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Abstract: One of the most powerful tools for solving optimization problems is optimization algo-
rithms (inspired by nature) based on populations. These algorithms provide a solution to a problem
by randomly searching in the search space. The design’s central idea is derived from various nat-
ural phenomena, the behavior and living conditions of living organisms, laws of physics, etc. A
new population-based optimization algorithm called the Binary Spring Search Algorithm (BSSA)
is introduced to solve optimization problems. BSSA is an algorithm based on a simulation of the
famous Hooke’s law (physics) for the traditional weights and springs system. In this proposal, the
population comprises weights that are connected by unique springs. The mathematical modeling of
the proposed algorithm is presented to be used to achieve solutions to optimization problems. The
results were thoroughly validated in different unimodal and multimodal functions; additionally, the
BSSA was compared with high-performance algorithms: binary grasshopper optimization algorithm,
binary dragonfly algorithm, binary bat algorithm, binary gravitational search algorithm, binary
particle swarm optimization, and binary genetic algorithm. The results show the superiority of the
BSSA. The results of the Friedman test corroborate that the BSSA is more competitive.

Keywords: optimization; Hooke’s law; binary; spring search algorithm; binary spring search algorithm

1. Introduction

The optimization of a process or system is a concept that has critical applications
in many fields of science. Many optimization algorithms have been introduced [1–3],
which has led to greater availability of heuristic optimization techniques in recent years
and their application in various fields, such as energy [4,5], protection [6], electrical
engineering [7–11], filter design [12], and energy carriers [13,14], to achieve the optimal
solution (under specific criteria). Lately, these methods have been modified, achieving
better yields [15–17].

An optimization algorithm is intelligent when its approach is to find an adequate
solution to an optimization problem in the shortest possible time with the least detailed
information [18]. The word “heuristics” in ancient Greek means “to know,” “to discover,”
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“to find,” or “a clue for an investigation” [19]. The heuristic approach ignores some of
the information to make faster decisions with the maximum saving of time and utmost
precision compared to complex approaches [20]. Processes in nature inspire many heuristic
algorithms (biological processes, animals or groups of animals, and physics theories).

Optimization algorithms can be classified in different ways, using a widely accepted
structure of four categories, based on the main design. These categories are physics-based,
swarm, game-based, and evolution-based optimization algorithms.

Physics-based optimization algorithms are designed according to the simulation of
various phenomena and laws of physics. Momentum Search Algorithm (MSA) is one of
the algorithms belonging to this group. MSA is based on the simulation of momentum and
motion laws. Members of the MSA population are balls with different weights that move in
the direction of a ball with a suitable position based on the impulse [1]. Simulated Anneal-
ing (SA) algorithm is one of the oldest algorithms in physics. SA is inspired by the process
of smelting and cooling materials in metallurgy. Under controlled temperature conditions,
the materials are subjected to a heat treatment that causes the molecular structures to go
through different phases to change their mechanical properties. The previous phenomenon
increases the strength and durability of the material. Heating the material increases its
atoms’ energy. It allows them to move freely, and the slow cooling process allows a new,
lower-energy, higher-strength configuration to be discovered and exploited [21]. This
algorithm’s efficiency is due to an essential connection between statistical mechanics and
optimization processes (multivariate or combinatorial in nature).

The analogous behavior of these processes lays the foundations for defining values
that optimize the properties of extensive and/or complex systems, which is where the use
of this algorithm is mainly justified.

Some other popular physics-based optimization algorithms include Galaxy-based
Search Algorithm (GbSA) [22], Charged System Search (CSS) [23], Curved Space Opti-
mization (CSO) [24], Artificial Chemical Reaction Optimization Algorithm (ACROA) [25],
Ray Optimization (RO) algorithm [26], Small World Optimization Algorithm (SWOA) [27],
Black Hole (BH) [28], Central Force Optimization (CFO) [29], and Big-Bang Big-Crunch
(BBBC) [30].

Swarm-based optimization algorithms have been developed based on the simulation
of natural processes, movements, and behavior of animals and other living things. Particle
Swarm Optimization (PSO) is the most famous optimization algorithm and is often used
by researchers. Particle swarm optimization is a heuristic global optimization method
that was proposed in 1995 [31]. It is based on the intelligence of swarms and emulates
the behavior patterns of birds/fish when looking for food. One of the birds smells food
and communicates it to the rest; this coordination reproduces successful behavior due to
the cooperation of each bird. This algorithmically structured idea, due to its simplicity
and ease of implementation, is widely exploited for optimization in many different areas
of knowledge.

