safety to operators, monitor environmental
conditions, and provide Connectivity to the system.
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ment are support functions that help improve intelligence of the machine.

Compared with the current equipment, the new design adds a step, “Position part”.
This step was added as a precaution to isolate the measuring probe and the environment’s
positioning system as much as possible and while it does not contribute to improving the
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operation, it helps guarantee reliability. The other new functions, Provide Connectivity
and Monitor the Environment, are intended to improve the intelligence of the control,
and provide the capacity to respond to unexpected conditions. For example, information
about the part, or about what the machine perceives from the environment can be used to
anticipate and avoid conditions that can result in the waste of energy or resources. The
machine performs a series of automatic functions once the part is placed on the fixturing
plate: Clamp the part, insert it into the measuring volume, measure the target features,
report to the operator the result of the measurements, and store selected data. The following
sections describe how Connectivity was used to improve the capacity of the control system
to monitor the product, the process, and adapt to changes. The result is an overall improved
intelligence thanks to the access to the I4.0 resources provided by connectivity.

4.4. Implementation of Connectivity

In general, a control system for a measurement machine has four main components
that work together to generate, condition, and analyze data: Sensors, edge devices, fog
devices, and the Cloud. The implementation of Connectivity starts with the definition of
the signals that need to be transported for analysis, as well as the place where processing
will occur. Figure 10, which was derived from the frame introduced in Figure 1, maps the
sources of data to the hardware and the level at which processing is performed for the
in-line measuring machine.
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As seen in Figure 10, the lowest level is where the basic signals are collected, and
where actuators respond to impulses sent by the control of the machine. Generally, typical
response time at this level is between 1 and 100 milliseconds and data capability manage-



Appl. Sci. 2021, 11, 1312 15 of 29

ment reaches from bits to megabytes. In this particular case, the devices at the lower level
have the following characteristics:

• Laser displacement sensor (LDS): This instrument performs the essential basic function
of the machine. It measures the height at specific locations of the workpiece. In this case,
the laser is calibrated to perform 30 measurements at each location in about 0.080 s

• Positioning system. This system transports the laser sensor to the location where mea-
surements are made. It is actuated by linear motors, and has a travel space of 600 by
600 mm. The gantry system can reach speeds of 6 m/s, with a resolution of 0.001 mm.
Linear encoders report the position of the laser head to the GC at any given instant.

• Button box: The operator interacts with the control and paces the measurement process
through the control buttons. After placing the part in the pallet, the operator can start
the measuring process by pushing a button. The operator can also release the part,
after the process, or can stop the process in an emergency situation. The time at which
the start button is pushed is recorded and sent to the Cloud.

• Pneumatic actuator: The actuator is responsible for transporting the part in and out of
the measuring volume. Sensors are triggered when it reaches its limit positions.

• 3-axis accelerometer (MMA7361): This sensor records the accelerations in different
directions as the gantry goes through the measuring cycle. These data are intended to
provide information about the health of the operation. The GC takes data from these
accelerometers at a rate of 400 Hz approximately.

Edge computing takes place at the second level, where the processing devices, i.e., the
GC and the LDS drive, receive data from the sensors, which is then filtered, classified, and
formatted. The response time of those elements depends on the specific function they were
programmed to perform. Specifically:

• LDS Controller received data from the laser sensor. Processing at this stage consists
of scaling, filtering, and mathematical operations. This control was programmed to
obtain the average of 30 measurements, and then deliver these data to the GC. LDS
driver sends its data via ethernet communication using UART protocol over RS-232C
interface or by using analog signals from 0 to 10 Vdc.

• Galil controller (GC) is responsible for coordinating and ordering the motion of the
gantry, with the measurements taken by the laser. The controller synchronizes the
data from both laser and encoders to form a coherent stream of data. In addition, data
from the 3-axis accelerometer are also synchronized with the other signals. The control
performs these operations in about 200 millisecond. For this purpose, it uses about
4 KB of its 32 KB capacity.

• XDK BOSCH (XDK) is a platform of environmental sensors that monitor pressure,
temperature, vibration, and humidity. XDK process capabilities allow edge computing
to transform data in valuable information of the machine surroundings and give an in-
telligence level to the machine. Temperature, pressure, and humidity in the machine’s
measurement area are collected at approximately 182 Hz. Data from accelerometers
and gyroscopes can be reported at a rate of up to 2000 Hz.

It is important to note that there are no universally accepted definitions for Edge and
Fog computing. In our case, we propose that the GC can be considered an edge device
because it performs functions beyond data acquisition tasks. In addition to collecting data
from the laser control, the GC coordinates other basic automatic functions: It processes the
orders of the operator (start or stop the process), instructs the pneumatic clamps to hold the
part, and the pneumatic stage to insert the part or remove it from the measurement area.
Beyond these automatic functions, the controller displays a certain degree of intelligence.
For example, the control reacts only when the operator has both hands at the button boxes,
a safety feature, and unclamps the part to allow for removal only if all measurements are
within specs.

The processing units that serve as Fog devices were chosen based on their processing
capacity and on the interface they handle to facilitate connection. In this particular case, an
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embedded development platform, BeagleBone Red (BBR), was selected to serve as a fog
computing stage due to additional features such as compact size, ease of programming,
and flexibility. It can be connected with almost any type of device, from simple components,
such as switches, to more complex devices, such as smart sensors, as well as to the Cloud.

As seen in Figure 10, the BBR receives information and data from the GC and the
XDK. In this case, the BBR is mostly used as the manager and distributor of all the data.
Part measurement data are sent to a screen and displayed in a manner that facilitates
interpretation. Basically, measurements are displayed directly on an image of the workpiece.
A green circle is shown when measurements are within specification; measurements out
of specification are shown in red. The BBR also conditions and formats the data to be
transmitted to the Cloud. The protocol used is HTTPS with a post method using a URL
address. Data are saved on a Google drive where the engineering department of the
factory monitors the measuring process. The response time at the fog computing level is
less than 2 s. Most of this is needed to display the measurement data on the HMI. The
continuous data handling requirement in each cycle is around 600 KB, which corresponds
to all information that is sent to the Cloud. Because the BBR is the closest device to the IoT
gateway (the node to the LAN), this work proposes that it may be considered a Fog Device.

Figure 11 presents an integrated diagram of the functions performed by the machine.
The functions associated with Connectivity are presented in more detail, and describe the
type of signal that is being processed as well the protocol used.
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The last stage is the connection to the Cloud. In this particular case, the BBR is the
only device with Internet access. The BBR was configured to access the company´s WLAN
to get a secure connection with the Cloud. A request using HTTP to an URL hosted was
used for sending data to the virtual Cloud through a Wi-Fi adapter. A BBR application was
developed using Qt Creator, which has a code editor with support for C+. The library of
C+ that allows HTTP method is “curl”, which is an open-source code used in command
lines or scripts to transfer data [48].

The program that receives and writes data from BBR code to the virtual Cloud is an
App script of Google drive with the “doGet” function. Data are saved in seven different
spreadsheets within a Google spreadsheet, and consequently seven apps scripts were
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developed to save data. The structure of “doGet” function is shown in Appendix A. Each
group of data received is saved with a timestamp, which recorded the date and hour. The
information that is stored in each sheet is described in Table 1. This information is available
for the engineering team in real-time.

Table 1. Description of contents of Google spreadsheet. Signals that are transferred to the Cloud, as well as their intended use.

No of Sheet Data Stored
Use

Asses Part Quality Process Monitoring Diagnostics/Forecast

1

Calculated values of height data for 19
measurement points. Environment

data from XDK (taken
during measurement)

x x

2
Environmental data from XDK when

clamps are activated (taken before
measuring cycle)

x x

3 Laser measurement raw data.
19 points x

4 Height of locating points. 3 values. x x x
5 Maximum accelerations of axis X x x
6 Maximum accelerations of axis Y x x
7 Results of R&R Gage x

It is important to note that free cloud services such as Google’s are invaluable while
the system is under design. However, reliability and robustness cannot be expected from
these services once the system is released for operation. For this reason, an account was
created in a commercial cloud system. The same data that were uploaded to the free service
were stored in the new account.

To facilitate process monitoring, a dashboard was created to display process per-
formance. In addition to the data traces, parameters such as Active Time and Machine
Utilization are reported. Figure 12 shows the dashboard for a specific case. The ranges of
measurements and stops are clearly visible. The user can establish the time span for which
the analysis is requested.