Some of the other swarm-based algorithms are Bat-inspired Algorithm (BA) [32],
Artificial Bee Colony (ABC) [33], Doctor and Patient Optimization (DPO) [34], Cuckoo
Search (CS) [35], Spotted Hyena Optimizer (SHO) [36], Multi Leader Optimizer (MLO) [37],
Group Optimization (GO) [38], Monkey Search (MS) [39], Grey Wolf Optimizer (GWO) [40],
Artificial Fish-Swarm Algorithm (AFSA) [41], Hunting Search (HS) [42], Moth-Flame
Optimization Algorithm (MFO) [43], Emperor Penguin Optimizer (EPO) [44], Dolphin
Partner Optimization (DPO) [45], Donkey Theorem Optimization (DTO) [46], Rat Swarm
Optimizer (RSO) [47], Grasshopper Optimization Algorithm (GOA) [48], Coupled Spring
Forced Bat Algorithm (SFBA) [49], and Following Optimization Algorithm (FOA) [50].

Game-based optimization algorithms are introduced and designed based on the sim-
ulation of different game rules and player behavior. Football Game-Based Optimization
(FGBO) is a game-based optimization algorithm developed based on football league simu-
lations and club performance [51]. Some of the other game-based algorithms are Binary
Orientation Search Algorithm (BOSA) [52], Darts Game Optimizer (DGO) [53], Orientation
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Search Algorithm (OSA) [54], Shell Game Optimization (SGO) [55], Dice Game Optimizer
(DGO) [56], and Hide Objects Game Optimization (HOGO) [57].

Evolutionary-based optimization algorithms are developed based on the combination
of natural selection and continuity of coordination. These algorithms are based on struc-
tures that simulate the rules of selection, recombination, change, and survival. Genetic
Algorithm (GA) is one of the oldest and most popular evolutionary-based optimization
algorithms [58]. Some other evolutionary-based algorithms include Improved Quantum-
Inspired Differential Evolution Algorithm (IQDE) [59], Differential Evolution (DE) [60],
Biogeography-Based Optimizer (BBO) [61], Evolutionary Programming (EP) [62], Evolution
Strategy (ES) [63], and Genetic Programming (GP) [64].

These algorithms use a kind of statistical feature and random phenomena in their
structure. Some central force optimization algorithms that are metaphors for the global
law of gravity do not use such random phenomena. Such algorithms have certainty
characteristics [29].

Population-based approaches have been inspired by social interactions between mem-
bers of a community.

Based on the experience learned and the neighborhood particle guides, every particle
tries to move towards the search space’s best position [65]. Physical and biological pro-
cesses and nature have inspired heuristic search algorithms. The majority of them act as
population-based algorithms.

Unlike classical techniques, heuristic search techniques act randomly and search
space in parallel; they do not use spatial gradient information. These algorithms use
only fitness functions to guide the search process, but they can discover the solution
thanks to their swarm intelligence. Swarm intelligence appears in cases where there is
a population of non-expert factors. These factors have a simple behavior/pattern in cer-
tain situations/conditions and interact locally. These localized relationships/interactions
between members cause unexpected ultralocal interactions and guide the search to the
optimal solution. This allows the system/process to find a solution without the need
for a central controller. The members’ behavior/performance organizes the system inter-
nally, generating characteristics such as positive feedback, negative feedback, balanced
exploration-exploitation, and multiple interactions of a different order. This effect is called
the self-organizing impact [66,67].

Although heuristic algorithms have been developed, improved, and used, no algo-
rithm has been introduced that provides an efficient solution for optimizing engineering
problems or problems in other sciences. This article analyzes/discusses a new heuristic
algorithm that solves the traditional shortcomings. An optimization algorithm based on
the well-known Hooke’s law is proposed, and preliminary results are presented [68].

The optimization algorithm called Binary Spring Search Algorithm (BSSA) is described
and analyzed. The rest of the paper is organized as follows. In the first section, a brief
introduction to heuristic-based optimization algorithms is presented. The spring force law
is discussed in the second section, and the binary version of the spring search algorithm
is introduced in Section 3. The main features of the BBSA are shown in Section 4, and a
computational complexity analysis is presented in Section 5. The proposed algorithm’s
exploration and exploitation characteristics are explained in Section 6, and the results are
given in Section 7. Finally, concluding remarks are listed in the last section.

2. Spring Search Algorithm

The BSSA is a physics-based optimization algorithm that can be used to solve various
optimization problems. The BSSA has a population matrix whose members are different
weights that are moved in the search space in order to achieve the optimal solution. All
desired weights are connected to each other in this system by a unique spring whose
stiffness coefficient is determined based on the value of the objective function. The main
idea of the proposed BSSA is to use Hooke’s law between the weights and springs in order
to reach the equilibrium point (solution).
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Hooke’s law is defined using Equation (1). All springs follow Hooke’s law as long as
they are not deformed [69].

Fs = −kx (1)

Here, Fs is the spring force, k is the spring constant, and x is the spring compression
or stretch.

2.1. BSSA Formulation

In this section, the mathematical formulation of the BSSA is modeled according to
Hooke’s law. Similar to population-based algorithms, the BSSA has a population matrix in
which each row represents a member of the population as a weight. Thus, every member
of the population is a vector, where each vector element determines the value of a variable
of the optimization problem. In the BSSA, each member of the population is introduced
using Equation (2).