To calculate the utilization rate, some basic definitions were needed. The cycle time
∆t, defined as the time lapse between consecutive activations of the start button, is not a
constant. A vector that contains N cycle times for a given period is first calculated, where t
represents the clock time when the start button is pushed:

∆tn = tn+1 − tn (1)

A second definition is an active time (∆Tm), which represents a particular instance
of the cycle time in which it can be assumed that the machine is in use. To calculate this
vector, a trimmed vector ∆trn is extracted out of the lapse vector ∆tn by removing all
instances in which the lapse exceeds 100 s. After this, an instance of the active time vector
is obtained whenever a lapse is smaller than 3 times the mean value of the trimmed vector.
The resulting vector ∆Tm contains M elements, where M < N. Essentially:

∆trn ∈ ∆tn| ∆tn < 100 (2)

∆Tm ∈ ∆trn

∣∣∣ ∆trn < 3∆̃trn (3)

The utilization rate is then given by the total active time divided by the time under
analysis as shown in Equation (4).

Uac =
∑M

m=1 ∆Tm

∑N
n=1 ∆tn

× 100% (4)
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where
∆tn = nth element of the lapse vector
∆Tm = mth element of the Active time vector
∆̃trn = mean of the trimmed lapse vector
∑ ∆tn = Total observation time
∑ ∆Tm = Total active time
Uac = Utilization rate
M = size of the trimmed vector
N = size of vector containing the measurement cycles for selected time lapse
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5. Assessment of Machine Performance

Following the previous description, a prototype of the in-line measuring machine
was built. This version of the machine was intended primarily for use in the laboratory,
but it was also considered suitable for use in the plant for limited runs. The machine was
deployed in a production line and was tested in relatively short runs, of around 400 parts
or so, on multiple occasions over a period of 18 months. The system was used only for test
purposes or as a redundant operation during this time. Figure 13 shows the prototype in
different settings. This section presents an assessment of the system’s performance, based
on the characteristics that were described in Section 2.
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The first target characteristics for an in-line measuring system are accuracy and
repeatability. Part measurement immediately after manufacture is highly susceptible to
shop conditions, particularly to variations of temperature [19]. Other important factors
include operator skill and capacity of the measuring system. In this case, the target was
to score better than 0.1 (10%) in a gauge repeatability and reproducibility (R&R) test for
each of the points being measured. The prototype machine operates in one of two different
modes: (workpiece) measurement and (R&R) test. The normal measurement mode is used
when production is being monitored. In the test mode, a Gage R&R algorithm based on
ANOVA technique implemented in the BBR is applied to check the process.

A typical R&R test involves 10 different parts and 3 different operators. Each operator
tests each part 3 times in a randomized manner (19 measurement points). Results of the
measurements are analyzed to assess the repeatability (due mostly to machine performance)
and reproducibility (due mainly to the operator’s skill and training) of the measurement
process. Appendix B presents some details of this algorithm. The Gage R&R study,
environmental data, and acceleration registered by the 3-axis accelerometer are sent to the
Cloud by the BBR.

Table 2 shows the results of several tests performed in the lab prior to shipping to
the plant, and subsequent trials on the shop floor. Tests were performed periodically per
standard practices. In particular, given that the machine was used during specific intervals of
production, a test had to be made after re-installation and before use in the production line.
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Table 2. In-line measuring machine Gage repeatability and reproducibility (R&R) results. The results
of left hand columns correspond to the last test performed in the lab prior to shipping. The second
tests was performed prior to the first run on shop floor. A measurement point was added between
these two tests.

LAB SHOP FLOOR

15-nov-00 13-dic-00 24-sep-01 01-mar-02

Point %R&R Point %R&R Point %R&R Point %R&R

1 5.9 1 6.35 1 3.8 1 6.24

2 3.99 2 3.56 2 2.98 2 4.63

3 5.53 3 3.15 3 3.14 3 5.59

4 3.97 4 3.46 4 2.18 4 4.94

5 4.94 5 3.63 5 2.35 5 6.69

6 3.99 6 2.34 6 2.26 6 4.31

7 4.91 7 2.3 7 3.57 7 3.90

8 4.09 8 2.51 8 2.32 8 2.84

9 3.91 9 2.51 9 2.16 9 3.83

10 4.51 10 2.16 10 2.63 10 3.31

11 5.42 11 2.83 11 3.13 11 9.64

12 5.32 12 3.04 12 2.31 12 2.52

13 4.79 13 3.32 13 3.14 13 3.52

14 6.04 14 4.28 14 3.47 14 3.59

15 5.61 15 3.75 15 5.55 15 3.03

16 6.4 16 3.13 16 2.96 16 2.57

17 6.51 17 3.64 17 4.06 17 2.90

18 4.7 18 4.22 18 6.42 18 1.84

19 3.77 19 2.37 19 2.81

The reported data shows that the system was capable of performing up to the standard
required by the application (less than 10%). It is important to notice that tests on the
shop floor included one more point for measurement than the lab tests. The engineering
department requested this additional data for a feature that had raised concerns.