Xi =
(

x1
i , . . . , xd

i , . . . , xm
i

)
for i = 1, 2, . . . , N, (2)

Here, Xi is the i’th member of population matrix, xd
i is the status of the d’th dimension

of the i’th member of the population matrix, m is the number of the problem’s variables,
and N is the number of members of the population. The initial position of each member of
the population is randomly considered in the search space of the problem. Then, based on
the forces that the spring exerts on the weights, the members of the population move in
the search space. The force of the springs is proportional to the spring constant, which is
updated in each iteration using Equation (3).

Ki,j = Kmax

∣∣∣Fi
n − Fj

n

∣∣∣max
(

Fi
n, Fj

n

)
(3)

Here, Ki,j is the spring constant of a specified spring that connects weight i to weight j,
Kmax is the maximum value of the spring constant for all springs, and its value is 1, and Fn
is the normalized objective function, in which Fi

n means a normalized objective function
for the i’th member. In the BSSA, objective functions are normalized using Equations (4)
and (5).

F′ in =
f i
obj

min
(

fobj

) , (4)

Fi
n =

min
(

F′ in
)

F′ in
(5)

where fobj is the vector of the objective function, in which f i
obj means an objective function

for the i’th member. An m-variable problem has an m-dimensional search space. Therefore,
the search space has m coordinate axes corresponding to each variable. Each member of
the population has a value on each axis. For each member of the population in each axis,
the fixed points on the right and left are defined. Fixed points for a member are members
who have a better objective function than that member. This causes two separate forces to
be applied to each member on each axis from the left and right, which can be determined
using Equations (6) and (7).

Fj,d
totalR

=
nd

R

∑
i=1

Ki,j xd
i,j (6)

Fj,d
totalL

=
nd

L

∑
l=1

Kl,j xd
l,j (7)
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where Fj,d
totalR

and Fj,d
totalL

are respectively the total of the forces exerted on the d’th dimension

of the i’th member of the population matrix from the right and left, nd
R is the number of

fixed points on the right in the d’th axis or dimension, and nd
L is the number of fixed points

on the left in the d’th axis or dimension. Now, according to Hooke’s law, the amount of
displacement to the right and left side for each member in each axis can be calculated using
Equations (8) and (9).

dX j,d
R =

Fj,d
totalR

K j
equalR

(8)

dX j,d
L =

Fj,d
totalL

K j
equalL

(9)

where dX j,d
R is the amount of displacement to the right side for the j’th member in the

d’th axis or dimension, and dX j,d
L is the amount of displacement to the left side for the j’th

member in the d’th axis or dimension. In this case, the final displacement value can be
calculated by merging Equations (8) and (9) according to Equation (10).

dX j,d = dX j,d
R + dX j,d

L (10)

where dX j,d is the final displacement for the j’th member in the d’th axis or dimension.
After determining the amount of displacement, the new position of each member in the
search space is updated using Equation (11).

X j,d = X j,d
0 + r1 × dX j,d (11)

where X j,d
0 is the previous position of the j’th member in the d’th dimension, and r1 is a

random number with a normal distribution in the range of [0− 1].

2.2. BSSA Implantation

In the BSSA, the population of the algorithm is first defined randomly. Then, in
each iteration, the position of each member of the population is updated according to
Equations (3)–(10). Additionally, the spring constant coefficient is updated in each iteration
according to Equation (3). This process is repeated until the algorithm reaches the stop-
ping condition. Therefore, the various steps of implementing the BSSA can be expressed
as follows:

Start
Step 1: Define the problem and determine the search space of the problem.
Step 2: Create the initial population randomly.
Step 3: Evaluate and normalize the objective function.
Step 4: Update the spring constant.
Step 5: Calculate the amount of left and right displacement according to Hooke’s law.
Step 6: Calculate final displacement.
Step 7: Update population.
Step 8: Repeat steps 3–7 until the stop condition is reached.
Step 9: Return best solution for objective function.
End

3. Binary Spring Search Algorithm (BSSA)

In this section, a binary version of the spring search algorithm is developed. In the
binary version of SSA, real values are displayed in binary using the numbers zero and one.
The search space is discrete, and the appropriate number of binary values must be used
to display each variable on the axis. Given that in the binary version, there are only two
numbers (zero and one), the concept of displacement is defined as changing the status from
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zero to one or changing the status from one to zero. In order to implement this concept of
displacement in the binary version, a probability function is used. Based on the value of this
probability function, the new position of each member in each dimension of the problem
may be change or remain unchanged. Therefore, in the BSSA, dX j,d is the probability of
X j,d becoming zero or one. The method of calculating the spring forces, the constant values
of the springs, the amount of displacement per member of the population, and the update
steps are similar in both the binary and real versions. The difference between the two
versions is in how the population is updated. Given that the probability function must be a
number between zero and one, the probability of changing the position for each dimension
of each member is calculated using Equation (12).

S
(

dX j,d(t)
)

=
∣∣∣tan h

(
dX j,d(t)

)∣∣∣ (12)

Therefore, based on the values of the probability function, the new position of each
dimension of each member is updated using Equation (13).

If rand < S
(

dX j,d(t)
)

Then X j,d(t + 1) = complement(X j,d(t))

Else X j,d(t + 1) = X j,d(t)
(13)

According to Equation (13), each member of population changes its position with a
probability; the higher the value of dX j,d, the higher the probability of object j moving in
dimension d. rand is a random number with a normal distribution in the range o f [0− 1].

The different steps of the BSSA are shown as flowcharts in Figure 1.
In order to clearly illustrate how the proposed method seeks the optimal solution, let

us consider the following standard function:

f (x) =
2

∑
i=1

x2
i

This problem is solved for two dimensions with 50 iterations and 10 bodies as the
problem population. In the first iteration, the members of the population are randomly
placed in the problem space. It is observed in Figure 2 that the proposed algorithm
extensively searches the search space in the initial iterations to cover the defined space of
the problem with high search capacity. Over time, it is seen that the proposed algorithm
converges towards an optimal solution, and members of the population are concentrated
in the vicinity of this optimal solution. The high capacity of the algorithm is presented for
a quick exploration of the optimal solution. The numerical results of the test function in
different iterations are shown in Table 1.
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Table 1. Numerical results for the test function at different iterations.

Iteration = 1 Iteration = 2 Iteration = 3

X1 X2 F(x) X1 X2 F(x) X1 X2 F(x)

4.13E+01 −3.70E+01 3.07E+03 −1.90E+01 −9.82E+00 4.59E+02 3.01E+01 −9.82E+00 1.00E+03

−4.72E+01 −8.09E+01 8.77E+03 −3.49E+01 −6.17E+01 5.02E+03 2.47E+00 −4.32E+01 1.87E+03

1.13E+01 3.96E+01 1.70E+03 −3.69E+01 −2.55E+01 2.01E+03 −3.44E+01 −1.65E+01 1.46E+03

7.58E+01 1.93E+01 6.11E+03 2.60E+01 1.93E+01 1.05E+03 −3.62E+00 7.90E+00 7.55E+01

−3.72E+01 −2.03E+01 1.80E+03 9.97E+00 −1.65E+01 3.73E+02 −1.10E+01 −4.78E+00 1.44E+02

4.90E+01 7.61E+01 8.20E+03 6.19E+00 7.57E+01 5.77E+03 6.19E+00 2.10E+01 4.78E+02

3.68E+01 5.27E+01 4.13E+03 7.16E+00 2.89E+01 8.85E+02 −1.65E+01 2.13E+01 7.24E+02

−9.73E+01 −8.21E+01 1.62E+04 −2.97E+01 −6.76E+01 5.45E+03 −2.16E+00 −8.32E+00 7.39E+01

−9.95E+00 −8.96E+01 8.13E+03 −9.95E+00 −2.38E+01 6.63E+02 2.23E+01 −1.52E+01 7.29E+02

3.74E+01 −9.96E+01 1.13E+04 −2.04E+01 −2.28E+01 9.37E+02 9.06E+00 3.67E+01 1.43E+03
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Table 1. Cont.

Iteration = 4 Iteration = 5 Iteration = 10

X1 X2 F(x) X1 X2 F(x) X1 X2 F(x)

2.41E+00 3.35E+01 1.13E+03 −3.54E+01 1.38E+01 1.45E+03 −5.37E+00 2.83E+00 3.68E+01

−1.08E+01 −3.98E+01 1.70E+03 1.16E+01 −2.78E+01 9.10E+02 −8.39E+00 2.79E−01 7.05E+01

−3.47E+00 1.06E−01 1.20E+01 3.05E+01 1.06E−01 9.32E+02 7.56E+00 1.06E−01 5.71E+01

7.98E+00 −1.21E+01 2.11E+02 −7.97E+00 1.45E+01 2.75E+02 1.13E+01 −9.93E−01 1.29E+02

2.27E+01 −4.78E+00 5.40E+02 2.06E+01 1.54E+01 6.64E+02 −4.43E+00 7.19E−01 2.02E+01

−2.05E+01 1.93E+01 7.89E+02 1.26E+01 −1.54E+01 3.96E+02 5.68E+00 1.53E+00 3.46E+01

−1.43E+01 −4.64E+00 2.26E+02 1.77E+01 2.61E+01 9.96E+02 7.86E+00 −4.35E+00 8.08E+01

−2.16E+00 1.64E+01 2.73E+02 −2.16E+00 −1.74E+01 3.08E+02 −5.92E+00 −8.32E+00 1.04E+02

−1.52E+01 3.26E+01 1.30E+03 1.92E+01 2.42E+01 9.55E+02 1.20E−01 −3.89E+00 1.51E+01

−3.94E+01 5.31E+00 1.58E+03 −1.23E+01 −3.17E+01 1.16E+03 −9.92E+00 7.80E−01 9.89E+01

Iteration = 20 Iteration = 30 Iteration = 50

X1 X2 F(x) X1 X2 F(x) X1 X2 F(x)