The second design characteristic is speed. The initial target was to perform a measur-
ing cycle from part mount to part dismount for 20 to 25 s. Vibration and shock affect the
repeatability of the system. For this reason, experiments were made to establish how fast
the system could move and still deliver an accurate measurement. In the end, a measuring
cycle that consisted of five steps took the following times:

• Part clamp and insertion into the workspace: 6 s.
• Measurement cycle: 9 s.
• Part extraction and unclamp: 5 s.
• Handling of the part to load and unload. In these cases, time varies depending on the

operator’s training.

In the lab, the best times that could be achieved were around 28–29 s from part to part.
On the other hand, operators in the field achieved as little as 22 s from part to part after
gaining familiarity with the process. Figure 14 shows a histogram of part to part time for
data reported in the last experimental campaign of the machine. The fastest times would
correspond to parts that pass the test without problems. In other cases, some part fixing
takes place, which extends the time it takes to start a new cycle.
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The analysis in Figure 14 was performed with data obtained from the Cloud. In total,
957 measuring cycles are included in the data. Notable figures: A total of 383 parts were
measured in 31 s or less, 467 in 32 s or less, 693 in 41 s or less, and 713 in 42 s or less.

Flexibility, or the capacity to adapt to different part geometries was addressed by two
design features. From the hardware perspective, a new product design can be fitted into
the machine measuring area by modifying the clamping plate. Depending on the product’s
geometry, the modification may be minor (modify the position of locating pins or clamps),
or an entirely new plate may be necessary. The clamping plate’s cost is less than 5% of
the machine’s cost, which is a very modest figure as far as tooling is concerned. The other
modification is to change the coordinates of the points to be measured. Modification of a
coordinate point requires editing a table and recompilation of the program. Even though
the ideal would be to have a programmable user interface, the time it takes to make the
modification in the current system is relatively insignificant (a few minutes). Modifications
of this sort in the standard equipment are not feasible at all.

As an architecture characteristic, safety is intrinsic to the design of the machine. In
this case, isolation of the measuring volume greatly diminished the risk of harm to the
operator or to sensitive components. A condition that was overlooked during design was
the potential risk that the pneumatic clamps pose to the operator as they are activated. This
concern was raised by the process engineering team as soon as the machine was placed
on the shop floor. The problem was eliminated by adding a safety button, which needs
to be pressed simultaneously with the main control buttons to begin the clamping and
measuring cycle. This forces the operator to place both hands outside the area where the
clamps operate. During the machine’s trial period, no personnel injuries or hazardous
conditions (other than the need for the double button safety feature) were reported.

6. Discussion

The diagrams presented in Figures 10 and 11 provide a clear representation of the
hard connections and the data formats being used. They are particularly helpful for
documentation. For the purposes of design, the diagrams can be used as the starting point
for the design of Connectivity.



Appl. Sci. 2021, 11, 1312 22 of 29

In principle, Connectivity allows the transfer of data from different sources to the
Cloud. This in turn opens up new options for the purposes of monitoring, forecasting,
and controlling operations on the shop floor. In certain instances, the information that
can provide a glimpse to the health of the operation is relatively obvious. In other cases,
experience will dictate what kind of information can be extracted out of the data.

An example of the type of information that was anticipated as useful during the design
stage is the knowledge that can be obtained from the time stamp associated with each
entry into the cloud datasheet. These data can be used to monitor cycle times and machine
uptime. A direct application of this concept was shown in Figure 14, which was used to
analyze the time it takes operators to go from part to part. A target specification was to
perform the measuring cycle in 20–25 s. This value was based on the time it takes for the
current system.. On the shop floor, operators were able to get closer to the minimum value
but did not quite reach the optimum. However, during interviews with the operators, this
shortcoming was completely ignored as an area of opportunity. Basically, operators felt
comfortable with the performance of the machine in this regard. This indicates that there
are other factors that may play a more important role in the effectiveness of the measuring
process, such as the time to fix the part, or casting process uptime.