−6.49E−01 −2.71E−02 4.21E−01 −7.88E−04 8.56E−03 7.39E−05 −2.14E−06 −1.58E−03 2.49E−06

3.51E−01 −3.30E−01 2.32E−01 −2.12E−02 −1.86E−02 7.95E−04 −3.02E−06 1.64E−05 2.79E−10

8.31E−03 3.10E−02 1.03E−03 6.29E−03 −3.22E−03 4.99E−05 −1.50E−06 9.95E−06 1.01E−10

2.81E−01 1.34E−01 9.70E−02 −1.65E−02 −1.36E−02 4.60E−04 −7.90E−06 −7.15E−06 1.14E−10

−9.40E−02 −4.12E−02 1.05E−02 1.36E−02 −1.55E−02 4.25E−04 3.76E−06 1.10E−04 1.21E−08

−2.46E−01 1.16E−01 7.39E−02 2.40E−03 1.02E−03 6.82E−06 −3.30E−05 −2.45E−06 1.09E−09

−1.76E−01 2.19E+00 4.84E+00 −1.56E−02 2.82E−01 8.00E−02 −1.99E−03 2.34E−01 5.50E−02

−6.43E−02 2.03E−01 4.52E−02 −4.90E−04 −4.00E−02 1.60E−03 8.19E−06 −9.05E−06 1.49E−10

4.60E−01 7.55E−02 2.18E−01 1.66E−02 2.87E−03 2.82E−04 2.56E−05 −1.30E−05 8.27E−10

−8.30E−02 3.75E−01 1.47E−01 −3.15E−02 −8.20E−03 1.06E−03 −7.89E−04 −2.61E−06 6.22E−07

4. Features of the BSSA

In the proposed BSSA, a new optimizer was designed using the simulation of the
spring force law. In the BSSA, the population members are a set of interconnected weights
that move through the problem search space. The spring force is the tool for exchanging
information between members of the population. Each object has a rough understanding of
the surrounding area affected by other objects’ position, so an optimization algorithm must
be designed to improve the position of population members during successive repetitions
and over time. This is accomplished by adjusting the spring stiffness coefficient during
the iterations of the algorithm. A spring with a higher coefficient of stiffness connects to
objects with a better fitness function and draws other objects towards it. For any object, a
force proportional to the size of that object is applied. Objects that are in better positions
should have shorter and slower steps. To achieve this goal, a spring with a higher stiffness
coefficient is attributed to better weights. This process makes the weights of an enhanced
fitness function more carefully search the space around them. The coefficient of the springs’
stiffness and, as a result, the force of the springs decrease over time. As can be seen, objects
accumulate around better positions over time, and a space with smaller steps and more
precision needs to be found. The stiffness of the spring decreases over time. Figure 3 shows
a visualization of the forces applied to the system and the performance of the algorithm.
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Figure 3. Each object is displaced according to spring forces applied to it in the BSSA.

5. Computational Complexity

The time and space complexities of the proposed BSSA are discussed in this section.

5.1. Time Complexity

The initialization process of the BSSA takes O(n) times.
It takes O(c) times to convert the algorithm into a binary version.
The number of population members and objective function require O(p) and O(f) times.
The whole process will be simulated until a maximum number of iterations, which

requires O(Maxiterations) times.
Overall, the time complexity of the proposed BSSA algorithm is O(n+c*p*f*Maxiterations).

5.2. Space Complexity

The proposed BSSA’s space complexity is its initialization process, which requires
O(n) times.

6. Exploration and Exploitation of the BSSA

The two most important indicators recommended for evaluating the performance of
different optimization algorithms in optimizing optimization problems are exploitation
power and exploration power. The exploitation index is used to analyze the ability of
optimization algorithms to achieve the optimal solution. In fact, an algorithm that can
provide a solution closer to the original solution has a higher power of exploitation. The
exploration index is used for the analysis of the power of optimization algorithms in the
exact search of the defined search space of a specific optimization problem. This indicator
is especially important for optimization problems that have several local optimal points.
Thus, an algorithm that can effectively scan the entire search space is able to extract the
population of the algorithm from the local optimal points and direct it to the main optimal
areas. Therefore, according to the definition of the mentioned indicators, it is better that
the optimization algorithms have more exploratory power in the first iterations to examine
different areas of the search space. Then, as the algorithm approaches the final iterations,
the exploitation power of the algorithm must be adjusted to provide the appropriate
solution [70,71].
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The BSSA is able to accurately scan the search space according to the appropriate
population members. The main parameter considered in the BSSA to maintain the balance
between the two important indicators of exploitation and exploration is the spring constant.
The equation of the spring constant in the BSSA is designed to have large values in the
initial iterations and, as a result, according to Hooke’s law and spring force, different areas
of the search space are scanned by members of the population. Then, by increasing the
iterations of the algorithm and getting closer to the final iterations, the spring constant
has smaller values and searches the optimal areas more carefully in order to provide the
most appropriate solution possible. The above procedure is included in Equation (11) to
adjust the spring constant and maintain the balance between the exploitation power and
the exploration power.