Another example of knowledge that can be extracted from the time stamp is machine
utilization and uptime. The dashboard presented in Figure 12 illustrates this use. A simple
glance at the data allows a supervisor to visualize the pace of production. However, auto-
matic extraction of information from the data is not a straightforward task. Equations (1)
through (4) were developed to make the pertinent calculations. While simple, the terminol-
ogy had to be developed in such a way that the correct information is communicated. As
in the case of the cycle time, this information is derived directly from the time saved in the
sheets and its use was anticipated from the start of the development process. A potential
use of this information is a better synchronization of this operation with other stations to
optimize material flow, or monitoring of operator fatigue. Implementation would require
the use of more sophisticated analysis techniques.

For the most part, the data produced by ambient sensors and accelerometers require
analysis before an application is developed. Figure 15a shows an interesting behavior
of the positioning system. As the ambient temperature rises, the maximum acceleration
reached by the system appears to increase too, which is consistent with experience. The
temperature measurement is made inside the measurement volume of the machine, and
the rise may be caused by a combination of the environment around the machine as well as
the heat generated by the linear motors as they perform their duties. The behavior seems
to indicate that as the environment increases its temperature, the machine can reach higher
speeds. This would be consistent with the observation that as the shift progresses, cycle
times are reduced, as shown in Figure 15b. The reduction in cycle time may be caused by
the combination of factors such as a faster machine and operator improved dexterity as
the process progresses. A safe recommendation is to try to maintain the machine running
as consistently as possible to allow for it to reach its maximum speeds. However, this
correlation needs to be studied further before other recommendations can be made.

A similar situation is seen in the accelerometer data, which can provide relevant
information about the performance of a machine. As in the previous case, acceleration
patterns need to be analyzed before any type of predictions can be made. Figure 16a,b
shows histograms of the maximum accelerations that the positioning system can achieve
during the measurement cycle in our machine design. These values are reported by the
accelerometers placed on the Gantry machine and constitute a baseline for what can be
considered normal behavior.
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The XDK sensor provides acceleration values, along with ambient temperature, pres-
sure, and humidity. In this case, the XDK was set up to report peak values between
measuring cycles, while the Gantry positioner is at rest. A typical histogram is shown in
Figure 16c. An example of information that could be extracted out of the combined data, but
that was not anticipated at the design stage, surfaced after several hundreds of measurement
cycles in a particular trial run. At some point in the operation, part measurements deviated
considerably out of range (Figure 16d). The operator stopped the machine and observed
that one of the positioning plate support pins had been separated from the plate. Upon
inspection, it was determined that the screw that was holding the pin in place became
loose. An analysis of the environment data showed that prior to the faulty measurements,
the accelerometer had picked up a large spike, in excess of 0.25 g in both X and Y, which
could be interpreted as an impact. A few cycles after this event, measurements at specific
points of the workpiece started to divert considerably. Had the acceleration parameter been
monitored, a warning could have been given so that maintenance crews could have checked
the machine. A feature of this type is a clear example of the improved intelligence that is
derived from monitoring the environment and adapting the process as more knowledge
is gained. While the problem was relatively minor in terms of the fix that was needed
(it took about 10 min to reattach and glue the screw) it still knocked the machine out of
production for more than one shift while the orders to diagnose the problem and implement
the solution were made. Full data for this event were reported in [24].



Appl. Sci. 2021, 11, 1312 24 of 29
Appl. Sci. 2021, 11, x FOR PEER REVIEW 25 of 31 
 

 

Appl. Sci. 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/applsci 

  
(a) (b) 

 
(c) 

 
(d) 

Figure 16. (a,b) Histogram of acceleration of X and Y axes of the positioning system. (c) Histogram of accelerations re-
ported by the XDK sensor. (d) Part deviation measured after machine was subject to shock. 

The XDK sensor provides acceleration values, along with ambient temperature, pres-
sure, and humidity. In this case, the XDK was set up to report peak values between meas-
uring cycles, while the Gantry positioner is at rest. A typical histogram is shown in Figure 
16c. An example of information that could be extracted out of the combined data, but that 
was not anticipated at the design stage, surfaced after several hundreds of measurement 
cycles in a particular trial run. At some point in the operation, part measurements devi-
ated considerably out of range (Figure 16d). The operator stopped the machine and ob-
served that one of the positioning plate support pins had been separated from the plate. 