7. Simulation Results

The performance of the BSSA was evaluated on 23 benchmark fitness test functions [72],
as defined in Tables 2–4.

The performance of the BSSA was compared with other algorithms, such as Binary Ge-
netic Algorithm (BGA) [73], Binary Particle Swarm Optimization (BPSO) [65], Binary Grav-
itational Search Algorithm (BGSA) [74], Binary Bat Algorithm (BBA) [75], Binary Dragonfly
Algorithm (BDA) [76], and Binary Grasshopper Optimization Algorithm (BGOA) [77].

Each optimization algorithm was applied independently 20 times, and the results
were averaged. As can be seen from Tables 5–7, the BSSA provides better results for
most functions.

Table 2. Unimodal test functions.

F1(x) = ∑m
i=1 x2

i [−100, 100]m

F2(x) = ∑m
i=1|xi|+ ∏m

i=1|xi| [−10, 10]m

F3(x) = ∑m
i=1

(
∑i

j=1 xi

)2
[−100, 100]m

F4(x) = max{|xi| , 1 ≤ i ≤ m } [−100, 100]m

F5(x) = ∑m−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2)
]

[−30, 30]m

F6(x) = ∑m
i=1([xi + 0.5])2 [−100, 100]m

F7(x) = ∑m
i=1 ix4

i + random(0, 1) [−1.28, 1.28]m

Table 3. Multimodal test functions.

F8(x) = ∑m
i=1−xi sin

(√
|xi|
)

[−500, 500]m

F9(x) = ∑m
i=1
[

x2
i − 10 cos(2πxi) + 10

]
[−5.12, 5.12]m

F10(x) = −20 exp
(
−0.2

√
1
m ∑m

i=1 x2
i

)
− exp

(
1
m ∑m

i=1 cos(2πxi)
)
+ 20 + e [−32, 32]m

F11(x) = 1
4000 ∑m

i=1 x2
i −∏m

i=1 cos
(

xi√
i

)
+ 1 [−600, 600]m

F12(x) = π
m

{
10 sin(πy1) + ∑m

i=1(yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+ ∑m

i=1 u(xi, 10, 100, 4)

u(xi, a, i, n) =


k(xi − a)n xi > −a
0 − a < xi < a
k(−xi − a)n xi < −a

[−50, 50]m

F13(x) = 0.1
{

sin2(3πx1) + ∑m
i=1(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2[1 + sin2(2πxm)

]}
+

∑m
i=1 u(xi, 5, 100, 4)

[−50, 50]m
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Table 4. Multimodal test functions with fixed dimensions.

F14(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1
[−65.53, 65.53]2

F15(x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
[−5, 5]4

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5, 5]2

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10 [–5,10] × [0,15]

F18(x) =[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]
×[

30 + (2x1 − 3x2)
2 ×

(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] [−5, 5]2

F19(x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij

(
xj − Pij

)2
)

[0, 1]3

F20(x) = −∑4
i=1 ci exp

(
−∑6

j=1 aij

(
xj − Pij

)2
)

[0, 1]6

F21(x) = −∑5
i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10]4

F22(x) = −∑7
i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10]4

F23(x) = −∑10
i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10]4

The seven objective functions F1–F7 are suitable for evaluating the exploitation rate.
Based on the optimization results presented, Table 5 shows that the proposed algorithm is
the best. The objective functions F8–F23 were selected to study and analyze the scan index.
The optimization of the objective functions in Tables 6 and 7 shows the exploitability of
the algorithm.

Table 5. Results for the BSSA and other algorithms in unimodal test functions.

BSSA BGOA BMOA BBA BDA BGSA BPSO BGA
Ave 6.74E−35 5.71E−28 4.61E−23 7.86E−10 2.81E−01 1.16E−16 4.98E−09 1.95E−12

F1 std 9.17E−36 8.31E−29 7.37E−23 8.11E−09 1.11E−01 6.10E−17 1.40E−08 2.01E−11

F2
Ave 7.78E−45 6.20E−40 1.20E−34 5.99E−20 3.96E−01 1.70E−01 7.29E−04 6.53E−18

std 3.48E−45 3.32E−40 1.30E−34 1.11E−17 1.41E−01 9.29E−01 1.84E−03 5.10E−17
Ave 2.63E−25 2.05E−19 1.00E−14 9.19E−05 4.31E+01 4.16E+02 1.40E+01 7.70E−10

F3 std 9.83E−27 9.17E−20 4.10E−14 6.16E−04 8.97E+00 1.56E+02 7.13E+00 7.36E−09

F4
Ave 4.65E−26 4.32E−18 2.02E−14 8.73E−01 8.80E−01 1.12E+00 6.00E−01 9.17E+01

std 4.68E−29 3.98E−19 2.43E−14 1.19E−01 2.50E−01 9.89E−01 1.72E−01 5.67E+01
Ave 5.41E−01 5.07E+00 2.79E+01 8.91E+02 1.18E+02 3.85E+01 4.93E+01 5.57E+02

F5 std 5.05E−02 4.90E−01 1.84E+00 2.97E+02 1.43E+02 3.47E+01 3.89E+01 4.16E+01

F6
Ave 8.03E−24 7.01E−19 6.58E−01 8.18E−17 3.15E−01 1.08E−16 9.23E−09 3.15E−01

std 5.22E−26 4.39E−20 3.38E−01 1.70E−18 9.98E−02 4.00E−17 1.78E−08 9.98E−02
Ave 3.33E−08 2.71E−05 7.80E−04 5.37E−01 2.02E−02 7.68E−01 6.92E−02 6.79E−04

F7 std 1.18E−06 9.26E−06 3.85E−04 1.89E−01 7.43E−03 2.77E+00 2.87E−02 3.29E−03

Table 6. Results for the BSSA and other algorithms in multimodal test functions.

BSSA BGOA BMOA BBA BDA BGSA BPSO BGA
Ave −1.2E+04 −8.76E+02 −6.14E+02 −4.69E+01 −6.92E+02 −2.75E+02 −5.01E+02 −5.11E+02

F8 std 9.14E−12 5.92E+01 9.32E+01 3.94E+01 9.19EE+01 5.72E+01 4.28E+01 4.37E+01

F9
Ave 8.76E−04 6.90E−01 4.34E−01 4.85E−02 1.01E+02 3.35E+01 1.20E−01 1.23E−01

std 4.85E−02 4.81E−01 1.66E+00 3.91E+01 1.89E+01 1.19E+01 4.01E+01 4.11E+01
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Table 6. Cont.

BSSA BGOA BMOA BBA BDA BGSA BPSO BGA
Ave 8.04E−20 8.03E−16 1.63E−14 2.83E−08 1.15E+00 8.25E−09 5.20E−11 5.31E−11

F10 std 3.34E−18 2.74E−14 3.14E−15 4.34E−07 7.87E−01 1.90E−09 1.08E−10 1.11E−10

F11
Ave 4.23E−10 4.20E−05 2.29E−03 2.49E−05 5.74E−01 8.19E+00 3.24E−06 3.31E−06

std 5.11E−07 4.73E−04 5.24E−03 1.34E−04 1.12E−01 3.70E+00 4.11E−05 4.23E−05
Ave 6.33E−08 5.09E−03 3.93E−02 1.34E−05 1.27E+00 2.65E−01 8.93E−08 9.16E−08

F12 std 4.71E−04 3.75E−03 2.42E−02 6.23E−04 1.02E+00 3.14E−01 4.77E−07 4.88E−07

F13
Ave 0.00E+00 1.25E−08 4.75E−01 9.94E−08 6.60E−02 5.73E−32 6.26E−02 6.39E−02

std 0.00E+00 2.61E−07 2.38E−01 2.61E−07 4.33E−02 8.95E−32 4.39E−02 4.49E−02

Table 7. Results for the BSSA and other algorithms in multimodal test functions with fixed dimensions.

BSSA BGOA BMOA BBA BDA BGSA BPSO BGA
Ave 9.98E−01 1.08E+00 3.71E+00 1.26E+00 9.98E+01 3.61E+00 2.77E+00 4.39E+00

F14 std 7.64E−12 4.11E−02 3.86E+00 6.86E−01 9.14E−1 2.96E+00 2.32E+00 4.41E−02

F15
Ave 3.3E−04 8.21E−03 3.66E−02 1.01E−02 7.15E−02 6.84E−02 9.09E−03 7.36E−02

std 1.25E−05 4.09E−03 7.60E−02 3.75E−03 1.26E−01 7.37E−02 2.38E−03 2.39E−03
Ave −1.03E+00 −1.02E+00 −1.02E+00 −1.02E+00 −1.02E+00 −1.02E+00 −1.02E+00 −1.02E+00

F16 std 5.12E−10 9.80E−07 7.02E−09 3.23E−05 4.74E−08 0.00E+00 0.00E+00 4.19E−07

F17
Ave 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01

std 4.56E−21 5.39E−05 7.00E−07 7.61E−04 1.15E−07 1.13E−16 9.03E−16 3.71E−17
Ave 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