Figure 16. (a,b) Histogram of acceleration of X and Y axes of the positioning system. (c) Histogram of accelerations reported
by the XDK sensor. (d) Part deviation measured after machine was subject to shock.

Connectivity in the plant was achieved through a Wi-Fi connection that was available
for guests. It was possible to observe the efficacy of the process of sending data to the
Cloud during R&R tests performed on the shop floor. It was standard practice to bring a
laptop next to the machine and monitor how data were being registered on the Google
Sheet. Data would be available within a couple of seconds of completion of a measuring
cycle. However, during these tests, about once in every 250 cycles a measurement would
not reach the Cloud. This performance could be improved by dedicating a connection for
this process.
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Overall, the design of the prototype in-line measuring machine proved to be able
to meet the expectations of the shop conditions. The introduction of the clamping plate
and moving sensor with a programmable path improved the flexibility/adaptability of
the equipment. While highly desirable, these modifications represent an incremental
improvement with respect to the equipment that is currently deployed on the shop floor.
Connectivity on the other hand is what allows the new concept to establish itself as a new
generation with respect to the equipment that it is intended to replace. The information
that can be obtained about the process is a powerful new tool that can be used to improve
the overall efficiency of the manufacturing operation.

7. Conclusions and Future Work

This work proposed that Connectivity as a design function allows the introduction of
Industry 4.0 principles into the architecture of production equipment. Connectivity allows
powerful computer resources to interact with the machine control to improve the capacity
to monitor and adapt to changes in the environment, in essence improving the intelligence
of the process. The article also explained the importance of in-line metrology for the new
generation of smart factories. The advantages and opportunities that these concepts offer
were explored through the development of an in-line measuring machine.

This work also showed how functional decomposition techniques could be used to
clarify the role of Connectivity. A connectivity block was presented for use in IDEF0 type
diagrams. Diagrams that used these representations of Connectivity were presented. Their
goal was to show how Connectivity was implemented in the particular architecture of the
machine. They are particularly useful for documentation.

The design principles and methodology presented in this work were applied to the
design, construction, and testing of an in-line measuring machine that accomplishes the
features of flexibility, accuracy, robustness, and speed. In addition to those features, the
machine is ready for a smart factory (Industry 4.0) environment as a result of the added
dimension of intelligence through Connectivity.

This case demonstrated that Connectivity offers the potential to improve the efficiency
of the operation. It should be noted that while implementation added little cost, there were
costs associated with managing and maintaining the hardware and software. There were
also issues of reliability and robustness. For example, missing data from a faulty sensor can
cause the system to crash. Therefore, it is important to address questions about the data
that will be collected, analyzed, processed, and stored as early as possible in the design
stage in such a way that risks can be assessed.

At this stage of the development of the prototype, all of the analysis has been done by
humans. The dashboard presents information that administrators can use to understand the
process in more depth and develop practices that can lead to a more efficient operation. A
few examples of the types of improvements that can be made to the control to reflect the
improved intelligence have already been described. Specifically, adding a variable to monitor
peak acceleration and generate a warning when a specific value is exceeded represents one
case. Future work includes the implementation of these features or the control of the machine,
specifically, the design of a dashboard for engineering that includes warnings.

Making the best use of new technologies is not a straightforward process. Szalavetz
argues that the skill sets for “innovation capabilities” are different from those associated
with “production capabilities”. Design, engineering, and testing are key competences of
innovation capability [23]. In this regard, the application case presented here provides
valuable experience for the user of the in-line measuring station.

There are a number of opportunities for further work. The most important area of
interest that was not addressed in this exercise was cybersecurity. In the current design,
no automatic feedback was programmed to make modifications in the measurement cycle.
Consequently, no provisions were made to safeguard the data other than what was afforded
by the normal vendor services or what is built into the data transfer protocols and what
the LAN provided. Without a doubt, this approach will have to be revisited during the
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development of a new version of the machine. The second direction to take should be the
implementation of automatic responses or warning to changes in the environment.
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Appendix A. DoGet Script

Code for DoGet script to store data in the Cloud. Written un Javascript. This function
was adapted to write different data in 7 worksheets.
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Appendix B. R&R Program Flow Chart

The input data are taken from the corresponding google sheet in the Cloud. Ninety
measurement lines (10 different parts, 3 operators measuring each part 3 times). Each line
contains 19 different point heights.
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