F18 std 1.15E−18 1.15E−08 7.16E−06 2.25E−05 1.48E+01 3.24E−02 6.59E−05 6.33E−07

F19
Ave −3.86E+00 −3.86E+00 −3.84E+00 −3.75E+00 −3.77E+00 −3.86E+00 −3.80E+00 −3.81E+00

std 5.61E−10 6.50E−07 1.57E−03 2.55E−03 3.53E−07 4.15E−01 3.37E−15 4.37E−10
Ave −3.32E+00 −2.81E+00 −3.27E+00 −2.84E+00 −3.23E+00 −1.47E+00 −3.32E+00 −2.39E+00

F20 std 4.29E−05 7.11E−01 7.27E−02 3.71E−01 5.37E−02 5.32E−01 2.66E−01 4.37E−01

F21
Ave −10.15E+00 −8.07E+00 −9.65E+00 −2.28E+00 −7.38E+00 −4.57E+00 −7.54E+00 −5.19E+00

std 1.25E−02 2.29E+00 1.54E+00 1.80E+00 2.91E+00 1.30E+00 2.77E+00 2.34E+00
Ave −10.40E+00 −10.01E+00 −1.04E+00 −3.99E+00 −8.50E+00 −6.58E+00 −8.55E+00 −2.97E+00

F22 std 3.65E−07 3.97E−02 2.73E−04 1.99E+00 3.02E+00 2.64E+00 3.08E+00 1.37E−02

F23
Ave −10.53E+00 −3.41E+00 −1.05E+01 −4.49E+00 −8.41E+00 −9.37E+00 −9.19E+00 −3.10E+00

std 5.26E−06 1.11E−02 1.81E−04 1.96E+00 3.13E+00 2.75E+00 2.52E+00 2.37E+00

Statistical Testing

Although the simulation and optimization results, reported as the average of the best
solution and standard deviation, indicate the superiority of the proposed BSSA, these
results alone are not sufficient to guarantee the proposed algorithm’s superiority. Although
all algorithms were run independently 20 times, it is still possible that the advantage
occurs by chance despite its low probability in 20 runs. Therefore, the Friedman rank
test [78] was applied to analyze the results further. This statistical test has two approaches
to achieving the same goal. A quantitative variable is recorded two or more times in the
same sample. In the other objective, the quantitative variables are measured from the
same sample. In these objectives, the Friedman test compares the distributions (of the two
or more quantitative variables). The results of this test are presented in Table 8 and are
specified for all three different groups of objective functions: unimodal, multimodal, and
multimodal with fixed dimension test functions and all objective test functions. Based on
these results, the proposed algorithm for all three different test functions is positioned first
in the Friedman rank test. Furthermore, the overall results of all the test functions (F1–F23)
show that the BSSA is significantly superior to the other algorithms.
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Table 8. Results of the Friedman rank test.

Test Function BGA BPSO BGSA BDA BBA BMOA BGOA BSSA

1 Unimodal
(F1–F7) Friedman value 39 39 42 46 38 26 14 7

Friedman rank 5 5 6 7 4 3 2 1

2 Multimodal
(F8–F13) Friedman value 25 21 36 40 28 31 22 6

Friedman rank 4 2 7 8 5 6 3 1

3
Multimodal with fixed

dimensions
(F14–F23)

Friedman value 52 31 42 44 44 34 29 10

Friedman rank 7 3 5 6 6 4 2 1

4 All 23 test functions Friedman value 116 91 120 130 110 91 65 23
Friedman rank 5 3 6 7 4 3 2 1

8. Conclusions

There are many optimization problems that must be solved by using a suitable method.
Different heuristic optimization algorithms have been proposed to overcome the short-
comings of traditional methods, such as Linear Programming (LP), non-linear LP, and
differential programming. Most of these algorithms are population-based using the ran-
domness of natural phenomena. A heuristic optimization algorithm called Binary Spring
Search Algorithm (BSSA) is proposed, which uses laws of the spring force law. The proposal
was mathematically modeled, and its efficiency was evaluated using 23 standard test func-
tions. These test functions were selected from three different types: unimodal, multimodal,
and multimodal with fixed dimension test functions to evaluate different aspects of the pro-
posed algorithm. Seven optimization algorithms (binary genetic algorithm, binary particle
swarm optimization, binary gravitational search algorithm, binary dragonfly algorithm,
binary bat algorithm, and binary grasshopper optimization algorithm) were compared to
evaluate the performance of the proposed algorithm. Compared to the other algorithms, in
all cases, the BSSA produces nearly optimal solutions. Friedman’s rank test was used to
further analyze the performance of the BSSA. The results obtained from this test show the
clear superiority of the proposed algorithm in the three different types of test functions.
The overall results of all test functions (F1–F23) show that the BSSA is significantly superior
to the other algorithms and ranks first among them. Based on the optimization results and
the Friedman rank test results, it is clear that the proposed BSSA performs well in solving
optimization problems and is more competitive than similar algorithms.
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